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Abstract 32 

This study hybridizes the background error covariance (BEC) of the hourly atmospheric 33 

three-dimensional variational data assimilation (3DVar) in Local Analysis (LA) operated at 34 

Japan Meteorological Agency using the flow-dependent BEC derived from the singular 35 

vector-based Mesoscale Ensemble Prediction System (MEPS) and the static BEC. The impact 36 

of introducing the hybrid BEC into the 3DVar is examined, along with its sensitivities to 37 

various factors like the ensemble size that is augmented by using lagged ensemble forecasts, 38 

the weight given to the ensemble-based component of BEC, the localization scales, and use 39 

(or not) of the cross-variable correlation. This hybrid 3DVar system can be operated with 40 

small additional computational cost because it has no coupling with another ensemble data 41 

assimilation system. In sensitivity experiments, this hybrid 3DVar is shown to yield smaller 42 

forecast root-mean square errors than the pure 3DVar, especially for surface variables. 43 

Moreover, the hybrid 3DVar shows better equitable threat score for strong precipitation. 44 

These improvements were greater in the experiments with larger ensemble sizes that were 45 

increased by using lagged ensemble forecasts because of the reduced sampling errors in the 46 

ensemble-based BEC. These results were sensitive to the weight given to the ensemble-based 47 

BEC and the horizontal localization scale, whose optimal values were found to be 48 

approximately 0.5 and 100 km, respectively. The longer vertical correlation scale and the 49 

cross-variable correlation were also found important to create dynamically-balanced analysis, 50 
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which is especially true for heavy rain cases. 51 

Keywords: numerical weather prediction; data assimilation; variational method; background 52 

error covariance; lagged ensemble forecasts; operational system 53 

  54 
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1. Introduction 55 

Many numerical weather prediction (NWP) systems adopt a three- or four-dimensional 56 

variational method (3DVar and 4DVar; Sasaki 1958, 1969; Thompson 1969), ensemble 57 

Kalman filter (EnKF; Evensen 1994), or their hybrid (Hamill and Snyder 2000; Lorenc 2003) 58 

to produce initial conditions for the forecast model. In these methods, the cross-variable 59 

structure of analysis increments is determined based on that of the background error 60 

covariance (BEC). Improving the BEC thus remains an important challenge for improving 61 

these data assimilation methods. 62 

In 3DVar and 4DVar, the BEC is typically estimated by National Meteorological Center 63 

method (Parrish and Derber 1992). Flow-dependence of the BEC is difficult to incorporate in 64 

3DVar because of the use of static BEC. 4DVar improves on 3DVar by allowing the BEC to 65 

evolve in time with the tangent-linear forecast model within the adjoint method (Talagrand 66 

and Courtier 1987). However, the BEC at the start of the assimilation window is still static as 67 

in 3DVar. The use of tangent-linear and adjoint model also incurs a larger computational cost. 68 

In contrast, EnKF can naturally incorporate flow-dependence by building the BEC from flow-69 

dependent ensemble forecasts at a computational cost that is generally smaller than that of 70 

4DVar. When the ensemble size is small, however, the ensemble approximation to the BEC 71 

introduces sampling errors that may degrade the quality of analysis. This sampling error is 72 

usually mitigated by horizontal and vertical covariance localization, which increases the rank 73 
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of the BEC matrix (Hamill et al. 2001; Houtekamer and Mitchell 2001; Hacker et al. 2007; 74 

Lei and Anderson 2014), but with the drawback of aggravating dynamical imbalance, which is 75 

particularly true if localization scale needs to be short due to a small ensemble size. 76 

Many operational data assimilation systems adopt a hybrid method that combines the 77 

static and ensemble-based BECs to complement the respective limitations (e.g., Isaksen et al. 78 

2010; Clayton et al. 2013; Buehner et al. 2013; Kleist and Ide 2015). In particular, a hybrid 79 

3DVar, which is a variant of 3DVar that uses a hybrid BEC, is particularly suitable for high-80 

frequency data assimilation because it requires only small additional computational resources 81 

in comparison to pure 3DVar (e.g., Benjamin et al. 2016; Dowell et al. 2022). However, it 82 

requires high-resolution ensemble forecasts to generate the ensemble-based component of the 83 

BEC, which is costly because such ensemble needs to be provided externally, for example 84 

from another data assimilation system such as EnKF.  The cost of generating high-resolution 85 

ensemble has apparently hindered introduction of hybridize BECs in high-frequency high-86 

resolution 3DVar systems, which is the case for the Japan Meteorological Agency (JMA)’s 87 

hourly-updated limited area analysis called Local Analysis (LA; Ikuta et al. 2021; Japan 88 

Meteorological Agency 2022). 89 

To meet the tight operational constraint on timeliness and computational costs, it is 90 

attractive to employ ensemble forecasts that are generated without data assimilation because 91 

the ensemble generation can be started without waiting for the arrival of observations. It is 92 
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also attractive because the ensemble size can be increased without additional cost by using 93 

forecasts from multiple initial times if the forecast range is long enough and the forecast 94 

update is frequent (e.g., Kim et al. 2013; Wang et al. 2017). 95 

Based on the idea presented above, in this study we explore hybridizing BECs in LA by 96 

utilizing ensemble forecasts from JMA’s operational regional ensemble forecast system, the 97 

Mesoscale Ensemble Prediction System (MEPS; Ono et al 2021; Japan Meteorological 98 

Agency 2022). MEPS uses perturbations that derived from singular vectors (SVs) to capture 99 

the multi-scale uncertainty of the initial and boundary conditions, without resorting to 100 

ensemble data assimilation. In addition, MEPS provides 39-hour forecasts every 6 hours, 101 

which allows us to increase the ensemble size by using forecasts from shifted initial times. 102 

To the authors’ knowledge, such an approach of exploiting ensemble forecasts generated 103 

without data assimilation to build BEC to be used in an operational hybrid 3DVar has not 104 

been explored in the literature, and thus several concerns need to be addressed. In particular, 105 

the following three questions have not been sufficiently answered by previous studies: (i) Is 106 

the hybrid 3DVar analysis with the SV-based ensemble forecasts statistically superior to the 107 

pure 3DVar analysis? (ii) How effective is the ensemble size augmentation with lagged 108 

ensemble forecasts? (iii) How sensitive is this hybrid 3DVar analysis to the weights of hybrid 109 

BECs, to the horizontal and vertical localization scales, and to inclusion (or not) of the cross-110 

variable correlation? 111 



 6 

This paper answers these questions by using hybrid 3DVar implemented on LA with the 112 

ensemble-based component of BEC created by MEPS forecasts. We first outline the 113 

specification of LA and MEPS and explain the formulation of hourly hybrid 3DVar in section 114 

2. Then, we describe the design of our data assimilation experiments with this hybrid 3DVar 115 

in section 3 and present the results of our analysis in section 4. In section 5, we discuss the 116 

sensitivity of the analysis with respect to the ensemble size, the weight given to ensemble-117 

based BEC, and localization through a case study of the heavy rain event that occurred on 118 

July 3, 2020, followed by conclusions in section 6. 119 

 120 

2. Formulation of hybrid 3DVar 121 

a. Local Analysis 122 

LA is the data assimilation system that produces the atmospheric analysis fields at hourly 123 

intervals to be used as initial conditions for the Local Forecast Model (LFM) that produces 124 

10-hour forecasts at 2-km horizontal grid intervals. LFM forecasts target at early warning of 125 

meso-scale severe weather events around Japan (Ikuta et al. 2021; Japan Meteorological 126 

Agency 2022). The workflow of LA is schematically shown in Fig. 1. First, the forecast from 127 

Meso-Scale Model (MSM) with 5-km horizontal grid intervals that is initialized 3 hours 128 

before the initial time of the LFM forecast is used to derive the first guess for LA. 3DVar 129 

analyses and one-hour forecasts are repeated 3 times in succession ((a)-(c) in Fig. 1), with the 130 



