Journal of the
 Meteorological
 Society of
 Japan

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is DOI:10.2151/jmsj.2024-002

J-STAGE Advance published date: September 27th, 2023
The final manuscript after publication will replace the preliminary version at the above DOI once it is available.

Pristine Air

Seizi KOGA ${ }^{1}$

Current affiliation, Branding and Public Relations Department
Former affiliation, Environmental Management Research Institute National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Sep. 13, 2023

[^0]
Abstract

To determine the complex refractive indices of aerosol particles in the atmospheric boundary layer, simultaneous measurements of scattering coefficients at 450,550, and 700 nm wavelengths, absorption coefficient at 565 nm , and aerosol particle number size distributions were performed during a voyage of the icebreaker Shirase from Tokyo to the offing of the Philippines over the northwestern Pacific in November 2010. Three sets of Ångström exponents were calculated using the three observed scattering coefficients. Using the observed number size distributions, three sets of Ångström exponents were reproduced by assuming their complex refractive indices. Appropriate complex refractive indices for aerosol particles in the atmospheric boundary layer can be obtained when the difference between the observed and reproduced Ångström exponents is minimal. Absorbing substances were assumed to be present in the fine particles. For polluted air masses, if the refractive index for aerosol particles was uniform regardless of the particle size, the estimated Ångström exponents were consistent with the observed values. The refractive index must be the normal dispersion, which increases with a decrease in wavelength. For pristine air masses, the refractive index was estimated to be higher for coarse particles than for fine particles. This could be explained by preferential condensation of organic compounds onto coarse particles, which is observed to alter the number size distribution over Chichi-jima of the Ogasawara Islands in the northwestern

Pacific in August 2014 and February 2015. This study is the first to report that the increase in the refractive index of coarse particles is likely caused by the optical properties of volatile organic compounds and/or secondary organic aerosols condensed on coarse particles.

Keywords complex refractive index; scattering coefficient; Ångström exponent; secondary organic aerosol; number size distribution

1. Introduction

New aerosol particles are generally formed by the nucleation of aerosol particles with diameter $D<0.01 \mu \mathrm{~m}$ (Kulmala et al., 2004). Number size distributions in the Aitken ($0.01<$ $D<0.1 \mu \mathrm{~m}$) and accumulation ($0.1<D<1 \mu \mathrm{~m}$) modes change when vapor compounds condense onto pre-existing aerosol particles or evaporate from the particles to the gas phase, and when particles coagulate (Heintzenberg et al., 2003; Kulmala et al., 2004; O'Dowd et al., 2010; Dall'Osto et al., 2012). The chemical composition of coarse particles ($D>1 \mu \mathrm{~m}$) generally differs from that of fine particles ($D<1 \mu \mathrm{~m}$) (Hinds, 1999; Heintzenberg et al., 2003). Matsumoto et al. (1998) investigated the seasonal characteristics of the chemical composition of aerosol particles on Haha-jima ($26^{\circ} 38^{\prime} \mathrm{N}, 140^{\circ} 10^{\prime} \mathrm{E}$) of the Ogasawara Islands in the northwestern Pacific and determined that sea salt and non-sea salt sulfates (nss- $\mathrm{SO}_{4}{ }^{2-}$) were the primary chemical species in coarse and fine particles, respectively. This is supported by the results of other studies (Campuzano-Jost et al., 2003; Heintzenberg et al., 2003).

Dimethylsulfide (DMS) is produced by marine phytoplankton and emitted from the ocean to the atmosphere. Its oxidation products in the atmosphere are then converted to sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, making DMS the most important precursor of nss- $\mathrm{SO}_{4}{ }^{2-}$ in aerosol particles over the ocean (Savoie and Prospero, 1982; Bates et al., 1992; Koga and Tanaka, 1999; Read et al., 2008; Mahajan et al., 2015). However, the observed $\mathrm{H}_{2} \mathrm{SO}_{4}$ mixing ratios are insufficient for binary nucleation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$ (Weber et al., 1999). Using binary
and ternary $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{NH}_{3}\right)$ nucleation theories, Pirjola et al. (2000) analyzed the possibility of particle formation in the atmospheric boundary layer and found that the formation of new particles is difficult under typical atmospheric conditions. Hence, they proposed the existence of condensable species other than $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Novakov and Penner (1993) found that natural organic compounds exist in aerosol particles with $0.05<D<0.2 \mu \mathrm{~m}$. In addition, O'Dowd et al. (2004) suggested that the organic fraction of the mass concentration of fine particles over the North Atlantic Ocean is related to biological activity. Oxidation products of volatile organic compounds (VOC) emitted by phytoplankton (e.g., biogenic amines, isoprene, and monoterpenes) can form secondary organic aerosols (SOA) (Facchini et al., 2008; Gantt et al., 2009; Shaw et al., 2010; Bikkina et al., 2014). The enrichment of water-soluble organic carbon (WSOC) in aerosol particles can be explained by the production and condensation of SOA in pristine air masses (Ceburnis et al., 2008; Miyazaki et al., 2010; Decesari et al., 2011). The presence of WSOC probably affects the optical properties of aerosol particles.

Atmospheric aerosol particles scatter and absorb incident sunlight (IPCC, 2013). The optical properties of aerosols are expressed as the scattering coefficient $\sigma_{\text {scat }}$ and absorption coefficient $\sigma_{\text {abs }}$ (Seinfeld and Pandis, 1998; Hinds, 1999). Single-scattering albedo (SSA), defined as the ratio of $\sigma_{\text {scat }}$ to $\sigma_{\text {ext }}\left(\sigma_{s c a t}+\sigma_{a b s}\right)$, is an important factor in determining warming or cooling in the atmosphere-surface system (Srivastava et al., 2020). Incident sunlight is scattered mainly by sulfates $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ in aerosol particles (Shiobara et al., 2007; Ohta et al., 2013). Aerosols, including elemental carbon and soil, absorb sunlight (IPCC, 2013). Elemental carbon is emitted from anthropogenic sources into the atmosphere (Bond and Bergstrom, 2006; Bond et al., 2013). The scattering and absorption coefficients of individual aerosol particles are associated with the complex refractive index $m(n, k)=n-k i$ of the chemical composition of the aerosol particle. The real part, n, of $m(n, k)$, represents the phase velocity of the electromagnetic wave propagating through the medium. The imaginary part, k, represents the attenuation rate of the amplitude of the propagating electromagnetic wave. The optical properties of aerosol particles are determined by their size-dependent chemical composition and number size distribution. The value of $m(n, k)$ depends not only on the medium, but also on the wavelength of the electromagnetic wave (Bohren and Huffman, 1998).

Koga (2021) reported aerosol optical properties in the atmospheric boundary layer over the northwestern Pacific and Southern Ocean during the $52^{\text {nd }}$ Japanese Antarctic Research Expedition (JARE52) voyage from November 11, 2010, to March 17, 2011. The present study focuses on the $m(n, k)$ of aerosol particles in polluted and pristine air masses over the northwestern Pacific. The purpose of this study is to estimate the $m(n, k)$ of aerosol particles in two types of air masses using observed aerosol scattering and absorption coefficients and number size distributions. This study also reports that the estimated high n value of the coarse particles in pristine air masses is likely caused by the optical properties of SOA condensed on coarse particles.

Results reinforcing this idea were obtained from observations of aerosol number size distributions using an activated carbon fiber on Chichi-jima ($27^{\circ} 04^{\prime} \mathrm{N}, 142^{\circ} 13^{\prime} \mathrm{E}$) of the Ogasawara Islands in the northwestern Pacific in 2014 and 2015. These observations were designed to elucidate why aerosol number size distributions differ between polluted and pristine air masses. When condensable species are added to the atmosphere, the formation of new particles and change in number concentration occur mainly in the fine particle range. However, the results of observations on Chichi-jima suggest that some volatile substances condense onto coarse particles in pristine air masses.

The estimation of the $m(n, k)$ of aerosol particles during the JARE52 voyage and the observations on Chichi-jima provide some insight into the optical properties of the coarse particles.

2. Observations

To be able to determine the appropriate $m(n, k)$ for aerosol particles, the present study used the optical properties and number size distributions obtained during the JARE52 voyage. To elucidate the difference in the number size distribution between polluted and pristine air masses, observations were conducted on Chichi-jima. Details of these observations are described below.

