# 北極海氷減少に伴う極域温暖化増幅と成層圏過程の役割

\*中村 哲<sup>1</sup>、山崎孝治<sup>1</sup>、岩本勉之<sup>2</sup>、本田明治<sup>3</sup>、浮田甚郎<sup>3</sup>、三好勉信<sup>4</sup>、 小川泰信<sup>5,6</sup>、冨川 喜弘<sup>5,6</sup>

1. 北海道大学、2. 紋別市役所、3. 新潟大、4. 九大、5. 極地研、6. 総研大

#### <u>1. はじめに</u>

近年の地球温暖化に伴い、北極域では他地域より も大きな昇温傾向を示しており(極域増幅、Polar amplification)、それに伴い特に北極海の海氷は急 速に減少している事が報告されている。北極海の海 氷減少は北極近辺のローカルな大気応答のみなら ず、大気の波動活動などによる遠隔応答をもたらし、 中高緯度の気候へ影響することが示唆される(Honda et al., 2008; Deser et al., 2010; Screen et al., 2013)。 特に 2000 年代以降の急速な海氷域後退に伴う冬季 北半球気候の変化は、ユーラシア大陸上での寒気の 到来や北極を取り巻くジェット気流の蛇行やブロッキ ング高気圧の発達と関連する(Overland et al., 2011; Hopsch et al., 2012; Orsolini et al., 2012; Mori et al., 2014)。

これらの冬季気候状態の変化は北極振動(Arctic Oscillation, AO)の負位相として捉えられる。観測デ ータ解析・数値モデル実験に基づく研究により、北極 海の海氷域後退に伴って北極振動の負位相が現れ やすくなることが示される(Jaiser et al., 2012; Liu et al., 2012; King et al., 2015; Nakamura et al., 2015)。 負の 北極振動は成層圏突然昇温(Stratospheric sudden warming, SSW)時に起こり易い事が知られており、さ らに 2000 年代に入り、1990 年代に比べて SSW の発 生頻度が増えている。SSW のような冬季成層圏極渦 弱化が起こりやすくなる要因として、夏から秋にかけ ての北極海氷後退(Orsolini et al., 2012; Kim et al., 2014; Nakamura et al., 2015) · 秋のシベリア域の積雪 被覆增加(Fletcher et al., 2007; Peings et al., 2012). およびそれらの複合作用(Cohen et al., 2014; Wegmann et al., 2015)による惑星波変調が指摘され る。成層圏極渦弱化シグナルが下方伝搬することで 鉛直結合する時、対流圏での負の北極振動シグナ ルとして観測される(Baldwin and Dunkerton, 2001)。 このような成層圏経由(Stratospheric pathway)での海 氷減少-負 AO のリンクは、観測された 2000 年以前 以降の変化と海氷のみを変化させた数値実験とで非 常によく一致して見られる(Jaiser et al., 2016)。 CMIP6 結合モデル群の現在気候再現実験において も、Stratospheric pathway が成層圏と結合しないプロ セス(Tropospheric pathway; Nakamura et al., 2016b) と同程度に再現される(García-Serrano et al., 2016)。 一方、CMIP5 の将来予測実験から得られた海氷分 布を用いた数値実験では、海氷減少域の違いにより

成層圏応答の仕方が大きく変わる(Sun et al., 2015)。

Nakamura et al. (2016a)は海氷減少-負 AO リンク における成層圏過程の役割を明らかにするため、成 層圏の波動平均流相互作用を段階的に減衰させた 実験を行い、海氷減少に伴う成層圏循環の変化が 対流圏気候、ひいては極域増幅へもたらす影響につ いて調べた。本稿はその内容にいくつかの最新の知 見を加えて紹介するものである。

## <u>2. モデルと実験設定</u>

モデル上端高度を上部成層圏(60km)まで延伸した AFES4.1(解像度:T79L56)を用いたタイムスライス 実験を行った。境界条件として Merged Hadley/OISST(Hurrell et al., 2008)の月平均SSTおよび海氷密接度データを与えた。海氷密接度は最大 50cm の海氷厚に線形変換したのち、モデルの境界 条件として使った。SSTを1979-1983の5年平均値、 海氷を表1に示す境界条件を設定した6タイプの実 験の60年積分を行った。High (1979-1983)と Low (2005-2009)はそれぞれ現在気候状態における多氷 年と少氷年を代表する。両者の差は、夏から初秋は 東シベリア海付近、晩秋から冬はバレンツ・カラ海で の著しい減少傾向を表わす。