 7 

first guess for the first cycle ((a) in Fig. 1) provided from MSM. The initial states of LFM are 131 

created from the fourth run of 3DVar ((d) in Fig. 1). LA has horizontal grid intervals of 5 km 132 

with 48 vertical levels extending from the ground up to 21.8 km for atmospheric variables. It 133 

is coupled with a land-surface model that represents soil temperature and soil moisture with 9 134 

and 2 layers, respectively.  135 

In the 3DVar analysis within LA, the analysis increment 𝛿𝐱 ≡ B
1/2𝐯  is computed by 136 

minimizing the cost function 137 

 
𝐽(𝐯, 𝐯𝑏) =

1

2
𝐯𝑇𝐯 +

1

2
𝐯𝑏

𝑇𝐯𝑏 +
1

2
(H𝛿𝐱 + 𝛿𝐛 − 𝐝)𝑇R

−1(H𝛿𝐱 + 𝛿𝐛 − 𝐝) 
(1) 

where 𝐯 and 𝐯𝑏 denote control vectors for the analysis and for the bias correction, respectively, 138 

𝐝 = 𝐲𝑜 − 𝐻(𝐱𝑏) denotes the first guess departure (difference between observation 𝐲𝑜  and 139 

first guess 𝐱𝑏  in the observation space), 𝐻  and H  denote the observation operator and its 140 

tangent-linear version, respectively, and B  and R  denote the BEC and observation error 141 

covariance matrices, respectively. 𝛿𝐛 = P𝐯𝑏  denotes variational bias correction (VarBC; 142 

Cameron and Bell 2018), where P is the predictor including adaptivity of each component of 143 

𝐯𝑏  to 𝛿𝐛 . The minimization procedure also includes variational quality control (VarQC; 144 

Andersson and Jarvinen 1999). The detail of VarBC and VarQC is described in Ikuta et al. 145 

(2021). 146 

In pure 3DVar within LA, the following four groups of control variables are used with 147 

their cross-variable covariances set to zero (Ikuta et al. 2021): (i) 𝐮 : 𝑥 -component of 148 
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horizontal wind; (ii) 𝐯: 𝑦-component of horizontal wind; (iii) (𝐭g, 𝐩s, 𝛉): soil temperature, 149 

surface pressure, and potential temperature; and (iv) (𝐰g, 𝛍p) : soil moisture (volumetric 150 

water content) and pseudo relative humidity (Dee and da Silva 2003). The National 151 

Meteorological Center (NMC) method (Parrish and Derber 1992) was used to 152 

climatologically estimate the magnitude of the BEC in each vertical level and each control 153 

variable. Here, the difference between the 6-h forecast and 3-h forecast at the same valid time 154 

was used in the estimation (Ikuta et al. 2021). The vertical correlation within each group of 155 

control variables is artificially localized more strongly than the estimation with the NMC 156 

method (Japan Meteorological Agency 2022) to make near-surface analysis increments finer. 157 

Correlations between 𝐭g  and (𝐩s, 𝛉) and between 𝐰g  and 𝛍p  are set to zero (Fig. 2). This 158 

static BEC is vertically inhomogeneous and anisotropic with its square root computed by the 159 

eigenvalue decomposition. The BEC is horizontally homogeneous and approximated to 160 

Gaussian shapes by the recursive filter (Purser et al. 2003), with the 𝑒−1/2-folding scales set 161 

as shown in Fig. 3. Therefore, the introduction of the ensemble-based flow-dependent BEC, 162 

which is inhomogeneous, anisotropic, and correlated between each variable, is expected to 163 

improve the 3DVar analysis. 164 

 165 

b. Mesoscale Ensemble Prediction System 166 

JMA has been operating the MEPS since 2019 to support probabilistic forecasts of severe 167 
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weather phenomena (Ono et al. 2021; Japan Meteorological Agency 2022). In MEPS, 39-hour 168 

ensemble forecasts are run every 6 hours with the output archived at hourly intervals. The 169 

horizontal grid interval of MEPS is the same as that of MSM and LA (5 km), and the 170 

ensemble comprises 20 perturbed members plus a control member. In MEPS, the initial and 171 

boundary ensemble perturbations are created using the SV method which does not depend on 172 

ensemble data assimilation systems such as EnKF. 173 

The SV method calculates multiple ensemble perturbations 𝛿𝐱𝑖 that have the large growth 174 

rates 175 

 
𝜎𝑖 ≡

‖M𝛿𝐱𝑖‖

‖𝛿𝐱𝑖‖
 

(2) 

where M denotes the tangent-linear model operator including the local projection, and ‖∙‖ ≡176 

√(∙)𝑇E(∙) denotes the total energy norm defined with the diagonal matrix E for the vertical 177 

ranges that extend from the surface to the specific altitude (Ehrendorfer et al. 1999). The 178 

singular values of E
1/2
ME

−1/2
 are the growth rates 𝜎𝑖, and their SVs correspond to E

1/2𝛿𝐱𝑖 179 

(Ono 2020). In MEPS, several SVs with the largest singular values are combined to create the 180 

initial and boundary ensemble perturbations using a variance minimum rotation (Yamaguchi 181 

et al. 2009; Ono et al., 2021). The global SVs based on Global Spectral Model with a 182 

horizontal resolution of TL63 (about 270 km in the midlatitudes) and the optimization time 183 

interval of 45 hours are used to create the 20 boundary ensemble perturbations of MEPS. On 184 

the other hand, linear combinations of three different kinds of SVs, i.e., mesoscale SVs based 185 
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on MSM with horizontal resolutions of 40 km (the optimization time interval: 6 hours) and 80 186 

km (the optimization time interval: 15 hours) and global SVs, are used to create the 20 initial 187 

ensemble perturbations. The top of the vertical ranges in computing total energy norms are 188 

approximately 5 km (3 km only for the moisture term) in the target region for mesoscale SVs 189 

(125–145E and 25–45N) and approximately 9 km in that for global SVs (120–170E and 25–190 

45N). 191 

 192 

c. Hybrid 3DVar in LA with MEPS 193 

In this study, the weighted average of the climatological (static) and ensemble-based 194 

(flow-dependent) BEC in hybrid 3DVar is used as B based on Lorenc (2003). Here B
1/2

 and 195 

𝐯 are extended as 196 

 
B

1/2 = [𝛽𝑐B𝑐
1/2 𝛽𝑒B𝑒

1/2] 
(3) 

 
𝐯 = [

𝐯𝑐

𝐯𝑒
] 

(4) 

where B𝑐 and B𝑒 denote the climatological and ensemble-based BEC matrices, respectively, 197 

while 𝐯𝑐 and 𝐯𝑒 denote the corresponding control vectors, respectively. 𝛽𝑐
2 and 𝛽𝑒

2 denote the 198 

weights given to the climatological and ensemble-based components of BEC: (𝛽𝑐
2, 𝛽𝑒

2) =199 

(1,0) and (𝛽𝑐
2, 𝛽𝑒

2) = (0,1) for pure 3DVar and pure En3DVar, respectively. B𝑐
1/2

 and B𝑒
1/2

 200 

are 𝑁 × 𝑁 and 𝑁 × 𝑁𝑒𝐿 matrices, respectively, where 𝑁 denotes the total number of analysis 201 

grids of all analyzed variables (𝐮, 𝐯, 𝐭g, 𝐩s, 𝛉,𝐰g, 𝛍p ), 𝑁𝑒  denotes the ensemble size, and 202 
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𝐿(≤ 𝑁) denotes the rank of the localization matrix, as shown in Appendix. 𝐯𝑐 and 𝐯𝑒 are 𝑁- 203 

and 𝑁𝑒𝐿-dimension vectors, respectively. 204 

In our hourly hybrid 3DVar, B𝑒  is created using several 6-hourly lagged ensemble 205 

forecasts [ensemble size: 20 × (number of lagged forecasts)]. The magnitude of ensemble 206 

perturbations should be adjusted according to the forecast time because the ensemble spread 207 

grows with the lead time. Therefore, in this study, the ensemble perturbation of member 𝑖 is 208 

inflated by multiplying it with the factor 209 

 
𝛼𝑖 = √

〈B𝑐
𝜃5.5𝑘𝑚〉

〈B𝑖
𝜃5.5𝑘𝑚〉

 
(5) 

where 〈B𝑖
𝜃5.5𝑘𝑚〉 denotes horizontally-averaged ensemble variance of potential temperature at 210 