2.1. Northwestern Pacific

Fig. 1 shows the JARE52 voyage track of the icebreaker Shirase from Tokyo, Japan $\left(35^{\circ} 39^{\prime} \mathrm{N}, 139^{\circ} 46^{\prime} \mathrm{E}\right)$ to the Philippines $\left(12^{\circ} 14^{\prime} \mathrm{N}, 129^{\circ} 16^{\prime} \mathrm{E}\right)$ in November 2010. Solid curves represent backward trajectories for the preceding 3 d of air parcels at a 500 m altitude. Open circles on the track indicate the vessel positions every 6 h . These trajectories were computed using the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model (Stein et al., 2015; Rolph et al., 2017) based on the vertical velocity data fields from the NCEP/NCAR reanalysis data.

The aerosol scattering coefficients ($\sigma_{s}^{\lambda}, \mathrm{m}^{-1}$) were measured by a 3563 -model integrating nephelometer at three wavelengths: 450, 550, and 700 nm (3563-IN, TSI Inc. Shoreview, MN). The $\sigma_{s}{ }^{\lambda}$ measurements were repeated at intervals of 1 min during the voyage. The aerosol absorption coefficients ($\sigma_{P S A P}, \mathrm{~m}^{-1}$) were measured at intervals of 1 min using a particle soot absorption photometer (PSAP; Radiance Research, Seattle, WA).

The $3563-1 \mathrm{~N}$ and PSAP methods have errors due to the measurement principle. Correction factors $\left(C^{\curlywedge}\right)$ are linear functions of Ångström exponents (AE) calculated using uncorrected σ_{s}^{λ} values of two specific wavelengths (Anderson and Ogren, 1998). In the present study, the C^{λ} values, which were within the ranges estimated by Anderson and Ogren (1998), were applied to obtain the corrected $\sigma_{t s}^{\lambda}$ values for the uncorrected σ_{s}^{λ} values (Table 1). Using the $\sigma_{t s}{ }^{2}$ of two wavelengths, for example, a value of $A E$ between 450 and 550 nm is defined as:

$$
\begin{equation*}
A E_{450-550}=-\frac{\log \left(\sigma_{t s}^{450} / \sigma_{t s}^{550}\right)}{\log (450 / 550)} \tag{1}
\end{equation*}
$$

In the PSAP, scattering compounds on the filter could lead to the overestimation of the absorption coefficients. To volatilize the scattering compounds, the sample air was maintained at $300^{\circ} \mathrm{C}$. The airflow rate measured using the built-in pump and in the sample spot area has uncertainties (Bond et al., 1999). The correction factors for these uncertainties were applied to obtain corrected σ_{a} values for the $\sigma_{P S A P}$ values, which led to the decrease of approximately 9.7% of the $\sigma_{P S A P}$ values (Koga, 2021). The wavelength of 565 nm of light emitted from an LED in the PSAP was different from the wavelength of 550 nm emitted from a quartz-halogen lamp in the $3563-\mathrm{IN}$. However, the difference between $\sigma_{t s}{ }^{550}$ and $\sigma_{t s}{ }^{565}$ was negligible. Thus, the values of $\sigma_{t s}{ }^{550}$ and σ_{a} were immediately used to determine SSA. The measurements and correction methods for $\sigma_{t s}{ }^{\lambda}$ and σ_{a} are reported in Koga (2021).

The number size distributions of aerosol particles with $D>0.3 \mu \mathrm{~m}$ were measured using an optical particle counter (OPC, KC-01D, RION Co., LTD). The light source of the OPC is a semiconductor laser that emits light at a wavelength of 780 nm . Measurements were repeated every 1 min and categorized into five classes: $D>0.3 \mu \mathrm{~m}, D>0.5 \mu \mathrm{~m}, D>1 \mu \mathrm{~m}$, $D>2 \mu \mathrm{~m}$, and $D>5 \mu \mathrm{~m}$. The OPC was calibrated by the manufacturer using polystyrene latex (PSL) particles with $m(1.595,0)$. The coefficients of variation (σ / x, that is, sample standard deviation/arithmetic mean) were calculated using a 15 min moving average in the number concentrations of $D>0.3 \mu \mathrm{~m}$. When the coefficients of variation were >0.25 at a certain time, the values of all classes at that time were excluded.

Fig. 2 displays the $\sigma_{t s}{ }^{\lambda}, \sigma_{a}$, and $A E$ from Tokyo to the offing of the Philippines, which corresponds to part of the latitudinal distributions of aerosol optical properties from Tokyo to Fremantle ($32^{\circ} 03^{\prime} \mathrm{S}, 115^{\circ} 45^{\prime} \mathrm{E}$) in Australia, as shown in Koga (2021). The backward trajectories suggest that the air masses from $35.5^{\circ} \mathrm{N}$ to $28.1^{\circ} \mathrm{N}$ contained anthropogenic pollution from East Asia. Meanwhile, from $25.3^{\circ} \mathrm{N}$ to $12.2^{\circ} \mathrm{N}$ were pristine air masses from the central North Pacific unaffected by anthropogenic pollution (Fig. 1). Fig. 3 shows the time series of number size distributions in four classes reported by the OPC from $30.5^{\circ} \mathrm{N}$ and $137.5^{\circ} \mathrm{E}$ to the offing of the Philippines. Relatively stable values were found from $30.5^{\circ} \mathrm{N}$ to $29.5^{\circ} \mathrm{N}$ in the polluted air masses, and from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$ and $14.5^{\circ} \mathrm{N}$ to $13.5^{\circ} \mathrm{N}$ in the pristine air masses. The complex refractive indices of aerosol particles were estimated for these latitudinal ranges.

Fig. 4 shows the number size distributions averaged from $30.5^{\circ} \mathrm{N}$ to $29.5^{\circ} \mathrm{N}$ and from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$. The averages and one standard deviations of $C^{\lambda}, \sigma_{t s}{ }^{\lambda}, \sigma_{a}$, and SSA for three latitudinal ranges are listed in Table 1. The standard deviation values of SSA were calculated using law of propagation of errors. The $A E$ values were calculated from the averages of $\sigma_{t s} \lambda$. The r values are correlation coefficients between $\sigma_{t s}{ }^{450}$ and $\sigma_{t s}{ }^{550}, \sigma_{t s}{ }^{450}$ and $\sigma_{t s}{ }^{700}$, and $\sigma_{t s}{ }^{550}$ and $\sigma_{t s}{ }^{700}$.

2.2. Chichi-jima of the Ogasawara Islands

Chichi-jima is located approximately 1000 km south of Tokyo, Japan and is an ideal site for monitoring both polluted air masses from East Asia during winter and pristine air masses from the central North Pacific during summer (Koga et al., 2008), which correspond to the first and second types during the JARE52 voyage, respectively (Koga, 2021). The island is located downwind of polluted air masses and upwind of pristine air masses relative to the JARE52 voyage track.

Observations were conducted at the Ogasawara downrange station $\left(27^{\circ} 04^{\prime} \mathrm{N}\right.$, $142^{\circ} 13^{\prime} \mathrm{E}, 230 \mathrm{~m}$ above sea level) of the Japan aerospace exploration agency. The number size distribution with $D>0.3 \mu \mathrm{~m}$ was measured using an optical particle sizer (OPS, Model3330, TSI Inc., Shoreview, MN). Measurements were repeated every 1 min . To remove aerosol particles with $D>10 \mu \mathrm{~m}$, a PM_{10} impactor was attached to an air inlet port with a 4.25 cm inside diameter on the wall of a facility for switchboard equipment. A stainless steel sampling probe was inserted into the inlet pipe and aligned parallel to the gas streamlines made with an air pump. Aerosol sampling was done isokinetically. The inside diameter of the sampling probe was 1.47 cm at the upper end, decreasing gradually to a minimum of approximately $0.64 \mathrm{~cm}(1 / 4 \mathrm{inch})$ at a 7 cm distance.

The amount of VOCs condensed onto aerosols can be evaluated from the difference in the number size distributions between VOC-removed and untreated air samples. Kynol (novoloid)-based activated carbon fabric (ACC507-20, Gunei Chemical Industry Co., Ltd.,

Gunma, Japan) was inserted into a 50 cm stainless steel tube with an outside diameter of 1.27 cm ($1 / 2$ inch). The inside diameter of this tube was approximately 0.64 cm (1/4 inch) because Kynol fabric was placed along the inner wall. The inside diameter was the same as the fit diameter of the conductive tubing for the piping to avoid steps in the flow path. Kynol fabric can adsorb non-polar substances such as organic compounds (nominal toluene adsorption, 30-80 w\%) but it cannot or poorly adsorbs polar substances such as water vapor (Sullivan et al., 2007). Kynol fabrics are superior to granular activated charcoal in terms of adsorption rate and amount. The stainless steel tube with the Kynol fabric was connected to the upper stream of the OPS to remove VOCs from the air samples.