減衰なしの FREE に対し、R10、R30 ではそれぞれ 10、30hPa より上空で東西平均東西風を FREE の HICE の日平均気候値に最大時間スケール 1d で緩 和する。東西平均場のみを緩和し eddy 成分は緩和 しないため、成層圏を伝搬する波の振幅そのものは 変わらないが、wave drag による東西風加速が抑制さ れることにより、波動平均流相互作用を減衰させてい る。緩和高度の違うそれぞれの実験における HICE と LICE の差を T 検定により評価した。R10、R30 実験は CMIP5 世代の気候モデルに代表されるような Lowtop モデルを模擬している。FREE 実験との比較により、

表1. 各 AFES 実験に用いた海氷の境界条件

|      |      | ICE                     |  |
|------|------|-------------------------|--|
| FREE | HICE | <i>High</i> (1979–1983) |  |
|      | LICE | <i>Low</i> (2005–2009)  |  |
| R10  | HICE | High                    |  |
|      | LICE | Low                     |  |
| R30  | HICE | High                    |  |
|      | LICE | Low                     |  |

High(Low): 各月 1979-1983 (2005-2009) 5 年平均值

海氷減少への大気応答に対する 成層圏過程の役割を評価した。

#### 3. 結果

# <u>3.1. 負AO的な環状パターン</u> と中緯度寒冷応答

はじめに冬期(12、1、2月)平 均気候場の応答を評価する。 FREE実験では、負のAO的な環 状パターンの高度場偏差が見ら れ(図1a)、地表付近ではバレン ツ・カラ海およびオホーツク海の 高温偏差に加えて低温偏差域が ユーラシア大陸で広がる(図1b)。 前者は海氷後退域の拡大による 大気加熱に対応するが、後者は 海氷減少に対するリモートな応 答であると考えられる。一方 RS10, RS30 実験では環状パターンのよ うな高度場偏差は見られず、AO の位相としては中立かむしろ正 である。地表付近気温場は海氷 後退域での高温偏差は FREE と 同様に見られるものの中緯度域 の低温偏差はRS10のアラスカ付

FREE RS10 RS30 (a)  $\Delta Z300$  RS30 (b)  $\Delta T2m$  RS10 RS30 (c)  $\Delta T2m$  RS10 RS30

図1. 冬季(12、1、2月)平均の(a)300Pa 高度場偏差(単位 m)および (b)地上 2m 気温の偏差(単位 K)。等値線は *HICE* に対する *LICE* の 60 年平均偏差を示し、陰影は T 検定による統計的有意水準 95,99%を 示す。 左から *FREE*, *RS10*, *RS30* 実験の結果。

近を除けば弱く、統計的有意性も低い。

FREE 実験の応答偏差は、海氷減少に伴い負 AO の発現頻度が増えるという先行研究と整合する。しかし RS10, RS30 実験では成層圏過程の一部を減衰させただけにもかかわらず、対流圏の応答偏差は大きく変わり、負 AO 的なパターンおよび中緯度の寒冷化は現れないことは興味深い。

## 3.2. 惑星波強化による成層圏極渦弱化

北緯60度の東西平均東西風偏差の時間発展から



それぞれの実験における成層圏からの下方影響を 検証する。FREE実験では成層圏上部の極渦弱化お よびそれが下方伝搬し対流圏と結合する偏差が卓越 する(図 2a)。有意な偏差は地表付近まで繋がってい る。その前駆期間には成層圏下部で波活動度の鉛 直上向き伝播が強まっており(図 2b)、成層圏上部で 増幅した惑星波による wave drag により極渦弱化が引 き起こされた事を示唆する。RS10 および RS30 におい ては間欠的な波活動度増幅とそれに応じた成層圏 上部の極渦弱化偏差が見られる。しかしその振幅は

> 小さく、下方伝播は成層圏下部までし か到達しない(RS10)、もしくは見られ ない(RS30)。

> 極渦弱化の前駆としての波活動度 強化を考える。冬季バレンツ・カラ海で は顕著な海氷後退に伴い大きな上向 き乱流熱フラックス偏差が生じる。この 時の下層大気加熱を wave source とす る定常ロスビー波応答は、対流圏上層 でバレンツ・カラ海上に高気圧偏差、 下流の東シベリア域に低気圧偏差の

図2. (a)北緯 60°の日平均東西平均 東西風偏差(単位 m/s)の時間高度断 面図。等値線は *HICE* に対する *LICE* の 60 年平均偏差を示し、陰影は T 検 定による統計的有意水準 95,99%を示 す。左から *FREE*, *RS10*, *RS30* 実験の 結果。(b)北緯 50-80°平均の 100hPa における日平均 EP-flux 鉛直成分偏 差。各パネル下部の紫線は上向き偏 差が 10<sup>4</sup>m<sup>2</sup>s<sup>-2</sup>を超える期間を示す。