5.5 km above ground level (AGL) in 20-member ensemble forecasts at the same forecast time 211 

including the member 𝑖. 〈B𝑐
𝜃5.5𝑘𝑚〉 denotes the corresponding climatological background error 212 

variance. This inflation is introduced to make the magnitude of the ensemble variances of 213 

various forecast times and resulting B𝑒 comparable to that of B𝑐, which has been optimized 214 

for LA. 215 

The difference in ensemble variances with and without this inflation is shown in Fig. 4. As 216 

shown in this figure, the horizontally-averaged ensemble variances with various forecast time 217 

have comparable magnitude to that of B𝑐, except for ensemble variances at very short forecast 218 

time. Since potential temperature at 5.5 km AGL is less fluctuated with the forecasts time than 219 

the other variables (Fig. 4c), lead-time-dependency of horizontally-averaged B𝑒 for the other 220 
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variables remains even after regularization with this inflation. Note that the inflated ensemble 221 

variances in soil temperature, soil moisture, and atmospheric variables in the upper layer are 222 

still underestimated probably because the total energy norms are defined only with 223 

atmospheric variables below about 5 km AGL for mesoscale SVs and about 9 km AGL for 224 

global SVs in MEPS. As for pseudo relative humidity in the upper layer, both B𝑐 and B𝑒 are 225 

almost zero everywhere (Fig. 4d), so the associated horizontal correlation scale is large (Fig. 226 

3) while the assimilation impact is small. 227 

In order to reduce sampling errors between analysis points far from each other, horizontal 228 

and vertical localizations are also applied to the ensemble-based BEC. The resulting B𝑒
1/2

 in 229 

Eq. (3) is expressed as 230 

 
B𝑒

1/2 =
1

√𝑁𝑒 − 1
[(𝐜1 ∘ 𝛿𝐱1

𝑓
⋯ 𝐜𝐿 ∘ 𝛿𝐱1

𝑓) ⋯ (𝐜1 ∘ 𝛿𝐱𝑁𝑒

𝑓
⋯ 𝐜𝐿 ∘ 𝛿𝐱𝑁𝑒

𝑓
)] 

(6) 

where “∘” denotes Schur product and 𝛿𝐱𝑖
𝑓
 denotes each ensemble perturbations inflated with 231 

the factor 𝛼𝑖. C
1/2

= [𝐜1 ⋯ 𝐜𝐿] refers to the square root of the localization matrix. This 232 

B𝑒
1/2

 representation is explained in Liu et al. (2009), which, as shown in Ishibashi (2015), is 233 

mathematically equivalent to the representation of Lorenc (2003). Here, C
1/2

 is realized by 234 

the recursive filter (Purser et al. 2003) with the amplitude of 1.0 horizontally and by the 235 

eigenvalue decomposition of the matrix based on Gaussian functions vertically (see Appendix 236 

in detail). Since this realization of C
1/2

 is the same as that of B𝑐
1/2

, the parallelization in two-237 

dimensional horizontal grid shown in Ikuta et al. (2021) is applied for C
1/2

 as well as B𝑐
1/2

. 238 
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 239 

3. Experimental design 240 

In this study, we conducted single virtual observation assimilation experiments and real-241 

data assimilation experiments to clarify and verify the impacts of the above-mentioned hybrid 242 

3DVar implementation. These experiments are based on the operational LA system as of May 243 

2021 at JMA, but B𝑐 and B𝑒 are updated as described in section 2. 244 

 245 

a. Single-observation experiments 246 

In single-observation experiments, an observation of the 𝑥-component of horizontal wind 247 

is assimilated at the point of 130E, 30N, and 900 hPa at 21 UTC on August 5, 2019. The first 248 

guess departure and the observation error standard deviation are set to 5 m s−1 and 1 m s−1, 249 

respectively. Here, the assimilation of this observation of the 𝑥-component of horizontal wind 250 

is expected to strengthen the Typhoon Francisco (Fig. 5a) because the location of this 251 

observation is in the southern region of the typhoon. 252 

These experiments focus on only the first (hybrid) 3DVar of LA (Fig. 1a). The first guess 253 

of these experiments is the Mesoscale Analysis at 21 UTC on August 5, 2019. The weights of 254 

the hybrid BEC are set to 3 types: (𝛽𝑐
2, 𝛽𝑒

2) = (1,0)  (pure 3DVar), (𝛽𝑐
2, 𝛽𝑒

2) = (0.5,0.5) 255 

(hybrid 3DVar) and (𝛽𝑐
2, 𝛽𝑒

2) = (0,1) (pure En3DVar). In hybrid 3DVar and pure En3DVar, 256 

the 20- or 60-member ensemble forecasts are used to create the ensemble-based BEC: the 257 
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lagged (3-, 9-, and 15-hour) ensemble forecasts of MEPS are used in the 60-member 258 

experiments, while only 3-hour ensemble forecasts of MEPS are used in the 20-member 259 

experiments. These ensemble perturbations are inflated with the factor 𝛼𝑖 described in Eq. (5). 260 

The 𝑒−1/2-folding localization scales are set to 100 km horizontally and 0.5 km vertically. 261 

 262 

b. Real-data assimilation experiments 263 

During the period of January 11−21 and July 2–15, 2020, sensitivity experiments 264 

assimilating real-data with the LA system (Fig. 1a–d and 10-hour forecasts with LFM) are 265 

conducted every 3 hours. The data assimilated in these experiments are the same as those in 266 

the operational LA system at the time of experiments and include surface (pressure, horizontal 267 

wind, temperature, and specific humidity), upper-air (horizontal wind, temperature, and 268 

relative humidity), radar (radial wind and relative humidity retrieved from reflectivity), and 269 

satellite (atmospheric motion vector, precipitable water vapor, brightness temperature, soil 270 

moisture) observations. These observations and the prescribed observation error variances for 271 

each type are summarized in Japan Meteorological Agency (2022). Here, the pure 3DVar 272 

experiment is called CNTL, and the hybrid 3DVar experiments with 20-, 60-, and 100-273 

member ensemble forecasts (created by 6-hourly 1, 3, and 5 lagged forecasts of MEPS) are 274 

called M020, M060, and M100, respectively. In M020, 3–9-hour (3–6-hour or 6–9-hour) 275 

forecasts of MEPS (output hourly) are used in the four successive hybrid 3DVar (Figs. 1a–d). 276 
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In M060, 9–15- and 15–21-hour forecasts are additionally used. In addition, 21–27-hour and 277 

27–33-hour forecasts are also used in M100. The weights of hybrid BEC in M020, M060, and 278 

M100 are set as (𝛽𝑐
2, 𝛽𝑒

2) = (0.5,0.5), while the 𝑒−1/2-folding localization scales are set to 279 

100 km horizontally and 0.5 km vertically. Moreover, other sensitivity experiments are also 280 

conducted to investigate the impacts of the weights of hybrid BEC (Be025, Be075, and 281 

Be100), horizontal localization scale (Lh025km, Lh050km, and Lh200km), vertical 282 

localization scale (Lv0250m, Lv1000m, and Lv2000m), and variable localization to cut off 283 

the cross-variable covariance (LVAR). Note that M020, M060, and M100 use manually tuned 284 

parameters based on the results of these sensitivity experiments shown in section 5. The 285 

concrete settings of these experiments are shown in Table 1. 286 

It should be noted that several heavy rain events occurred during the period of these 287 

experiments. This study focuses on the heavy rain event of July 3 that flooded large rivers in 288 

Kyushu Island (Hirockawa et al. 2020). In Radar/Raingauge-Analyzed Precipitation by JMA, 289 

the maximum 3-hour precipitation of over 300 mm was analyzed in 18–21 UTC on July 3. 290 