In August 2014, two OPSs were simultaneously used to measure number size distributions, but the Kynol tube was connected to only one of these. The flow splitter (Model 3708, TSI Inc.) was used to divide air samples into two flow paths. After the measurement started, the values obtained by the two OPSs became almost identical within 2 h because Kynol fabrics were saturated with VOCs. Judging from this result, particle loss by the Kynol tube is negligible. The saturated Kynol was regenerated as a result of VOC desorption by heating the tube for 30 min at $100^{\circ} \mathrm{C}$ with an airflow rate of $20 \mathrm{~L} \mathrm{~min}^{-1}$. In February 2015, only one OPS was available, and therefore measurements were taken alternately by connecting and disconnecting the Kynol tube.

Fig. 5 shows the number and surface area size distributions in the pristine air masses in summer and polluted air masses in winter, obtained using the OPS. The dew point
temperatures in the ambient atmosphere were $27^{\circ} \mathrm{C}$ on August 22, 2014, and $12{ }^{\circ} \mathrm{C}$ on February 18, 2015. The inlet temperature recorded by the OPS, $38^{\circ} \mathrm{C}$ in August and $33^{\circ} \mathrm{C}$ in February, was consistently higher than the dew point temperature. The relative humidity inside the OPS was estimated to be 54% in August and 29\% in February. The number size distributions were obtained under dry conditions.

The distinct maxima of the number concentrations were always approximately $2-3 \mu \mathrm{~m}$ in diameter during summer. When the Kynol tube was used, the number concentrations of coarse particles always showed a sharp decrease from the original concentrations. In contrast, the number concentrations in winter decreased with increasing diameter, with an inflection point of approximately $1-2 \mu \mathrm{~m}$ in diameter. The number size distributions, however, hardly changed despite the use of a Kynol tube.

3. Methods

Three sets of $A E$ were calculated using the three observed $\sigma_{t s} \lambda$. Using the observed number size distributions, the values of $\sigma_{t s}{ }^{\lambda}, \sigma_{a}$, and $A E$ were reproduced by assuming complex refractive indices. The procedure for reproducing the values of $\sigma_{t s}{ }^{\lambda}$ and σ_{a} is shown below. Appropriate complex refractive indices for aerosol particles in the atmospheric boundary layer can be obtained when the sum of the three sets of differences between the observed and reproduced $A E$ is minimal.

3.1. Refractive index correction of the particle sizing in the OPC

The particle sizing diameters are based on the threshold voltage from the photodetector receiving light scattered by the PSL particles. In the ambient atmosphere, $m(n, k)$ for aerosol particles is different from that for PSL particles. The particle sizing diameters must be corrected according to the values of $m(n, k)$ to obtain realistic values for the number size distributions.

The photodetector in the OPC was placed at an angle ψ of 70° to the irradiated optical axis. The scattered light was focused by the collecting aperture with a semi-angle β of 27°. The angular distribution of light scattered by a single particle with diameter D was calculated from $43^{\circ}(\theta=\psi-\beta)$ to $97^{\circ}(\theta=\psi+\beta)$ at intervals of 1° using the geometry of the collecting aperture by Hodkinson and Greenfield (1965). The range of particle diameters covered by the calculation was from 0.05 to $25 \mu \mathrm{~m}$, dividing into 1000 increments on a logarithmic scale. For each particle diameter, the total intensity of light received by the photodetector was calculated as the sum of the scattered light intensity per 1° from 43° to 97°. The same procedure was repeated for n from 1.30 to 1.70 in increments of 0.01 . As a result, the particle sizing diameters of the 41 sets were obtained as a function of n at a wavelength of 780 nm from the laser light in the OPC.

3.2. Expansion of number size distribution

For the size range between $\log D$ and $\log D+d \log D$, the number size distribution $n(\log$
D) can be expressed by a power-law function of size as follows:

$$
\begin{equation*}
n(\log D)=\frac{d N}{d \log D}=c D^{-b} \tag{2}
\end{equation*}
$$

where N is the number concentration, D is the particle diameter, c is a proportionality constant, a factor that determines the number concentration, and b is the slope of the number size distribution on a log-log plot.

The values from N_{4} to N_{8} in Fig. 6 averaged from $30.5^{\circ} \mathrm{N}$ to $29.5^{\circ} \mathrm{N}$ in the polluted air masses and was originally obtained using the OPC. The boundaries from D_{4} to D_{8} corresponded to the original boundaries for $m(1.595,0)$ of the PSL particles. The values of N_{i} represent the number concentration at the midpoint between D_{i} and D_{i+1}. Equation (2) is available between D_{i} and D_{i+1}, where b_{i} and c_{i} are defined in the same diameter range.

The observed number size distribution from D_{4} to D_{8} alone was insufficient to reproduce $\sigma_{t s}{ }^{\lambda}$ and σ_{a}. Therefore, for particles with $D<D_{4}$, the widths from D_{1} to D_{2}, D_{2} to D_{3}, and D_{3} to D_{4} were assumed to be the same as the width / from D_{4} to D_{5}. To obtain the upper limit D_{9}, the width L from D_{7} to D_{8} was applied to that from D_{8} to D_{9}. The slope of the red line between N_{2} at D_{3} and N_{4} was assumed to be the same as that between N_{4} and N_{5}. The N_{1} value was the same as the N_{3} value.

All N_{i} were multiplied by an adjustable factor $d f$ to reproduce the same values as the observed $\sigma_{t s}{ }^{\lambda}$ and σ_{a} values. This probably corresponded to the correction for the uncertainty
in the airflow rate of the internal pump of the OPC. The values from N_{4} to N_{8} in Fig. 6 are original values from the OPC in the case of $d f=1$. The value of $d f$ had no effect on the value of $A E$. The N_{3} value at the midpoint between D_{3} and D_{4} was further multiplied by an adjustable factor sf to obtain $A E$ values consistent with the observed values because the $A E$ values depend on the slope of the number size distribution.

The values of N_{1} and N_{2} were automatically determined using this operation. For example, in the cases of $s f=1.0$ and 0.3 , the number size distributions are shown by the red and blue lines in Fig. 6, respectively. Henceforth, the number size distribution consisting of black and blue solid lines will be referred to as a column model. The values of D_{i} were obtained as the particle sizing corrected by $m(n, 0)$. The k values were determined such that the estimated σ_{a} values were consistent with the observed σ_{a} values.

To confirm the reliability of $m(n, k)$ estimated using the column model, the $\sigma_{t s}{ }^{\lambda}$ and σ_{a} values were reproduced using the regression curves fitted to the column model. The regression curves can be described as the sum of two log-normal distributions (Jaenicke, 1993, Seinfeld and Pandis, 1998):

$$
\begin{equation*}
\frac{d N}{d \log D}=\sum_{j=1}^{2} \frac{N_{j}}{\sqrt{2 \pi} \log \sigma_{j}} \exp \left(-\frac{\left(\log D-\log D_{j}\right)^{2}}{2 \log ^{2} \sigma_{j}}\right) \tag{3}
\end{equation*}
$$

where N_{j} is the number concentration, σ_{j} is the standard deviation of the lognormal distribution, and D_{j} is the mean diameter. Henceforth, the number size distribution consisting of the regression curves will be referred to as a log-normal model.

Clarke et al. (2004) and Koga et al. (2008) reported that most of black carbon was present in fine particles with $D<1 \mu \mathrm{~m}$. Therefore, the light-absorbing component was only present in the fine particles with $D<$ the corrected D_{6} (Fig. 6) in the column model and in the first log-normal distribution ($j=1$ in Eq. (3)) in the log-normal model.

3.3. Estimations of $\sigma_{t s}{ }^{\lambda}, \sigma_{\mathrm{a}}$, and $m(n, k)$

The scattering coefficient $\sigma_{t s}{ }^{\lambda}$ in the particle size range of Mie scattering can be expressed by a power-law function of the wavelength (Seinfeld and Pandis, 1998):

$$
\begin{equation*}
\sigma_{t s}^{\lambda}=\int \frac{\pi D^{2}}{4} Q_{t s}^{\lambda}(m, x) n(\log D) d \log D \propto \lambda^{-A E} \tag{4}
\end{equation*}
$$

where $Q_{t s}{ }^{\lambda}(m, x)$ is the scattering efficiency of a particle with $m(n, k), x$ is the size parameter defined by the ratio of the particle diameter D to the wavelength of light $(\lambda), n(\log D)$ is the number size distribution, and $A E$ was calculated from Eq. (1). A similar expression can be written for σ_{a} in terms of the absorption efficiency, $Q_{a}(m, x)$, of the particle with $m(n, k)$. The values of $n(\log D)$ can be obtained from Eqs. (2) or (3).