図3. (a) FREE 実験の冬季 300hPa 高度場偏差(単位 m)。等値線は HICE に対する LICE の 60 年平均 偏差を示し、陰影は T 検定による統計的有意水準 95,99%を示す。高度場偏差に応じた水平波活動フラ ックス偏差(Takaya and Nakamura, 2001)を緑矢印で表し、ベクトルの長さ 0.2 m<sup>2</sup>s<sup>-2</sup>に対応する矢印をパ ネル右上に示す。(b)図 3a の橙色線上の高度場偏差および波活動度フラックス偏差の断面図。パネル の縦横比から波活動度フラックス偏差の鉛直成分は 300 倍したものを示す。

ような波列パターンとなる(図 3a) (Honda et al., 2009; Nakamura et al., 2015)。この定常ロスビー応答に伴う 波列パターンは対流圏上部から下部成層圏まで順 圧的な構造をしている(図 3b)。冬季の気圧配置を考 えると、下部成層圏ではシベリアは気候学的にトラフ となっており、また対流圏から成層圏への惑星波伝 播の主要な経路である。海氷後退によって生じた偏 差場の波列パターンはシベリア域の気候学的トラフ を強化することにより(図 4a)、同領域での波活動度 の上向き伝播を強化する(図 4b)。この特徴は、振幅 や有意性の違いがあるものの、*RS10*および*RS30*でも 同様に見られる。つまり、海氷後退に応じた気候学的 惑星波の上向き伝播の強化はモデルの成層圏の表 現に左右されることなく起こることを意味する。

#### 3.3. 成層圏対流圏結合強度と下方影響

惑星波伝播の強化は上部成層圏の極渦弱化の driving force となるが、前述したように成層圏応答の 下方伝播の様子および対流圏のシグナルは、成層 圏過程の減衰により大きく違っていた(図2aおよび図 1)。ここでは成層圏と対流圏の AO シグナルの鉛直 結合強度を調べ、成層圏過程の違いによる下方伝 播特性の変化を考察する。

FREE 実験では冬季極冠高度(Polar cap height, PCH=AOシグナルの指標)の自己相関から2系統の 伝播特性が見られる。一つは上部成層圏から下部成 層圏へゆっくり伝播する遅い結合、もう一つは下部成 層圏と対流圏でほぼ同期するような速い結合である (図 5a)。速い結合は3つの実験でほぼ変わらない一 方、前者の遅い結合は FREE から RS30 まで成層圏



の減衰強度(減衰開始高度) が強まるにつれ結合が顕著に 弱まる。波活動度の鉛直伝播 は対流圏から成層圏へ数日 で伝わる速い伝播特性を持ち (図 5b)、3つの実験で同様で ある。このような成層圏からの 下方影響は Baldwin and Dunkerton (2001)で示されるも のとよく整合する。AO シグナ ルの遅い鉛直結合について

図4. 冬季平均の(a)100Pa 高 度場偏差(単位 m)および(b) 定常場(=月平均場)から求 めた波活動度フラックス (Plumb, 1985)の鉛直成分偏 差(単位 10<sup>3</sup>m<sup>2</sup>/s<sup>2</sup>)。等値線は *HICE*に対する*LICE*の60年 平均偏差を示し、陰影はT検 定による統計的有意水準 95,99%を示す。左から*FREE*, *RS10*, *RS30* 実験の結果。 は Matsuno (1971)、Kidston et al. (2015) により、力学的メカニズムの説明がなされ る。一方、速い鉛直結合についてはその 正確なメカニズムについては結論がでて いないが、波活動によって駆動された子 午面循環偏差に伴う質量再配分(Haynes and Shepherd, 1989; Ambaum and Hoskins, 2002)や対流圏上層の eddy feedback メカニズム(Kimoto et al., 2001; Perlwitz and Harnik, 2004)により結合す るものと考えられる。

以上の実験結果を統合すると、海氷後 退による惑星波強化が成層圏極渦を弱 める driving force となり、そのシグナルが 遅い鉛直結合により下部成層圏へ影響し、 速い鉛直結合により対流圏まで作用する と考えられる(FREE 実験)。波平均流相 互作用を減衰した場合には、遅い鉛直結 合がうまく表現されず、シグナルが下部成 層圏まで届かないために対流圏で負 AO 的なパターンとならない(RS10, RS30)。こ のことから海氷後退への応答として成層 圏が主要な経路となっており、対流圏の AO 的パターンは海氷への直接的な応答