This heavy rain event was associated with the convergence of low-level warm and humid air 291 

at the upwind area of the rain along the Baiu front (a synoptic-scale stationary front that 292 

frequently emerge in the early summer in Japan). The impact of hybrid 3DVar in this event is 293 

examined in section 5. 294 

 295 
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4. Results 296 

a. Analysis increment in single-observation experiments 297 

Figure 5 shows the analysis increment in each single-observation experiment assimilating 298 

the 𝑥-component of horizontal wind. In pure 3DVar (Fig. 5b), horizontal wind exhibited 299 

isotropic Gaussian-shaped analysis increment in 𝑥- and 𝑦-directions, while other variables, 300 

including sea level pressure, exhibited zero analysis increments, in accordance with the 301 

imposed structure of the static BEC. In contrast, in pure En3DVar (Figs. 5e and f), all 302 

variables exhibited flow-dependent and non-zero analysis increments. However, variables 303 

other than the horizontal wind exhibited zero analysis increment even in En3DVar (not 304 

shown) when variable localization was applied (Appendix). In hybrid 3DVar (Figs. 5c and d), 305 

the analysis increment was close to the mean of the analysis increments of pure 3DVar and 306 

pure En3DVar. 307 

The analysis increment of horizontal wind in the 60-member pure En3DVar (Fig. 5f) is 308 

smoother and larger near the center of the typhoon than that in the 20-member pure En3DVar 309 

(Fig. 5e). In addition, the analysis increment of sea level pressure decreased near the typhoon 310 

in the 60-member pure En3DVar; this finding is consistent with our expectation that the 311 

horizontal wind assimilation should strengthen the typhoon intensity. This observation 312 

demonstrates the mitigation of sampling error of the ensemble-based BEC by the use of larger 313 

ensemble; similar feature is also observed in hybrid 3DVar (Figs. 5c and d). 314 
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 315 

b. Statistical verification in real-data assimilation experiments 316 

Figure 6 shows the statistical significance of score differences of M020, M060 and M100 317 

experiments in comparison to CNTL experiment. The scores examined are the equitable threat 318 

scores (ETS) for 1-hour precipitation with several different thresholds, and the root-mean 319 

square error (RMSE) of several forecast fields. The forecast range extends up to 10-hour, and 320 

the statistics are taken for the period of July 2–15. The reference data is JMA 321 

Radar/Raingauge-Analyzed Precipitation (R/A; Nagata 2011) for ETS and 12-hourly 322 

radiosonde and hourly surface observations in the calculation domain of the experiments for 323 

RMSE. As shown in the figure, M020, M060, and M100 showed better ETS of precipitation 324 

than CNTL, except for the small thresholds up to 2-hour forecast. This improvement was 325 

particularly evident for the threshold of 10–20 mm h–1. Surface variables (pressure, 326 

temperature, wind speed, and specific humidity) in M020, M060, and M100 also showed 327 

better RMSE scores except for specific humidity in M020. However, the improvements in the 328 

RMSEs of upper-air variables were not judged statistically significant. This could be because 329 

the sample size for the upper-air verifications is limited due to the scarcity of radiosonde 330 

observations that are only available at 12-hourly intervals in comparison to the abundant  331 

surface observations (Fig. 7) that are available at hourly intervals. 332 

The weighted root-mean square error (WRMSE, Duc and Saito 2018) is shown for several 333 
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kinds of observations assimilated in each experiment (Fig. 8) to clarify the improvement in 334 

first guess. The WRMSE is defined as 335 

 WRMSE ≡ √ 1

𝑁𝑜
∑ ∑ (

𝑑𝑘
𝑖

𝜎𝑘
𝑖
)

2𝑁𝑜
𝑖

𝑘=1

𝑁𝑡

𝑖=1

= √
1

𝑁𝑜
∑𝐝𝑖

𝑇R𝑖
−1𝐝𝑖

𝑁𝑡

𝑖=1

 (7) 

where 𝑑𝑘
𝑖  denotes the 𝑘-th component of 𝐝𝑖 (first guess departure in 𝑖-th analysis), 𝜎𝑘

𝑖  denotes 336 

square root of 𝑘-th component of R𝑖  (diagonal observation error covariance matrix in 𝑖-th 337 

analysis), 𝑁𝑜 = ∑ 𝑁𝑜
𝑖𝑁𝑡

𝑖=1  denotes the total number of observations assimilated over the 338 

verification period, and 𝑁𝑡 denotes the number of analyses. The initial cost function in each 339 

analysis is 𝐽𝑖
Init = 𝐝𝑖

𝑇R𝑖
−1𝐝𝑖/2, so the WRMSE can be obtained from 𝐽𝑖

Init and 𝑁𝑜 by: 340 

 WRMSE = √
2

𝑁𝑜
∑ 𝐽𝑖

Init

𝑁𝑡

𝑖=1

. (8) 

The WRMSEs obtained in M020, M060, and M100 were smaller than that in CNTL, 341 

especially for surface temperature (Fig. 8). The WRMSEs for upper-air temperature in M060 342 

and M100 were smaller than that in CNTL, while it was larger in M020. Thus, a larger 343 

ensemble size resulted in smaller WRMSE. 344 

The larger improvement of surface variables with the increase in ensemble size was 345 

evident up to at least 10 hours, especially for surface temperature (Figs. 9a and b) and surface 346 

specific humidity (Figs. 10a and b). At the initial time, the RMSE of surface temperature in 347 

hybrid 3DVar, especially in M100, was smaller than that in CNTL. This tendency was 348 
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observed up to at least 10 hours, implying that the analysis increment of surface temperature 349 

in hybrid 3DVar was larger and resulted in the analysis that is more natural as the initial 350 

condition for the forecast. Unlike the surface temperature scores, the RMSE of surface 351 

specific humidity at the initial time was larger in hybrid 3DVar than in CNTL. Nevertheless, 352 

this RMSE value decreased quickly within an hour, except in M020 that showed larger RMSE 353 

presumably due to the scarcity of surface specific humidity observations in comparison to 354 

surface temperature observations (Fig. 7). As mentioned previously, the cross-variable 355 

covariance with temperature affects the analysis increment in specific humidity in hybrid 356 

3DVar. Thus, a large difference between the analysis and the observation of surface specific 357 

humidity is an expect outcome due to the sampling error of this cross-variable covariance 358 

when assimilating many surface temperature observations (Fig. 7) with the small ensemble 359 

size. Here, the number of total surface observations is 𝑂(102)  within a radius of the 360 

horizontal localization scale (100 km) and larger than the ensemble size in M020. In fact, this 361 

degradation was not observed in the experiment with the large ensemble size (M060 and 362 

M100). 363 

Compared to CNTL, the ETS of precipitation was also better in hybrid 3DVar, especially 364 

in M060 and M100 (Figs. 11a and b). The ETS was not improved for small thresholds up to 2-365 

hour forecasts (Fig. 6), but the ETS for the threshold of 10–20 mm h−1 was clearly improved. 366 

This improvement could be attributed to the improvement in the analysis of surface wind and 367 
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temperature, which is discussed in the next section. Figures 9–11 demonstrate the forecast 368 

improvements by hybrid 3DVar during the period of July 2–15, 2020, but such improvements 369 

are not limited to the heavy rainfall in summer because similar forecast improvements were 370 

also observed for the winter period of January 11–21, 2020 (not shown). 371 

 372 

5. Discussion 373 

a. Impact on the heavy rain event on July 3, 2020 374 

The forecast initialized at 12 UTC July 3, 2020 in each sensitivity experiment predicted 375 

occurrence of heavy rain in Kyushu Island in 18–21 UTC on the same day. The predicted 376 

heavy rain was positioned closer to the observations (Fig. 12f) in hybrid 3DVar experiments 377 

(Figs. 12b–d) than in CNTL (Fig. 12a). The predicted heavy rain was the closest in M100 378 

compared to M020 and M060. In particular, 3-hour accumulated precipitation for 18–21 UTC 379 

in M100 exceeded 100 mm over the land, which is consistent with in the observation. 380 