The values of $Q_{t s}{ }^{\lambda}(m, x)$ at the three wavelengths, 450, 550, and 700 nm , and $Q_{a}(m, x)$ at a wavelength of 550 nm were calculated for each particle diameter divided into 1000 increments from 0.05 to $25 \mu \mathrm{~m}$ on a logarithmic scale. The values of n range from 1.30 to 1.70 in increments of 0.01 . Q terms were computed from Mie theory using MieCalc software by Bernhard Michel.

The values of $A E$ observed by $3563-\mathrm{IN}$ were expressed as the $o A E_{1}$ between 450 and $550 \mathrm{~nm}, o A E_{2}$ between 450 and 700 nm , and $o A E_{3}$ between 550 and 700 nm . The values of $A E$ from $\sigma_{t s}{ }^{\lambda}$ estimated using Eq. (4) were expressed as $e A E_{1}$ between 450 and 550 nm , $e A E_{2}$ between 450 and 700 nm , and $e A E_{3}$ between 550 and 700 nm , respectively. In the estimations of $e A E_{i}$, the values of k were assumed to be constant regardless of the wavelength of light. The appropriate $m(n, k)$ for aerosol particles can be obtained when the following Eq. (5) is minimized:

$$
\begin{equation*}
p=\sum_{i=1}^{3}\left(o A E_{i}-e A E_{i}\right)^{2} \tag{5}
\end{equation*}
$$

4. Results

4.1. Complex refractive indices of aerosol particles in polluted air masses

The $\sigma_{t s}{ }^{\lambda}$ values observed at each wavelength from $30.5^{\circ} \mathrm{N}$ to $29.5^{\circ} \mathrm{N}$ were reproduced using the corrected number size distribution of the column model. Here, $k=0$ in the calculation of $\sigma_{t s}^{\lambda}$ using Eqs. (2) and (4) was assumed to simplify the determination of an appropriate n value. Values of p are shown as a function of $m(n, 0)$ in Fig. 7. The horizontal axis is the n value at a wavelength of 450 nm .

The three observed $\sigma_{t s}{ }^{\lambda}$ values had very good correlations one another (Table 1). The estimated changes of $\sigma_{t s}{ }^{\lambda}$ due to a difference of 0.01 in the n value were approximately equal to standard errors derived from the observed $\sigma_{t s}{ }^{\lambda}$ values. The errors in the appropriate n values estimated below would be less than ± 0.01.

Fig. 7a shows the p values when the n value is constant, independent of the wavelength of light. Even for the same material, the n value generally depends on the wavelength of light and increases with decreasing wavelength. The p values for this case are shown in Fig. 7b. The mutual difference in n values among the three wavelengths was assumed to be 0.01 due to the normal dispersion. Fig. 7c shows the p values when the n value at 450 nm is 0.01 higher than that at 550 and 700 nm . The case of anomalous dispersion, in which n values decrease with decreasing wavelength, is shown in Fig. 7d. The n values at 450 nm were assumed to be 0.02 lower than at 700 nm . In all cases, the n values were assumed to be uniform from D_{1} to the midpoint between D_{8} and D_{9} (Fig. 6). The minimum p value is shown in Fig. 7d.

The effect of the light-absorbing component was not considered to reproduce the $\sigma_{t s}{ }^{\lambda}$ values at each wavelength. In the number size distribution under $s f=0.475$, with the particle sizing of $m(1.56,0)$ in Fig. 7 b , the p value was 2.84×10^{-3} in the assumption of the normal dispersion. If the k value was uniform for particles with $D<D_{6}=1.17 \mu \mathrm{~m}$, as corrected by m $(1.56,0.0168)$ (Table 2), the $\sigma_{t s}{ }^{\lambda}$ and σ_{a} values estimated at $s f=0.475$ and $d f=0.603$ were approximately equal to the observed values (Tables 1 and 3). The p value in the case of the normal dispersion was minimal at 3.34×10^{-3}, compared with the other cases with k-value assumptions in Figs. 7a, 7c, and 7d.

The column model in Fig. 8a consists of black solid and red dashed lines under $s f=$ 0.475 with particle sizing for $m(1.55,0)$. The green solid and dashed curves are the
regression curves obtained by fitting the log-normal models for the column models that exclude and include the red dashed line, respectively. The number concentrations for m $(1.53-1.57,0)$ were within the range of the standard deviation of its averaged number concentrations $(1.55,0)$. Therefore, the green solid and dashed curves were used to estimate $\sigma_{t s}{ }^{\lambda}$ and σ_{a} values at wavelengths of 450,550 , and 700 nm without considering the wavelength dependence of particle sizing for m (n, k). Using Eqs. (3) and (4), and the assumption of the normal dispersion for the green solid and dashed curves, the estimated $\sigma_{t s}{ }^{\lambda}$ and σ_{a} values were almost identical to the observed values, although the k values were higher than those in the column model (Tables 1, 2, and 3). The estimated σ_{a} values were highest when $0.2<D<0.5 \mu \mathrm{~m}$ (Fig. 9a). The number size distribution of particles with $D<$ $0.2 \mu \mathrm{~m}$ was different among the models (Fig. 8a). Consequently, the k value increased with decreasing number concentration of particles with D around $0.2 \mu \mathrm{~m}$ (Table 2).

4.2. Complex refractive indices of aerosol particles in pristine air masses

The observed $\sigma_{t s}{ }^{\lambda}$ and $o A E_{i}$ from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$ are listed in Table 1. The $o A E_{i}$ values showed the relationship $0<o A E_{1}<o A E_{2}<o A E_{3}$. The $\sigma_{t s}{ }^{\lambda}$ values at each wavelength were estimated using Eqs. (2) and (4). Assuming that the n value was uniform from D_{1} to the midpoint between D_{8} and D_{9} in the column model (Fig. 6), the values of $e A E_{i}$ were always estimated to be < 0 independent of the n value. This result differed from that for $o A E_{i}$.

In general, the number size distributions have an inflection point at around $1 \mu \mathrm{~m}$ in diameter. The refractive index n_{1-6} values for particles from D_{1} to D_{6} may be different from the n_{6-9} values for particles from D_{6} to D_{9}. Therefore, $e A E_{i}$ values were calculated for combinations of different values in n_{1-6} and n_{6-9} at 0.05 intervals of 1.35 to 1.65. Two cases, $n_{1-6}>n_{6-9}$ and $n_{1-6}<n_{6-9}$, were considered in the estimation of the $e A E_{i}$ values. No lightabsorbing component, that is, $k=0$, was assumed to simplify the determination of n value combinations.

In the case of $n_{1-6}>n_{6-9}$, the $e A E_{i}$ values were estimated to be <0 using n_{1-6} in particles with $D<D_{6}$ corrected by n_{1-6}, or $e A E_{1}>e A E_{2}>e A E_{3}$ using n_{1-6} in particles with $D<D_{6}$ corrected by n_{6-9}. These results differed from the relationship among $o A E_{i}$.

In the case of $n_{1-6}<n_{6-9}$, the $e A E_{i}$ values were always estimated to be $e A E_{1}<e A E_{2}<$ $e A E_{3}$, except for $n_{1-6}=1.35$. The p values were always small when using n_{1-6} in particles with $D<D_{6}$ corrected by n_{6-9}, in comparison with using n_{1-6} in particles with $D<D_{6}$ corrected by $n_{1-6 .}$. The appropriate combinations of $\left(n_{1-6}, n_{6-9}\right)$ were $(1.45,1.60)$ and (1.50, 1.65). Furthermore, p values in the ranges of $n_{1-6}=1.45-1.50$ and $n_{6-9}=1.60-1.65$ were calculated at intervals of 0.01 to determine the most suitable combination of n_{1-6} and n_{6-9}. The p value was minimal in the case of $D_{6}=0.981 \mu \mathrm{~m}$ corrected by $n_{6-9}=1.62$. By considering the k value in particles with $D<D_{6}$, the final appropriate values of n_{1-6}, n_{6-9}, and k were estimated to be $1.47,1.62$, and 0.0030 , respectively, at all three wavelengths (Table 2). The normal dispersion did not contribute to the convergence of p values. The estimated
$\sigma_{t s}{ }^{\lambda}$ and σ_{a} values were the same as the observed values (Tables 1 and 3). In this case, sf and df were 2.75 and 0.884 , respectively.