ではなく成層圏が変化したことの footprint であると推察できる。

### 3.4. 極向き熱輸送と極域増幅

海氷後退に伴う負 AO 的な応答パターンはそれ自 体が極域での高温傾向、中緯度域での低温傾向の 指標であり、また波活動度の上向き伝播は極向き熱 輸送と同義である。ここでは海氷後退に伴う直接的な 大気加熱に加えて、循環場の変化による間接的な大 気加熱を見積もり極域増幅への影響を評価する。表 2にそれぞれの実験の北極域の乱流熱フラックス偏 差および中・高緯度でカラム積算した TEM 系の残差 子午面平均循環の鉛直成分 w\*に伴う大気加熱偏差 (詳細は Nakamura et al., 2015)を示す。FREE 実験 では循環場による熱輸送が極向き熱輸送を強め、極 域大気を加熱、中緯度大気を冷却する。極域加熱偏 差は乱流熱フラックスと同程度の大きさで、海氷後退 に伴う直接的な加熱に加えて、それに伴う循環場の 変化もさらに極域を加熱するという正のフィードバック 構造となり、極域増幅をさらに強める効果をもつ。中 緯度の冷却は近年の厳冬傾向と整合する。このフィ



図5. それぞれの実験における*HICE*の60年積分の冬季90日間 から求めた(a)日平均極冠高度(polar cap height, PCH, 70N 以北 平均)と(b)波活動度フラックス鉛直成分(Fz)の相関係数。 100hPaを基準(黒丸)とした自己相関係数のラグ(横軸)-高度(縦 軸)分布を示す。等値線間隔は0.1。

ードバック構造は RS 10, RS30 実験では見られない。 成層圏過程が極域増幅の強さにも重要であることが 示唆される。

### <u>4. まとめ</u>

本研究では、特に近年顕著に見られる極域増幅 および中緯度の寒冷傾向を説明可能なプロセスとし て、北極海の海氷後退とそれに付随して起きる成層 圏の極渦弱化が、対流圏の負 AO 的な環状パターン を引き起こすための主要な経路(stratospheric pathway)であることがわかった。本稿では詳述しなか ったが、海氷後退に伴う波活動度強化はその持続性 において成層圏過程の影響を受ける(図 2b)。これは 成層圏過程が波活動を通した鉛直結合に対してより active に働き、力学的にさらに複雑なフィードバック機 構があることを示唆する。CMIP6モデル群の現在気 候再現実験(García-Serrano et al., 2016)や、北極の 温暖化を一層強めた理想化実験(Nakamura et al., 2016b)では成層圏を経由しないプロセスが支配的と なるケースもある。鉛直結合過程におけるフィードバ ック機構の力学的な複雑さは、そのような海氷後退に

表 2. 冬季(12、1、2月)平均極域乱流熱フラックス偏差と熱輸送偏差(単位 W/m²)

|            | $\Delta$ THF | $\Delta  Q_{High}$ | $\Delta Q_{Low}$ |
|------------|--------------|--------------------|------------------|
| FREE       | 3.61         | 3.00               | -1.86            |
| R10        | 4.14         | 0.13               | 0.30             |
| <i>R30</i> | 3.85         | 0.00               | 0.38             |

△THF:60N 以北平均の海氷後退に伴う乱流熱フラックス偏差 △Q<sub>High</sub>:60N 以北平均の w\*に伴う大気加熱偏差のカラム(850hPa-model top)積算値

△Q<sub>Low</sub>: 30N-60N 平均の w\*に伴う大気加熱偏差のカラム(850hPa-model top)積算値

対する応答の不確実性(Screen and Simmonds, 2013; Screen et al., 2013)の一因であるかもしれず、さらなる調査が必要である。

#### 参考文献

- Ambaum, M. H. P., and B. J. Hoskins (2002), The NAO troposphere-stratosphere connection. J. Clim. 15, 1969–1978.
- Baldwin, M. P., and T. J. Dunkerton (2001), Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584.
- Cohen, J., et al. (2014), Recent Arctic amplification and extreme mid-latitude weather, Nat. Geosci., 7, 627–637.
- Deser, C., R. Tomas, M. Alexander, and D. Lawrence (2010), The seasonal atmospheric response to projected Arctic sea ice loss in the late 21<sup>st</sup> century, J. Clim., 23, 333–351.
- García-Serrano, J., C. Frankignoul, M. P. King et al. (2016), Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate, Clim. Dyn. doi:10.1007/s00382-016-3454-3.
- Fletcher, C. G., P. J. Kushner, and J. Cohen (2007), Stratospheric control of the extratropical circulation response to surface forcing, Geophys. Res. Lett., 34, L21802, doi:10.1029/2007GL031626.
- Haynes, P. H., and T. G. Shepherd (1989), The importance of surface pressure changes in the response of the atmosphere to zonally-symmetric thermal and mechanical forcing. Q. J. R. Meteorol. Soc. 115, 1181–1208.
- Honda, M., J. Inoue, and S. Yamane (2009), Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters, Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.
- Hopsch, S., J. Cohen, and K. Dethloff (2012), Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter, Tellus A, 64, 18,624.
- Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. A. Rosinski (2008), A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model, J. Clim., 21, 5145–5153.
- Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen (2012), Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation, Tellus A, 64, 11,595.
- Jaiser, R., T. Nakamura, D. Handorf, K. Dethloff, J. Ukita, and K. Yamazaki (2016), Atmospheric