The flow-dependent analysis increment in hybrid 3DVar improved the position of the 381 

predicted heavy rain. Figure 13 shows the analysis increment and the first guess in the first of 382 

four (hybrid) 3DVar analyses (Fig. 1a) that was run to produce the initial state of the forecast 383 

initialized at 12 UTC. In this first guess validating at 09 UTC, the Baiu front was predicted 384 

approximately along 32N, as identified as the convergence of horizontal wind and steep 385 

horizontal temperature gradient near the sea surface (Fig. 13f). In this area over the sea, 386 
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upwind of the heavy rain, the analysis increment was large in hybrid 3DVar (Figs. 13b–d), 387 

while it was almost zero in pure 3DVar (Fig. 13a). This is because the horizontal correlation 388 

scale of the climatological BEC (Fig. 3) is smaller than the horizontal localization scale of the 389 

ensemble-based BEC (100 km) near the surface. Although not observed in M020, the analysis 390 

increment in hybrid 3DVar raised surface temperature and strengthened the near-surface 391 

convergence near the upwind area of the heavy rain in M060 and M100. In addition, the 392 

resulting heavy rain positioned nearer to the observation in M100 than in M060 probably 393 

because of the stronger southerly wind at the south of the convergence (Fig. 13d). 394 

The analysis increments in M020, M060, and M100 differed because of the difference in 395 

the ensemble-based BEC component that resulted from the use of different lagged ensemble 396 

forecasts. Figure 14 shows the ensemble standard deviations of surface wind and temperature 397 

used for ensemble-based BECs in M020, M060, and M100. The ensemble spread in M020 398 

was based on 3-hour ensemble forecasts in MEPS, in which the forecast range was too short 399 

to allow the ensemble spread to sufficiently grow. This is because the optimization time 400 

interval of SVs in MEPS is longer than 3 hours. Thus, the ensemble spread was large only 401 

near the Baiu front in M020 (Figs. 14a, d, and g). By contrast, the ensemble spread in M060 402 

(Figs. 14b, e, and h) and M100 (Figs. 14c, f, and i) exhibited smoother and larger distribution, 403 

especially around the upwind area of the heavy rain. This indicates the advantage of using 404 

lagged ensemble forecasts. If the error of the first guess can be represented precisely by 405 
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ensemble forecasts from a single initial time, the ensemble-based BEC with more members 406 

created by lagged ensemble forecasts may not be necessarily better due to the inclusion of 407 

older data. However, this disadvantage was not clearly evident here, presumably because the 408 

SV-based ensemble forecasts in MEPS do not depend on LA and thus are not directly linked 409 

to the error of the first guess. 410 

 411 

b. Sensitivity to the weights of ensemble-based background error covariance 412 

The weights of (𝛽𝑐
2, 𝛽𝑒

2) = (0.5,0.5) adopted in M020, M060, and M100 may not be 413 

necessarily optimal for all variables. In fact, Be025 resulted in smallest WRMSE for upper-air 414 

temperature, and likewise for Be050 (=M100) for surface temperature and upper-air wind, 415 

and Be100 for surface wind (Fig. 8). The RMSEs of surface variables at the analysis time 416 

were smaller in experiments with smaller 𝛽𝑒 (Figs. 9c and 10c) because horizontally-averaged 417 

ensemble-based background error standard deviations are smaller than the climatological one 418 

near the surface (Fig. 4). However, the forecasts showed that these RMSEs of surface 419 

variables were the smallest in Be050. This implies that the use of purely climatological 420 

homogeneous BEC, or purely ensemble-based BEC that may include large sampling errors, 421 

does not lead to a better analysis. Instead, the use of hybrid BEC contributed to better analysis 422 

partly because a smaller weight given to the ensemble-based BEC can dilute sampling errors 423 

even without making the localization scales smaller. 424 
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As for precipitation forecast, smaller 𝛽𝑒 degraded the ETS for strong precipitation (Fig. 425 

11c) probably because of the smaller climatological BEC at the upwind area of the 426 

precipitation. In comparison, larger 𝛽𝑒  degraded the ETS for weak precipitation (Fig. 11c) 427 

probably because of the smaller ensemble-based BEC in the region where the precipitation is 428 

not predicted. The location of the predicted heavy rain on July 3 in Be100 (Fig. 12e) was 429 

closer to the observations than that in Be050 (Fig. 12d). This could be because of the larger 430 

ensemble-based BEC and associated larger analysis increments at the upwind area of the 431 

heavy rain (Figs. 13d and e). 432 

 433 

c. Sensitivity to the localization scale and the variable localization 434 

The 𝑒−1/2-folding scales of horizontal and vertical localizations in M020, M060, and 435 

M100 were set to 100 km and 0.5 km, respectively, and variable localization was not applied. 436 

Measuring with WRMSE (Fig. 8), the horizontal localization scale of 100 km (Lh100km) was 437 

best for upper-air wind and surface temperature, while horizontal localization scale of 200 km 438 

(Lh200km) was better for upper-air temperature and surface wind. As for vertical localization, 439 

a larger scale than 0.5 km (Lv1000m and Lv2000m) was better for winds and surface 440 

temperature, while a smaller one (Lv0250m) was better for upper-air temperature. These 441 

differences could be due to the different spatial representativeness of each variable. In 442 

addition, variable localization (LVAR) was found to be beneficial for the WRMSE of surface 443 
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variables but not for upper-air variables. This indicates the importance of cross-variable 444 

correlation of upper-air variables. 445 

The use of a smaller localization scale or variable localization reduced the RMSE at the 446 

initial time of the forecast (Figs. 9d–f and 10d–f) because the analysis increment was created 447 

by a smaller number of observations near each analysis point, including the reference 448 

observations used in calculating the RMSE. However, experiments with such “strong” 449 

localizations exhibited larger RMSE of the long-term forecasts, except for surface specific 450 

humidity that is not directly related to dynamical balance (Fig. 10f). This indicates the 451 

localization scale should be large to some extent, without the variable localization, so as to 452 

prevent the collapse of the dynamical balance. 453 

The experiment with the horizontal localization scale of 100 km showed the largest ETS 454 

of precipitation. The use of a smaller scale (Lh025km and Lh050km) reduced the ETS of 455 

precipitation, especially for strong precipitation exceeding 5 mm h−1, while the use of a larger 456 

scale (Lh200km) reduced the ETS of precipitation, especially for weak precipitation below 5 457 

mm h−1 (Fig. 11d). This indicates that the large analysis increment associated with “strong” 458 

localization is beneficial for forecast of weak precipitation, but the resulting dynamical 459 

imbalance can be harmful for forecast of strong precipitation. On the other hand, the 460 

experiments with smaller vertical localization scale (Lv0250m) or variable localization 461 

(LVAR) showed even worse ETS, especially for strong precipitation (Figs. 11e and f). This 462 
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implies that the vertical correlation and the cross-variable correlation are large in the region of 463 

the deep convection and have large impacts on the forecast of strong precipitation associated 464 

with the convection. 465 

The impacts of localization indicated above are manifested in a more concrete manner 466 

with the precipitation forecasts of the heavy rain on July 3. In this case, both the smaller and 467 

larger horizontal localization scale (Lh025km and Lh200km, respectively) shifted the position 468 

of the predicted heavy rain southwestward (Figs. 15a and b) because both the narrower and 469 

wider analysis increments resulted in lower surface temperature and weaker horizontal 470 

convergence at the upwind area of the heavy rain (Figs. 16a and b). The precipitation 471 

forecasts were worse also in LVAR (Fig. 15e) because lower surface temperature at the 472 

upwind area was caused by the variable localization due to cutting off of the cross-variable 473 

correlation (Fig. 16e). In comparison, changing the vertical localization scale (Lv0250m and 474 

Lv2000m) hardly affected the horizontal distributions of surface analysis increments (Figs. 475 