The observed $\sigma_{t s}{ }^{\lambda}, \sigma_{a}$, and $o A E_{i}$ from $14.5^{\circ} \mathrm{N}$ to $13.5^{\circ} \mathrm{N}$ are listed in Table 1. The values of $n_{1-6}=1.47$ and $n_{6-9}=1.62$ for aerosol particles from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$ were applied to reproduce the values of $\sigma_{t s}{ }^{\lambda}$ and σ_{a} from $14.5^{\circ} \mathrm{N}$ to $13.5^{\circ} \mathrm{N}$. The values of p at other n values were higher than the p value in $\left(n_{1-6}, n_{6-9}\right)=(1.47,1.62)$. The minimum p value was $6.50 \times$ 10^{-6} in $k=0$ and $s f=2.5$. However, D_{6} must be $1.038 \mu \mathrm{~m}$ (Fig. 10). The p value was sensitive to the position of D_{6} because n values differ across D_{6}. Assuming that the k value was 0.0055 for particles with $D<D_{6}$ (Table 2) and df of 0.828 , the observed $\sigma_{t s}{ }^{\lambda}$ and σ_{a} values were successfully reproduced by the column model (Tables 1 and 3).

The observed $\sigma_{t s}{ }^{\lambda}$ and σ_{a} values from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$ and from $14.5^{\circ} \mathrm{N}$ to $13.5^{\circ} \mathrm{N}$ were also reproduced using the green solid and dashed curves obtained by fitting the log-normal models for the column models (Figs. 8b and 8c). The $\sigma_{t s}{ }^{\lambda}$ and σ_{a} values estimated using Eqs. (3) and (4) were almost the same as the observed values (Tables 1 and 3). The $\sigma_{t s}{ }^{\lambda}$ values from 2 to $3 \mu \mathrm{~m}$ were slightly higher from $14.5^{\circ} \mathrm{N}$ to $13.5^{\circ} \mathrm{N}$ than $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$ (Figs. 9b and 9c). In the column model, the values of σ_{a} were zero for coarse particles. In the log-normal model, however, the estimated σ_{a} values were in a comparatively wide size range. Therefore, the k values in the log-normal model were lower than those in the column model (Table 2).

5. Discussion

5.1. Polluted air masses

At a wavelength of 589 nm , the complex refractive indices are $m(1.521,0)$ for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $m(1.544,0)$ for NaCl (Seinfeld and Pandis, 1998). The estimated $n=1.55$ at a wavelength of 550 nm was close to these n values. Non-sea salt sulfates and sea salt are the primary chemical species in fine and coarse particles, respectively (Matsumoto et al., 1998; Campuzano-Jost et al., 2003; Heintzenberg et al., 2003).

Pollutants in the winter season are associated with black carbon from domestic coal burning (Dehkhoda et al., 2020). Using the shipboard measurements, Shiobara et al. (2007) estimated $m(1.52-1.59,0.002)$ in polluted air masses from the Asian continent over the western regions of the Ryukyu Islands of Japan. In the present study, the estimated $n=1.55$ was within the range of Shiobara et al. (2007). Yabuki et al. (2003) estimated a maximum of $k=0.0114$ in anthropogenic aerosols from $33.5^{\circ} \mathrm{N}$ to $30^{\circ} \mathrm{N}$ over the western North Pacific. Using sun photometer measurements, Bi et al. (2016) estimated $n=1.521 \pm 0.025$ and $k=$ 0.00364 ± 0.0014 at a wavelength of 550 nm in the transported anthropogenic dust over East Asia. They also estimated that the refractive index at wavelengths ranging from 440 to 675 nm increased with an increase in wavelength. However, this was inconsistent with the normal dispersion estimated in the present study. Notably, these results are averages of aerosol optical properties from the surface to the top of the atmosphere. The k values
estimated in the present study were larger than those reported in previous studies due to differences in size distribution assumptions for light-absorbing components (Table 2).

5.2. Pristine air masses

The complex refractive indices at 589 nm for $\mathrm{NH}_{4} \mathrm{HSO}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are $m(1.473,0)$ and m (1.426, 0), respectively (Seinfeld and Pandis, 1998). The estimated n value for fine particles was close to the real part of $m(n, k)$ for $\mathrm{NH}_{4} \mathrm{HSO}_{4}$. Shiobara et al. (2007) estimated $m(1.38-1.40,<0.001)$ in pristine air masses from the central North Pacific. Yabuki et al. (2003) estimated $m(1.35-1.37,<0.0014)$ in marine aerosols from $28^{\circ} \mathrm{N}$ to $3^{\circ} \mathrm{N}$. In the present study, the estimated n and k values were higher than those reported by Shiobara et al. (2007) and Yabuki et al. (2003). This is because they did not consider the size dependence of $m(n, k)$ when estimating the scattering and absorption coefficients. Virkkula et al. (2006) found that the n value increased with increasing particle diameter in the atmospheric boundary layer at the Finnish Antarctic Research Station. In the present study, the value of $n=1.47$ estimated for fine particles was close to that estimated by Virkkula et al. (2006), while $n=1.62$ for coarse particles was even higher than $n=1.544$ for NaCl as the primary chemical species. This suggests that coarse particles are composed of sea salt and materials with $n>1.544$. Water vapor was excluded as a candidate because m (1.333, $0)$ (Seinfeld and Pandis, 1998).

The uptake and volatilization rates of gas-phase species by aerosol particles depend on the aerosol surface area per unit volume of air (Jacob, 2000). In the VOC-removed air samples on Chichi-jima, the total surface area of the particles was smaller in August 2014 than in February 2015 (Fig. 5). However, in August 2014, the surface area with $D>1.1 \mu \mathrm{~m}$ was approximately 3 times greater than that of $0.3<D<1.1 \mu \mathrm{~m}$. The surface area of the pre-existing particles in the VOC-removed air samples was maximum at approximately $D=$ $3 \mu \mathrm{~m}$. In addition, the effective diffusion rates for biogenic secondary organic materials (SOM) were at least 1000 times greater than those of anthropogenic SOM (Liu et al., 2016). Thus, VOCs appear to preferentially condense onto coarse particles. In the VOC-removed air sample from February 2015, the surface area of $D>1.1 \mu \mathrm{~m}$ was about 0.7 times smaller than that of $0.3<D<1.1 \mu \mathrm{~m}$. In addition, the atmospheric VOC mixing ratios likely decreased due to low biological activity. For these reasons, the differences in the number size distributions between VOC-removed and untreated air samples would be more conspicuous in summer than in winter.

5.3. VOCs onto coarse particles in pristine air masses

Colomb et al. (2009) measured DMS, isoprene, carbonyls, and organohalogens over the Southern Indian Ocean. DMS was the most abundant VOC, with a mixing ratio ranging from 50 to 885 pptv. The simultaneous enhancement of DMS, methyl bromide, dibromomethane, and methyl iodine was associated with high biological activity. They also
showed that isoprene, terpenes, acetone, and acetaldehyde were biologically produced in the ocean. According to Rinaldi et al. (2010), increased VOC emissions by marine biota during the warm season results in relatively high WSOC concentrations in aerosol particles. Thus, atmospheric VOC mixing ratios are likely to be substantially higher in summer than in winter. This suggests that the volume of VOCs condensed on individual particles is larger in summer than in winter.

Most SOA masses consist of oligomeric compounds produced through gas-phase reactions between organic compounds and oxidants, such as $\mathrm{O}_{3}, \mathrm{OH}$, and NOx (Denkenberger et al., 2007; Heaton et al., 2007). Kim et al. (2012) performed chamber experiments to investigate the refractive indices of SOA generated from the photooxidation of limonene and α-pinene with different $\mathrm{HC} / \mathrm{NOx}$ ratios $\left(\mathrm{ppbC} \mathrm{ppb}^{-1}\right)$. At a wavelength of 532 nm ranging from 1.34 to 1.56 for limonene and from 1.36 to 1.52 for $\alpha-$ pinene, the refractive indices increased with decreasing HC/NOx. Varma et al. (2013) reported the refractive indices for SOA from the reaction between β-pinene and NO_{3}. The refractive index was 1.61 ± 0.03 at wavelengths of $655-687 \mathrm{~nm}$, under the condition of approximately 2 $\mathrm{ppbC} \mathrm{ppb}^{-1}$, which was lower than the lower limit of the experimental conditions in Kim et al. (2012). The results of Kim et al. (2012) and Varma et al. (2013) suggest that high refractive indices are associated with either a high proportion of organic nitrates or the possibility of oligomerization in SOA. The increase in $\mathrm{H}: \mathrm{C}$ ratios was measured in the SOA formed by the photooxidation of limonene and α-pinene; as the particles grow, and the oxidation
progresses. The $\mathrm{H}: \mathrm{C}$ ratio showed the best correlation with the refractive index. These results are consistent with oligomerization reactions (Kim et al., 2014). Hall and Johnston (2012) obtained MS/MS product ion spectra for many oligomers in SOAs produced by $\alpha-$ pinene ozonolysis. They reported that a gas-phase monomer collided with the particle surface and rapidly formed an oligomer.