autumn and winter response to Arctic sea ice changes in reanalysis data and model simulations, J. Geophys. Res. Atmos., 121, 7564–7577, doi:10.1002/2015JD024679.

- Kidston, J., A. A. Scaife, C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray (2015), Stratospheric influence on tropospheric jet streams, storm tracks and surface weather, Nat. Geosci., 8, 433–440.
- Kim, B. M., S. W. Son, S. K. Min, J. H. Jeong, S. J. Kim, Z. Zhang, T. Shim, and J. H. Yoon (2014), Weakening of the stratospheric polar vortex by Arctic sea-ice loss, Nat. Commun., 5, 4646.
- Kimoto, M., F.-F. Jin, M. Watanabe, and N. Yasutomi (2001), Zonal-eddy coupling and a neutral mode theory for the Arctic Oscillation, Geophys. Res. Lett., 28, 737–740, doi:10.1029/2000GL012377.
- King, M. P., M. Hell, and N. Keenlyside (2015), Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere, Clim. Dyn., doi:10.1007/s00382-015-2639-5.
- Liu, J. P., J. A. Curry, H. Wang, M. Song, and R. M. Horton (2012), Impact of declining Arctic sea ice on winter snowfall, Proc. Natl. Acad. Sci. U.S.A., 109, 4074–4079.
- Matsuno, T. (1971), A Dynamical Model of the Stratopsheric Sudden Warming, J. Atmos. Sci., 28, 1479–1494.
- Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto (2014), Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades, Nat. Geosci., 7, 869–873.
- Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita (2015), A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn, J. Geophys. Res. Atmos., 120, 3209–3227, doi:10.1002/2014JD022848.
- Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita (2016a), The stratospheric pathway for Arctic impacts on midlatitude climate, Geophys. Res. Lett., 43, 3494–3501, doi:10.1002/2016GL068330.
- Nakamura, T., K. Yamazaki, M. Honda, J. Ukita, R. Jaiser, D. Handorf, and K. Dethloff (2016b), On the atmospheric response experiment to a Blue Arctic Ocean, Geophys. Res. Lett., 43, 10394–10402, doi:10.1002/2016GL070526.
- Orsolini, Y. J., R. Senan, R. E. Benestad, and A. Melsom (2012), Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled

ocean-atmosphere hindcasts, Clim. Dyn., 38, 2437-2448, doi:10.1007/s00382-011-1169-z.

- Overland, J., K. Wood, and M. Wang (2011), Warm Arctic-cold continents: Climate impacts of the newly open Arctic Sea, Polar Res., 30, 15,787.
- Peings, Y., D. Saint-Martin, and H. Douville (2012), A numerical sensitivity study of the influence of Siberian snow on the Northern Annular Mode, J. Clim., 25, 592–607.
- Perlwitz, J., and N. Harnik (2004), Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Clim. 17, 4902–4909.
- Plumb, R. A. (1985), On the three-dimensional propagation of stationary waves, J. Clim., 42, 217–229.
- Screen, J. A., and I. Simmonds (2013), Exploring links between Arctic amplification and mid-latitude weather, Geophys. Res. Lett., 40, 959–964, doi:10.1002/grl.50174.
- Screen, J. A., I. Simmonds, C. Deser, and R. Tomas (2013), The atmospheric response to three decades of observed Arctic Sea ice loss, J. Clim., 26, 1230–1248, doi:10.1175/JCLI-D-12-00063.1.
- Sun, L., C. Deser, and R. A. Tomas (2015), Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss, J. Clim., 28, 7824–7845.
- Wegmann, M., Y. Orsolini, M. Vázquez, L. Gimeno, R. Nieto, O. Bulygina, R. Jaiser, D. Handorf, A. Rinke, and K. Dethloff (2015), Arctic moisture source for Eurasian snow cover variations in autumn, Environ. Res. Lett., 10, 054015.