16c and d). However, the experiments with smaller (larger) vertical localization scale 476 

exhibited vertically finer (smoother) analysis increments (not shown), which probably 477 

increased (decreased) spurious convections due to the dynamical imbalance and resulted in 478 

the worse (better) precipitation forecasts (Fig. 15c and d). 479 

 480 

6. Conclusions 481 
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This study examined the impact of introducing hybrid covariance to the hourly 3DVar by 482 

implementing a hybrid formulation to the operational LA with MEPS. This hybrid 3DVar uses 483 

the weighted average of the climatological and ensemble-based BECs. The covariance 484 

inflation, which makes the ensemble variances of forecasts with different lead times 485 

comparable to that of the climatological BEC, is introduced here to mitigate the difference in 486 

ensemble spreads between each forecast time (Fig. 4). In particular, this study focused on (i) 487 

the difference between pure and hybrid 3DVar, (ii) the impact of increasing ensemble size 488 

with 6-hourly lagged ensemble forecasts in MEPS, and (iii) the sensitivities to the weight of 489 

ensemble-based BECs, to the horizontal and vertical localization scales, and to the cross-490 

variable correlation. To our knowledge, this is the first study to clarify the impact of hybrid 491 

3DVar with time-lagged SV-based ensemble forecasts. 492 

Single virtual observation assimilation experiments and real-data assimilation 493 

experiments showed that increasing the ensemble size with lagged ensemble forecasts yields 494 

smoother analysis increments, more reasonable cross-variable correlation, and the associated 495 

improvement in forecast scores (Figs. 5 and 7–11). The experiments with hybrid 3DVar, 496 

especially with a larger ensemble size, showed better ETS for strong precipitation and better 497 

RMSE of surface variables than those with pure 3DVar. These results indicate that SV-based 498 

ensemble forecasts, even without ensemble data assimilation-based perturbations, and 499 

increased ensemble size with lagged ensemble forecasts, can improve the BEC and the 500 
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associated hybrid 3DVar analysis. 501 

In the heavy rain case of July 3, 2020, the experiments of hybrid 3DVar with a larger 502 

ensemble size positioned the predicted heavy rain closer to the observation (Fig. 12). This 503 

improvement was due to the flow-dependent analysis increment, which yielded warmer 504 

surface temperature and stronger surface convergence at the upwind area of the heavy rain 505 

along the Baiu front (Fig. 13). This larger analysis increment was associated with the 506 

smoother and larger ensemble spread around the Baiu front in the BEC created by the larger 507 

number of lagged ensemble forecasts (Fig. 14). However, the application of the larger weight 508 

to the ensemble-based BEC and the larger localization scale did not necessarily improve the 509 

forecasts partly because of the smaller analysis increments that result from large sampling 510 

errors. In the hybrid 3DVar of this study, the optimal weight for the ensemble-based BEC and 511 

the optimal horizontal localization scale were found to be about 0.5 and 100 km, respectively. 512 

Smaller weights given to the ensemble-based BEC, smaller vertical localization scales, or a 513 

use of variable localization did not improve the rainfall forecasts likely because that resulted 514 

in analysis increments being less dynamically balanced, which indicates that the large-scale 515 

vertical correlation and the cross-variable correlation are important for heavy rain forecasts. 516 

In March 2022, JMA implemented the hybrid 3DVar with the setting of M100 in the 517 

operational LA system (Yokota et al. 2022). By utilizing the operational SV-based MEPS for 518 

the creation of flow-dependent BECs, JMA realized hourly hybrid 3DVar, which can improve 519 
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the accuracy of forecasting heavy rainfall, without requiring an ensemble data assimilation 520 

system. This is a strategy to achieve a data assimilation system that improves forecast 521 

accuracy with currently available computational resources. However, the weight given to the 522 

ensemble-based BEC (0.5) and the localization scales (100km horizontally and 0.5km 523 

vertically) are not necessarily optimal at all times. These settings may be improved by using 524 

the recently suggested optimization methods (e.g., Menetrier and Auligne 2015) and scale-525 

dependent localization (Buehner 2012; Buehner and Shlyaeva 2015). 526 

If more computer resources become available in the future, operating a regional 527 

ensemble data assimilation system should also be considered because the error of the first 528 

guess is not always precisely represented by ensemble forecasts without data assimilation. On 529 

the other hand, improvements that do not require a significant increase in computing 530 

resources are also required. In any case, it is essential to make the ensemble forecasts 531 

represent the error of the first guess within the tight computational time limit. 532 

  533 
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APPENDIX 547 

 548 

Implementation of horizontal, vertical, and variable 549 

localizations 550 

In this study, the 𝑁 × 𝑁 localization matrix C in the hybrid 3DVar is defined as 551 

 

C ≡ C𝑌⨂C𝑋⨂C𝑉 = (C𝑌
1/2
C𝑌

𝑇/2
)⨂(C𝑋

1/2
C𝑋

𝑇/2
)⨂(C𝑉

1/2
C𝑉

𝑇/2
)

= (C𝑌
1/2

⨂C𝑋
1/2

⨂C𝑉
1/2

)(C𝑌
1/2

⨂C𝑋
1/2

⨂C𝑉
1/2

)
𝑇
, 

(A1) 

where “⨂” denotes Kronecker product, C𝑋 and C𝑌 denote 𝑛𝑥 × 𝑛𝑥 and 𝑛𝑦 × 𝑛𝑦 matrices for 552 

𝑥- and 𝑦-direction horizontal localization, respectively [𝑛𝑥(𝑦): the number of horizontal grids 553 

in 𝑥(𝑦)-direction], and C𝑉 denotes 𝑛𝑣 × 𝑛𝑣 matrix for vertical and variable localization (𝑛𝑣: 554 

the sum of the number of vertical grids of all variables). According to Eq. (A1), the square 555 

root of C is written as C
1/2

= C𝑌
1/2

⨂C𝑋
1/2

⨂C𝑉
1/2

 (𝑁 × 𝐿 matrix, where 𝑁 = 𝑛𝑥𝑛𝑦𝑛𝑣 and 𝐿 is 556 

the rank of C). 557 

C𝑋(𝑌)
1/2

 is the 1-dimensional recursive filter (Purser et al. 2003). Note that the 𝑒−1/2 scale of 558 

C𝑋(𝑌)
1/2

 is 𝜎𝑥(𝑦)/√2 if the 𝑒−1/2 scale of C𝑋(𝑌) is set to 𝜎𝑥(𝑦). On the other hand, the eigenvalue 559 

decomposition of C𝑍 is used to obtain C𝑉
1/2

 because, with the small number of vertical levels, 560 

square-root representation with eigenvalue decomposition is computationally feasible. Here, 561 

C𝑍 is composed of Gaussian functions of the vertical distance from the height of each vertical 562 

level (Fig. A1). Since the height for surface pressure, soil temperature, and soil moisture is 563 
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regarded as 0-m AGL, which is lower than the lowest level of atmosphere, and the vertical 564 

distance in underground is neglected, C𝑍 is the (𝑛𝑧 + 1) × (𝑛𝑧 + 1) matrix (𝑛𝑧: the number 565 

of vertical layers of atmosphere). The square root of C𝑍 is written as C𝑍
1/2

= VΛ
1/2
V

𝑇
, where 566 

Λ denotes a diagonal matrix composed of eigenvalues of C𝑍, and V denotes an orthogonal 567 

matrix composed of eigenvectors of C𝑍 . If 𝑖-th member ensemble perturbation at a given 568 

horizontal grid point is written as 569 

 
𝛿𝐱𝑖

𝑓
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[
 
 
 
 
 
 
 
 
 𝛿𝐮𝑖

𝑓
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𝑓

(
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𝑓
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𝑓

𝛿𝛉𝑖
𝑓

)

(
𝛿𝐰g𝑖

𝑓

𝛿𝛍p𝑖
𝑓
)
]
 
 
 
 
 
 
 
 
 

, 
(A2) 

the corresponding C𝑉
1/2

, which does not apply variable localization to, is 570 
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1/2
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[
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1/2