Over the northwestern Pacific, WSOC mass concentrations were higher in coarse particles than in fine particles under marine background conditions (Matsumoto et al., 1998; Miyazaki et al., 2010). VOCs incorporated into aerosol particles could produce WSOC through oxidation processes. The considerably high refractive index of coarse particles in pristine air masses appears to be associated with the optical properties of VOCs and/or SOAs condensed onto coarse particles.

6. Summary and conclusions

Scattering substances in aerosol particles disperse sunlight, whereas light-absorbing substances absorb sunlight. These optical properties depend on the $m(n, k)$ of the materials contained in aerosol particles. In addition to the aerosol scattering and absorption coefficients, to elucidate the difference in the number size distribution between polluted and pristine air masses, the number size distributions of aerosol particles were measured on Chichi-jima of the Ogasawara Islands and the JARE52 voyage track of the icebreaker Shirase from Tokyo to the offing of the Philippines in the atmospheric boundary layer over the northwestern Pacific.

Scattering and absorption coefficients were reproduced from the observed number size distribution and the assumption of $m(n, k)$. The following requirements were needed for the estimated values to be in harmony with the observed values: In polluted air masses from $30.5^{\circ} \mathrm{N}$ to $29.5^{\circ} \mathrm{N}$, a refractive index of 1.55 for aerosol particles at a wavelength of 550 nm was estimated to be uniform regardless of the number size distribution, which was close to the values for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and NaCl . If $k=0$ for coarse particles, the k values in the fine particles were 0.0168-0.0188. In addition, the refractive index, n, exhibits normal dispersion. In the pristine air masses from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$ and $14.5^{\circ} \mathrm{N}$ to $13.5^{\circ} \mathrm{N}$, the refractive indices were estimated to be 1.47 for fine particles and 1.62 for coarse particles. The k values for fine particles were $0.0006-0.0030$ from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$ and $0.0015-0.0055$ from $14.5^{\circ} \mathrm{N}$
to $13.5^{\circ} \mathrm{N}$. The refractive index of the fine particles was close to that of $\mathrm{NH}_{4} \mathrm{HSO}_{4}$ while the refractive index of the coarse particles was even higher than the 1.544 of NaCl .

Based on the differences in number size distribution between the VOC-removed and untreated air samples observed on Chichi-jima, VOCs appear to preferentially condense onto coarse particles. Previous laboratory experiment studies have suggested that high refractive indices are associated with the oligomerization of SOA. The results of the present study indicate that the $m(n, k)$ of coarse particles in real air masses was most likely affected by organic compounds originating from biological activity.

Coarse particles probably act as the sink for VOCs and/or SOA, and the reaction media of reactive species; they could also affect the production of cloud droplets, chemical lifetimes of reactive species, and radiative effects of aerosol particles. Therefore, in the marine atmosphere, further investigation should be conducted on the relationship between optical properties and organic compounds in coarse particles.

Data Availability Statement

The observational data used in this study are available in J-STAGE Data.
https://doi.org/10.34474/data.jmsj.xxxxxxx

I am indebted to M. Wada, M. Shiobara, and K. Hara for their valuable advice and thoughtful support. T. Kinase created and operated the sample-air heating system. This research focuses on the advanced preparation and operation of devices by T. Kinase and T. Murayama. I am grateful to M. Kawai for providing me with materials required to correct the PSAP values. I would also like to thank K. Matsumoto and F. Ito for their valuable comments. Special thanks to T. Yoshiyama of Tokyo-bika Co. Ltd. at the Ogasawara downrange station of the Japan aerospace exploration agency for his assistance with observations. I wish to express my gratitude to Bernhard Michel for providing the MieCalc software. This study was part of the Science Program of the Japanese Antarctic Research Expedition (JARE) and was supported by the National Institute of Polar Research (NIPR) under MEXT (Grant number AP11, Chief scientist, M. Hayashi). It was also supported by the NIPR through General Collaboration Project No. 2-16. I would like to thank Editage (www.editage.com) for their assistance with English language editing.

References

Anderson, T.L. and J.A. Ogren, 1998: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci. Technol., 29, 57-69.

Bates, T.S., J.A. Calhoun, and P.K. Quinn, 1992: Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean. J. Geophys. Res.: Atmos., 97, 9859-9865.

Bi, J., J. Huang, B. Holben, and G. Zhang, 2016: Comparison of key absorption and optical properties between pure and transported anthropogenic dust over East and Central Asia. Atmos. Chem. Phys., 16, 15501-15516.

Bikkina, S., K. Kawamura, Y. Miyazaki, and P. Fu, 2014: High abundances of oxalic, azelaic, and glyoxylic acids and methylgyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. Geophys. Res. Lett., 41, 3649-3657.

Bohren, C.F. and D.R. Huffman, 1998: Absorption and scattering of light by small particles. John Wiley \& Sons, New York, USA, p. 27.

Bond, T.C., T.L. Anderson, and D. Campbell, 1999: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol., 30, 582-600.

Bond, T.C. and R.W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 27-67.

Bond T.C., S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann,J. P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, and C.S. Zender, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.: Atmos., 118, 5380-5552.

Campuzano-Jost, P., C.D. Clark, H. Marring, D.S. Covert, S. Howell, V. Kapustin, K.A. Clarke, E.S. Saltzman, and A.J. Hynes, 2003: Near-real-time measurement of sea-salt aerosol during the SEAS campaign: Comparison of emission-based sodium detection with an aerosol volatility technique. J. Atmos. Oceanic Technol., 20, 1421-1430.

Ceburnis, D., C.D. O'Dowd, G.S. Jennings, M.C. Facchini, L. Emblico, S. Decesari, S.

Fuzzi, and J. Sakalys, 2008: Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes. Geophys. Res. Lett., 35, L07804, doi:10.1029/2008GL033462.

Clarke, A.D., Y. Shinozuka, V.N. Kapustin, S. Howell, B. Huebert, S. Doherty, T.

Anderson, D. Covert, J. Anderson, X. Hua, K.G. Moore II, C. McNaughton, G.

Carmichael, and R. Weber, 2004: Size distributions and mixtures of dust and black
carbon aerosol in Asian outflow: physiochemistry and optical properties. J. Geophys. Res.: Atmos., 109, D15S09, doi:10.1029/2003JD004378.

Colomb, A., V. Gros, S. Alvain, R. Sarda-Esteve, B. Bonsang, C. Moulin, T. Klüpfel, and J. Williams, 2009: Variation of atmospheric volatile organic compounds over the Southern Indian Ocean (30-49³). Environ. Chem., 6, 70-82.

Dall'Osto, M., D. Ceburnis, C. Monahan, D. R. Worsnop, J. Bialek, M. Kulmala, T. Kurtén, M. Ehn, J. Wenger, J. Sodeau, R. Healy, and C. O'Dowd, 2012: Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. J. Geophys. Res., 117, D12311, doi:10.1029/2012JD017522.

Decesari, S., E. Finessi, M. Rinaldi, M. Paglione, S. Fuzzi, E.G. Stephanou, T. Tziaras, A. Spyros, D. Ceburnis, C. O'Dowd, M. Dall'Osto, R.M. Harrison, J. Allan, H. Coe, and M.C. Facchini, 2011: Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. J. Geophys. Res., 116, D22210, doi:10.1029/2011JD016204.

Dehkhoda, N., Y. Noh, and S. Joo, 2020: Long-term variation of black carbon absorption aerosol optical depth from AERONET data over East Asia. Remote Sens., 12, 21, 3551, doi:10.3390/rs12213551.

Denkenberger, K., R.C. Moffet, J.C. Holecek, T. P. Rebotier, and K.A. Prather, 2007: Realtime, single-particle measurements of oligomers in aged ambient aerosol particles. Environ. Sci. Technol., 41, 5439-5446.

Facchini, M.C, S. Decesari, M. Rinaldi, C. Carbone, E. Finessi, M. Mircea, S. Fuzzi, F. Moretti, E. Tagliavini, D. Ceburnis, and C.D. O'Dowd, 2008: Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol., 42, 91169121.

Gantt, B., N. Meskhidze, and D. Kamykowski, 2009: A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos. Chem. Phys., 9, 4915-4927.