C𝑍(1…𝑛𝑧)
1/2
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C𝑍(0×1)
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C𝑍(1…𝑛𝑧)
1/2
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]
 
 
 
 
 
 
 
 
 
 

, 
(A3) 

where 𝛿𝐮𝑖
𝑓
, 𝛿𝐯𝑖

𝑓
, 𝛿𝛉𝑖

𝑓
, and 𝛿𝛍p𝑖

𝑓 denote 𝑛𝑥𝑛𝑦𝑛𝑧-dimension vectors of ensemble perturbations 571 

of 𝑥-component of horizontal wind, 𝑦-component of horizontal wind, potential temperature, 572 

and pseudo relative humidity, respectively. 𝛿𝐭g𝑖

𝑓  denotes 𝑛𝑥𝑛𝑦𝑛𝑡 -dimension vector of soil 573 
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temperature (𝑛𝑡: the number of vertical layers of soil temperature), 𝛿𝐰g𝑖

𝑓 denotes 𝑛𝑥𝑛𝑦𝑛𝑤-574 

dimension vector of soil moisture (𝑛𝑤: the number of vertical layers of soil moisture), 𝛿𝐩s𝑖

𝑓
 575 

denotes 𝑛𝑥𝑛𝑦-dimension vector of surface pressure, C𝑍(0×1)
1/2

 denotes 1 × (𝑛𝑧 + 1) matrix that 576 

is composed of only a row for the lowest level of C𝑍
1/2

, C𝑍(1…𝑛𝑧)
1/2

 denotes 𝑛𝑧 × (𝑛𝑧 + 1) 577 

matrix omitting C𝑍(0×1)
1/2

 from C𝑍
1/2

, and C𝑍(0×𝑛)
1/2

 denotes 𝑛 × (𝑛𝑧 + 1)  matrix that is 578 

composed of 𝑛  copies of C𝑍(0×1)
1/2

. Therefore, this C𝑉
1/2

 is 𝑛𝑣 × (𝑛𝑧 + 1)  matrix, and the 579 

resultant rank of C ≡ C𝑌⨂C𝑋⨂C𝑉 is 𝐿 = 𝑛𝑥𝑛𝑦(𝑛𝑧 + 1). When using Eq. (A3), C𝑉 is written 580 

as 581 
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(A4) 

where C𝑍𝑢
1/2

= C𝑍𝑣
1/2

= C𝑍(1…𝑛𝑧)
1/2

, C𝑍𝑝
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, and C𝑍𝑞
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= (
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1/2
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1/2

). 582 

In addition, the variable localization is implemented when C𝑉
1/2

 in Eq. (A3) is replaced by 583 
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[
 
 
 
 
 
 
 
 
 
 C𝑍(1…𝑛𝑧)

1/2
𝟎 𝟎 𝟎

𝟎 C𝑍(1…𝑛𝑧)
1/2

𝟎 𝟎

𝟎 𝟎

(

 
 
C𝑍(0×𝑛𝑡)

1/2

C𝑍(0×1)
1/2

C𝑍(1…𝑛𝑧)
1/2

)

 
 

𝟎

𝟎 𝟎 𝟎 (
C𝑍(0×𝑛𝑤)

1/2

C𝑍(1…𝑛𝑧)
1/2

)
]
 
 
 
 
 
 
 
 
 
 

. 
(A5) 

When using Eq. (A5), the number of control variables, which is proportional to 𝐿, becomes 584 
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fourfold compared to using Eq. (A3), and the cross-variable correlations are ignored as 585 

 
C𝑉 = C𝑉

1/2
C𝑉

𝑇/2
=

[
 
 
 
 
 C𝑍𝑢

1/2
C𝑍𝑢

𝑇/2
𝟎 𝟎 𝟎

𝟎 C𝑍𝑣
1/2
C𝑍𝑣

𝑇/2
𝟎 𝟎

𝟎 𝟎 C𝑍𝑝
1/2
C𝑍𝑝

𝑇/2
𝟎

𝟎 𝟎 𝟎 C𝑍𝑞
1/2
C𝑍𝑞

𝑇/2
]
 
 
 
 
 

. 
(A6) 

Note that Eq. (A6) is the same as Eq. (A4) except for the localization for the cross-variable 586 

covariances. 587 

  588 
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Table 1. List of sensitivity experiments. 712 

Name of the 
experiment 

Ensemble 
size 

Weight of 
ensemble 
BEC 

Horizontal 
localization 
scale (km) 

Vertical 
localization 
scale (km) 

Variable 
localization 

CNTL Not used 0.00 - - - 
M020 20 0.50 100.0 0.500 No 
M060 60 0.50 100.0 0.500 No 
M100 100 0.50 100.0 0.500 No 
Be025 100 0.25 100.0 0.500 No 
Be075 100 0.75 100.0 0.500 No 
Be100 100 1.00 100.0 0.500 No 
Lh025km 100 0.50 25.0 0.500 No 
Lh050km 100 0.50 50.0 0.500 No 
Lh200km 100 0.50 200.0 0.500 No 
Lv0250m 100 0.50 100.0 0.250 No 
Lv1000m 100 0.50 100.0 1.000 No 
Lv2000m 100 0.50 100.0 2.000 No 
LVAR 100 0.50 100.0 0.500 Yes 

 713 

  714 
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Figure Captions 715 

Fig. 1. Schematic illustration of the flow of Local Analysis [cited from Fig.2.7.2 in Japan 716 

Meteorological Agency (2022)]. LF1 denotes the 1-hour forecast. 717 

Fig. 2. Vertical correlations of climatological BEC [a: 𝑥-component of horizontal wind; b: 718 

𝑦-component of horizontal wind; c: soil temperature (vertical levels: -9–-1), surface pressure 719 

(vertical levels: 0), and potential temperature; d: soil moisture (vertical levels: -1,0) and 720 

pseudo relative humidity]. 721 

Fig. 3. Vertical profiles of horizontal correlation 𝑒−1/2-folding scale of climatological 722 

background error covariance (red: 𝑥-component of horizontal wind; green: 𝑦-component of 723 

horizontal wind; blue: soil temperature, surface pressure, and potential temperature; light 724 

blue: soil moisture and pseudo relative humidity). Solid and dashed lines show the correlation 725 

scales in 𝑥- and 𝑦-directions, respectively. 726 

Fig. 4. Vertical profiles of climatological (solid black lines) and ensemble-based (color 727 

lines) background error standard deviations before (dashed) and after (solid) covariance 728 

inflation [a: 𝑥-component of horizontal wind (m s–1); b: 𝑦-component of horizontal wind (m 729 

s–1); c: soil temperature (K), surface pressure (hPa), and potential temperature (K); d: soil 730 

moisture (unitless) and pseudo relative humidity (unitless)]. Color lines show square root of 731 

time- and horizontal-averaged ensemble variances in all periods (January 11–21 and July 2–732 
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15, 2020) of M100 [forecast hours are 3 (red), 9 (green), 15 (blue), 21(pink), and 27 (light 733 

blue)]. Dashed black line shows the altitude of 5.5 km. 734 

Fig. 5. (a) First guess and (b–f) analysis increment of 𝑥-component of horizontal wind 735 

(color, m s–1) and sea level pressure [contour, (a) 4 hPa and (b–f) 0.01 hPa intervals] in single-736 

observation experiments (b: pure 3DVar, c: 20-member hybrid 3DVar, d: 60-member hybrid 737 

3DVar, e: 20-member pure En3DVar, and f: 60-member pure En3DVar). 738 

Fig. 6. Scorecards of the ETS of precipitation in each threshold verified against R/A and 739 

the RMSE verified against radiosonde and surface observations (Z500: geopotential height at 740 

500 hPa, T300–925: temperature at 300–925 hPa, MIXING300–925: water vapor mixing ratio 741 

at 300–925 hPa, WIND300–925: wind speed at 300–925 hPa, PSEA: sea level pressure, 742 