Hall, W. and M.V. Johnston, 2012: Oligomer formation pathways in secondary organic aerosol from MS and MS/MS measurements with high mass accuracy and resolving power. J. Am. Soc. Mass Spectrom., 23, 1097-1108.

Heaton, K.J., M.A. Dreyfus, S. Wang, and M.V. Johnston, 2007: Oligomers in the early stage of biogenic secondary organic aerosol formation and growth. Environ. Sci. Technol., 41, 6129-6136.

Heintzenberg, J., F. Raes, and S.E. Schwartz (Lead authors), 2003: Tropospheric aerosols. Atmospheric chemistry in a changing world. Brasseur, G.P. et al. (eds.), Springer-Verlag, Berlin, Germany, 125-156 pp.

Hinds, W.C., 1999: Aerosol Technology: Properties, behavior, and measurement of airborne particles. John Wiley \& Sons, New York, USA, 8 and 353 pp.

Hodkinson, J.R. and J.R. Greenfield, 1965: Response calculations for light-scattering aerosol counters and photometers. Appl. Opt., 4, 1463-1474.

IPCC, 2013: The Physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Climate Change 2013 [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA, p. 1535.

Jacob, D.J., 2000: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ., 34, 2131-2159.

Jaenicke, R., 1993: Tropospheric aerosols. Aerosol-Cloud-Climate Interactions. P.V. Hobbs P.V. (ed.), Academic Press, San Diego, CA., 1-31 pp.

Kim, H., B. Barkey, and S.E. Paulson, 2012: Real refractive indices and formation yields of secondary organic aerosol generated from photooxidation of limonene and $\alpha-$ pinene: The effect of the HC/NOx ratio. J. Phys. Chem., 116, 6059-6067.

Kim, H., S. Liu, L.M. Russell, and S.E. Paulson, 2014: Dependence of real refractive indices on $\mathrm{O}: \mathrm{C}, \mathrm{H}: \mathrm{C}$ and mass fragments of secondary organic aerosol generated from ozonolysis and photooxidation of limonene and α-pinene. Aerosol Sci. Technol., 48, 498-507.

Koga, S. and H. Tanaka, 1999: Modeling the methanesulfonate to non-sea-salt sulfate molar ratio and dimethylsulfide oxidation in the atmosphere. J. Geophys. Res., 104, 13735-13747.

Koga, S., T. Maeda, and N. Kaneyasu, 2008: Source distributions to black carbon mass fractions in aerosol particles over the northwestern Pacific. Atmos. Environ., 42, 800814.

Koga, S., 2021: Optical properties of aerosol particles in the atmospheric boundary layer in regions with and without sea ice. Polar Sci., 29, 100704, doi:10.1016/j.polar.2021.100704.

Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P.H. McMurry, 2004: Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci., 35, 143-176.

Liu, P., Y.J. Li, Y. Wang, M.K. Gilles, R.A. Zaveri, A.K. Bertram, and S.T. Martin, 2016: Lability of secondary organic particulate matter. Proc. Natl. Acad. Sci. U. S. A., 113, 12643-12648.

Mahajan, A.S., S. Fadnavis, M.A. Thomas, L. Pozzoli, S. Gupta, S.J. Royer, A. SaizLopez, and R. Simó, 2015: Quantifying the impacts of an updated global dimethyl sulfide climatology on cloud microphysics and aerosol radiative forcing. J. Geophys. Res.: Atmos., 120, 2524-2536.

Matsumoto, K., I. Nagao, H. Tanaka, H. Miyaji, T. lida, T., and Y. Ikebe, 1998: Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the northwest Pacific Ocean. Atmos. Environ., 32, 19311946.

Miyazaki, Y., K. Kawamura, and M. Sawano, 2010: Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer. J. Geophys. Res.: Atmos., 115, D23210, doi:10.1029/2010JD014439.

Novakov, T. and J.E. Penner, 1993: Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature, 365, 823-826.

O’Dowd, C.D., M.C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, and J.-P. Putaud, 2004: Biogenically driven organic contribution to marine aerosol. Nature, 431, 676-680.

O'Dowd, C., C. Monahan, and M. Dall'Osto, 2010: On the occurrence of open ocean particle production and growth events. Geophys. Res. Lett., 37, L19805, doi:10.1029/2010GL044679.

Ohta, S., N. Murao, and S. Yamagata, 2013: Optical and chemical properties of atmospheric aerosols at Amami Oshima and Fukue Islands in Japan in spring, 2001. J. Meteor. Soc. Jpn., 91, 63-73.

Pirjola, L., C.D. O'Dowd, I.M. Brooks, and M. Kulmala, 2000: Can new particle formation occur in the clean marine boundary layer? J. Geophys. Res.: Atmos., 105, 2653126546.

Read, K.A., A.C. Lewis, S. Bauguitte, A.M. Rankin, R.A. Salmon, E.W. Wolff, A. SaizLopez, W.J. Bloss, D.E. Heard, J.D. Lee, and J.M.C. Plane, 2008: DMS and MSA
measurements in the Antarctic boundary layer: Impact of BrO on MSA production. Atmos. Chem. Phys., 8, 2985-2997.

Rinaldi, M., S. Decesari, E. Finessi, L. Giulianelli, C. Carbone, S. Fuzzi, C.D. O’Dowd, D. Ceburnis, and M.C. Facchini, 2010: Primary and secondary organic marine aerosol and oceanic biological activity: Recent results and new perspectives for future studies. Adv. Meteor., 1-10, doi:10.1155/2010/310682.

Rolph, G., A. Stein, and B. Stunder, 2017: Real-time Environmental Applications and Display sYstem: READY. Environ. Modell. Software, 95, 210-228.

Savoie, D.L. and J.M. Prospero, 1982: Particle size distribution of nitrate and sulphate in the marine atmosphere. Geophys. Res. Lett., 9, 1207-1210.

Seinfeld, J.H. and S.N. Pandis, 1998: Atmospheric chemistry and physics: From air pollution to climate change, John Wiley \& Sons, New York, 429, 1118, 1125, 1131, and 1134 pp.

Shaw, S.L., B. Gantt, and N. Meskhidze, 2010: Production and emissions of marine isoprene monoterpenes: A review. Adv. Meteor., 2010, 1-24, doi:10.1155/2010/408696.

Shiobara, M., K. Hara, M. Yabuki, and H. Kobayashi, 2007: Optical and chemical properties of marine boundary-layer aerosol around Japan determined from shipboard measurements in 2002. Atmos. Environ., 41, 4638-4652.

Srivastava, A.K., B.J. Mehrotra, A. Singh, V. Singh, D.S. Bisht, S. Tiwari, and M.K. Srivastava, 2020: Implications of different aerosol species to direct radiative forcing and
atmospheric heating rate. Atmos. Environ., 241, 117820, doi:10.1016/j.atmosenv.2020.117820.

Stein, A.F., R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D. Cohen, and F. Ngan, 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059-2077.

Sullivan, P.D., B.R. Stone, Z. Hashisho, and M.J. Rood, 2007. Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption, 13, 173-189.

Varma, R.M., S.M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R.L. Jones, U. Platt, D. Pöhler, A.A. Ruth, A.J.L. Shillings, J. Thieser, A. Wahner, and D.S. Venables, 2013. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers. Atmos. Meas. Tech., 6, 3115-3130.

Virkkula, A., I.K. Koponen, K. Teinilä, R. Hillamo, V.-M. Kerminen, and M. Kulmala, 2006: Effective real refractive index of dry aerosols in the Antarctic boundary layer. Geophys. Res. Lett., 33, L06805, doi:10.1029/2005GL024602.

Weber, R.J., P.H. McMurry, R.L. Mauldin III, D.J. Tanner, F.L. Eisele, A.D. Clark, and V.N. Kapustin, 1999: New particle formation in the remote troposphere: A comparison of observations at various sites. Geophys. Res. Lett., 26, 307-310.

Yabuki, M., M. Shiobara, H. Kobayashi, M. Hayashi, K. Hara, K. Osada, H. Kuze, and N. Takeuchi, 2003: Optical properties of aerosols in the marine boundary layer during a cruise from Tokyo, Japan to Fremantle, Australia. J. Meteor. Soc. Jpn., 81, 151-162.

Fig. 1 The JARE52 voyage track of the icebreaker Shirase from Tokyo, Japan, to the offing of the Philippines on November 11-14, 2010.

Fig. 2 Observed $\sigma_{t s}{ }^{\lambda}$ at wavelengths of 450,550 , and $700 \mathrm{~nm}, \sigma_{a}$ at 565 nm , and $A E$ at three wavelength ranges. The values of $\sigma_{t s}^{\lambda}$ and σ_{a} are values at 1 min intervals. The values of $A E$ are 1 h moving averages.

767 Fig. 3 Number size concentrations of 0.3-5.0 $\mu \mathrm{m}$ diameter aerosol particles at 1 min intervals, and air temperature (AT), dew point (DP), wind speed (WS), and relative humidity (\%) at 1 h intervals.

Fig. 4 Number size distributions averaged from $30.5^{\circ} \mathrm{N}$ to $29.5^{\circ} \mathrm{N}$ and from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$ in Fig. 3. Vertical bars represent the range of one standard deviation.

Fig. 5 Number and surface area size distributions measured on Chichi-jima, the

Ogasawara Islands, in the northwestern Pacific. Vertical bars represent the range of one standard deviation.

Fig. 6 Conceptual diagram of the column model. The black dots show the number size distributions of aerosol particles reported by the OPC in polluted air masses from $30.5^{\circ} \mathrm{N}$ to $29.5^{\circ} \mathrm{N}$. Vertical bars represent the range of one standard deviation. For more information, see text.

Fig. 7 Variations of the p value as a function of $m(n, 0)$ at a wavelength of 450 nm . These values are obtained by sf from 0.425 to 0.55 at intervals of 0.025 . (a) The refractive index is constant, independent of wavelength of light. (b) The mutual difference in the refractive indices among the 450,550 , and 700 nm wavelengths is assumed to be 0.01 due to normal dispersion. (c) The refractive index at 450 nm is 0.01 higher than those at 550 and 700 nm . (d) The case, anomalous dispersion, that refractive index decreases with decreasing the wavelength. The refractive index at 450 nm is assumed to be 0.02 lower than at 700 nm .

Fig. 8 Number size distributions in (a) polluted, and (b) and (c) pristine air masses. Open circles show the arithmetic means with one standard deviations of the corrected number size distributions. The black solid and red dashed lines are the expanded number size distribution, as the column model. The green solid and dashed curves, as the lognormal model, are composed of the blue and red solid curves, and the blue and red dashed curves, respectively.

Fig. 9 Scattering and absorption coefficients at wavelengths of 450 nm (blue), 550 nm (green), and 700 nm (red) as a function of particle diameter (a) from $30.5^{\circ} \mathrm{N}$ to $29.5^{\circ} \mathrm{N}$, (b) from $17.5^{\circ} \mathrm{N}$ to $16.0^{\circ} \mathrm{N}$, and (c) from $14.5^{\circ} \mathrm{N}$ to $13.5^{\circ} \mathrm{N}$. Dashed curves represent absorption coefficients.

Fig. 10 Variations of the p value as a function of particle diameter D_{6} in the column model from $14.5^{\circ} \mathrm{N}$ to $13.5^{\circ} \mathrm{N}$. These values are obtained by sf from 2.0 to 3.0 at intervals of 0.25 .

812 The red solid line shows the p values in $s f=2.5$ and $k=0.0055$.
813

814 Table $1 C^{\lambda}, \sigma_{t s}^{\lambda}\left(\times 10^{-6} \mathrm{~m}^{-1}\right), \sigma_{a}\left(\times 10^{-6} \mathrm{~m}^{-1}\right), S S A$, and $A E$ averaged in polluted and 815 pristine air masses, and r.

	Wavelength nm	Polluted air $30.5^{\circ} \mathrm{N}-29.5^{\circ} \mathrm{N}$	Pristine air	
			$17.5^{\circ} \mathrm{N}-16.0^{\circ} \mathrm{N}$	$14.5{ }^{\circ} \mathrm{N}-13.5^{\circ} \mathrm{N}$
C^{λ}	450	1.13 ± 0.01	1.38 ± 0.02	1.40 ± 0.02
	550	1.12 ± 0.01	1.35 ± 0.01	1.36 ± 0.01
	700	1.11 ± 0.01	1.30 ± 0.01	1.31 ± 0.01
$\sigma_{t s}{ }^{\lambda}$	450	49.95 ± 4.95	32.52 ± 2.32	34.79 ± 4.69
	550	36.48 ± 3.94	32.38 ± 2.32	35.14 ± 4.71
	700	24.09 ± 2.91	31.70 ± 2.19	34.48 ± 4.67
σ_{a}	565	3.45 ± 0.71	0.175 ± 0.03	0.353 ± 0.06
SSA	550	0.914 ± 0.018	0.995 ± 0.001	0.990 ± 0.002
$A E$	450-550	1.57	0.02	- 0.05
	450-700	1.65	0.06	0.02
	550-700	1.72	0.09	0.08
r	450-550	0.997	0.98	0.995
	450-700	0.981	0.947	0.991
	550-700	0.989	0.966	0.992

818 Table 2 Estimated $m(n, k)$ in polluted and pristine air masses.

Model	Wavelength nm	Polluted air $30.5^{\circ} \mathrm{N}-29.5^{\circ} \mathrm{N}$				Pristine air							
		n	k			n		k					
		Fine, Coarse	Fine		Coarse	Fine	Coarse	Fine				Coarse	
					$17.5^{\circ} \mathrm{N}-16.0^{\circ} \mathrm{N}$			$14.5{ }^{\circ} \mathrm{N}-13.5^{\circ} \mathrm{N}$					
	450	1.56											
Column	550	1.55	0.0168		0	1.47	1.62	0.0030		0.0055		0	
	700	1.54											
			GSC ${ }^{\text {a }}$	GDC ${ }^{\text {a }}$				GSC ${ }^{\text {b }}$	GDC ${ }^{\text {b }}$	GSC ${ }^{\text {c }}$	GDC ${ }^{\text {c }}$		
log-normal	450	1.56											
log-norma	550	1.55	0.0178	0.0188	$0 *$	1.47	1.62	0.0010	0.0006	0.0030	0.0015	$0{ }^{*}$	
	700	1.54											

GSC and GDC are acronyms of green solid curve and green dashed curve in Fig. 8, respectively. a, b, and c represent curves in Figs. 8a, 8b, and 8c, respectively. The asterisks represent that no light-absorbing component was assumed in the second log-normal distribution of $j=2$ in Eq. (3).
pristine air masses.

Model	Property	Wavelength nm	$\begin{gathered} \text { Polluted air } \\ 30.5^{\circ} \mathrm{N}-29.5^{\circ} \mathrm{N} \end{gathered}$		Pristine air			
					$17.5^{\circ} \mathrm{N}-16.0^{\circ} \mathrm{N}$		$14.5^{\circ} \mathrm{N}-13.5^{\circ} \mathrm{N}$	
		450	50.00		32.51		34.76	
	$\sigma_{t s}{ }^{1}$	550	36.42		32.37		35.14	
		700	24.34		31.66		34.59	
	σ_{a}	565	3.44		0.175		0.348	
Column	SSA	550	0.914		0.995		0.990	
		450-550	1.58		0.02		-0.05	
	AE	450-700	1.63		0.06		0.01	
		550-700	1.67		0.09		0.07	
	p		3.34×10^{-3}		1.20×10^{-5}		2.88×10^{-4}	
log-normal			GSC ${ }^{\text {a }}$	GDC ${ }^{\text {a }}$	GSC ${ }^{\text {b }}$	GDC ${ }^{\text {b }}$	GSC ${ }^{\text {c }}$	GDC ${ }^{\text {c }}$
	$\sigma_{t s}{ }^{\lambda}$	450	49.40	49.84	32.92	31.73	34.98	35.09
		550	36.33	36.73	32.73	31.62	35.17	35.22
		700	23.98	24.10	32.07	31.11	34.80	34.83
	σ_{a}	565	3.43	3.45	0.171	0.173	0.358	0.349
	SSA	550	0.914	0.914	0.995	0.995	0.990	0.990
	AE	450-550	1.53	1.52	0.03	0.02	-0.03	-0.02
		450-700	1.64	1.64	0.06	0.04	0.01	0.02
		550-700	1.72	1.75	0.09	0.07	0.04	0.05
	p		1.38×10^{-3}	2.64×10^{-3}	5.50×10^{-5}	6.37×10^{-4}	1.81×10^{-3}	2.07×10^{-3}

GSC and GDC are acronyms of green solid curve and green dashed curve in Fig. 8,
respectively. a, b, and c represent curves in Figs. $8 \mathrm{a}, 8 \mathrm{~b}$, and 8 c , respectively.

[^0]: 1) Corresponding author: Seizi Koga, Branding and Public Relations Department, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8560 JAPAN
 E-mail, koga-s@aist.go.jp
 Tel: +81-29-861-8388