T1.5m: temperature at 1.5-m AGL, QV1.5m: specific humidity at 1.5-m AGL, WINDS10m: 743 

wind speed at 10-m AGL, DSWB: surface downward shortwave radiation) in July 2–15, 2020 744 

of (a) M020, (b) M060, and (c) M100. Each value is different from that in CNTL divided by 745 

half of 95% confidence interval and shown hourly up to 10-hour forecast (T+10). Blue and 746 

red mean improvement (larger ETS or smaller RMSE) and degradation (smaller ETS or larger 747 

RMSE), respectively, in comparison to CNTL. Smaller and larger squares indicate 748 

significance values of 1.0 and 3.0, respectively. 749 
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Fig. 7. The distribution of surface observations assimilated in first 3DVar (09 UTC) for 750 

creating the analysis at 12 UTC on July 3, 2020 in CNTL (black plus sign: horizontal wind; 751 

blue multiplication sign: temperature; red circle: specific humidity). 752 

Fig. 8. WRMSE for all (black bars), upper-air wind (red lines), upper-air temperature 753 

(blue lines), surface wind (pink lines), and surface temperature (light blue lines) observations 754 

assimilated in all periods (January 11–21 and July 2–15, 2020) of each experiment. Each is 755 

normalized by WRMSE of CNTL to show the improvement against CNTL. Note that M100 = 756 

Be050 = Lh100km = Lv0500m = NLVAR. 757 

Fig. 9. RMSE of temperature at 1.5-m AGL against surface observations (K) in July 2–15, 758 

2020 of CNTL, M100, M060, and M020 and (b–f) the difference from that of CNTL (b: 759 

M100–020, c: Be025–100, d: Lh025–200km, e: Lv0250–2000m, f: LVAR and NLVAR) in 760 

each forecast time (h). The error bar indicates a 95% confidence interval estimated with the 761 

bootstrap method (1000 samples). Note that M100 = Be050 = Lh100km = Lv0500m = 762 

NLVAR. 763 

Fig. 10. As in Fig. 9, but the RMSE of specific humidity at 1.5-m AGL verified against 764 

surface observations (g kg–1). 765 

Fig. 11. As in Fig. 9, but the ETS of precipitation at each threshold verified against R/A 766 

(mm h–1). 767 
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Fig. 12. Forecasts of 3-hour accumulated precipitation amount (mm) in (a) CNTL, (b) 768 

M020, (c) M060, (d) M100, and (e) Be100 (initial time: 12 UTC on July 3, 2020) and (f) 769 

Radar/Raingauge-Analyzed Precipitation for 18–21 UTC on July 3, 2020. Blue contours 770 

indicate Radar/Raingauge-Analyzed Precipitation of 100 mm. 771 

Fig. 13. Analysis increments of temperature at 1.5-m AGL (color, K) and horizontal wind 772 

at 10-m AGL (arrows, m s–1) in first (hybrid) 3DVar (09 UTC) for creating the analysis at 12 773 

UTC on July 3, 2020, in (a) CNTL, (b) M020, (c) M060, (d) M100, and (e) Be100 and (f) 774 

common first guess of these analyses. 775 

Fig. 14. Ensemble standard deviations of (a–c) 𝑥-component of horizontal wind at 10-m 776 

AGL (m s–1), (d–f) 𝑦-component of horizontal wind at 10-m AGL (m s–1), (g–i) temperature at 777 

1.5-m AGL (K) used in first (hybrid) 3DVar (09 UTC) for creating the analysis at 12 UTC on 778 

July 3, 2020 in (a,d,g) M020, (b,e,h) M060, and (c,f,i) M100. 779 

Fig. 15. As in Figs. 12a–e but for (a) Lh025km, (b) Lh200km, (c) Lv0250m, (d) Lv2000m, 780 

and (e) LVAR. 781 

Fig. 16. As in Figs. 13a–e but for (a) Lh025km, (b) Lh200km, (c) Lv0250m, (d) Lv2000m, 782 

and (e) LVAR. 783 

Fig. A1. Structure of vertical localization matrix (𝑒−1/2-folding scale: 0.5 km). 784 
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 786 

Fig. 1. Schematic illustration of the flow of Local Analysis [cited from Fig.2.7.2 in Japan 787 

Meteorological Agency (2022)]. LF1 denotes the 1-hour forecast. 788 
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 790 

Fig. 2. Vertical correlations of climatological BEC [a: 𝑥-component of horizontal wind; b: 𝑦-791 

component of horizontal wind; c: soil temperature (vertical levels: -9–-1), surface pressure 792 

(vertical levels: 0), and potential temperature; d: soil moisture (vertical levels: -1,0) and 793 

pseudo relative humidity]. 794 
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 796 

Fig. 3. Vertical profiles of horizontal correlation 𝑒−1/2 -folding scale of climatological 797 

background error covariance (red: 𝑥-component of horizontal wind; green: 𝑦-component of 798 

horizontal wind; blue: soil temperature, surface pressure, and potential temperature; light 799 

blue: soil moisture and pseudo relative humidity). Solid and dashed lines show the correlation 800 

scales in 𝑥- and 𝑦-directions, respectively. 801 

  802 
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 803 

Fig. 4. Vertical profiles of climatological (solid black lines) and ensemble-based (color lines) 804 

background error standard deviations before (dashed) and after (solid) covariance inflation [a: 805 

𝑥-component of horizontal wind (m s–1); b: 𝑦-component of horizontal wind (m s–1); c: soil 806 

temperature (K), surface pressure (hPa), and potential temperature (K); d: soil moisture 807 

(unitless) and pseudo relative humidity (unitless)]. Color lines show square root of time- and 808 

horizontal-averaged ensemble variances in all periods (January 11–21 and July 2–15, 2020) of 809 

M100 [forecast hours are 3 (red), 9 (green), 15 (blue), 21(pink), and 27 (light blue)]. Dashed 810 

black line shows the altitude of 5.5 km. 811 
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 813 

Fig. 5. (a) First guess and (b–f) analysis increment of 𝑥-component of horizontal wind (color, 814 

m s–1) and sea level pressure [contour, (a) 4 hPa and (b–f) 0.01 hPa intervals] in single-815 

observation experiments (b: pure 3DVar, c: 20-member hybrid 3DVar, d: 60-member hybrid 816 

3DVar, e: 20-member pure En3DVar, and f: 60-member pure En3DVar). 817 
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 819 

Fig. 6. Scorecards of the ETS of precipitation in each threshold verified against R/A and the 820 

RMSE verified against radiosonde and surface observations (Z500: geopotential height at 500 821 

hPa, T300–925: temperature at 300–925 hPa, MIXING300–925: water vapor mixing ratio at 822 

300–925 hPa, WIND300–925: wind speed at 300–925 hPa, PSEA: sea level pressure, T1.5m: 823 

temperature at 1.5-m AGL, QV1.5m: specific humidity at 1.5-m AGL, WINDS10m: wind 824 

speed at 10-m AGL, DSWB: surface downward shortwave radiation) in July 2–15, 2020 of (a) 825 

M020, (b) M060, and (c) M100. Each value is different from that in CNTL divided by half of 826 

95% confidence interval and shown hourly up to 10-hour forecast (T+10). Blue and red colors 827 

mean improvement (larger ETS or smaller RMSE) and degradation (smaller ETS or larger 828 

RMSE), respectively, in comparison to CNTL. Smaller and larger squares indicate 829 

significance values of 1.0 and 3.0, respectively. 830 
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 832 

Fig. 7. The distribution of surface observations assimilated in first 3DVar (09 UTC) for 833 

creating the analysis at 12 UTC on July 3, 2020 in CNTL (black plus sign: horizontal wind; 834 

blue multiplication sign: temperature; red circle: specific humidity). 835 
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 837 

Fig. 8. WRMSE for all (black bars), upper-air wind (red lines), upper-air temperature (blue 838 

lines), surface wind (pink lines), and surface temperature (light blue lines) observations 839 

assimilated in all periods (January 11–21 and July 2–15, 2020) of each experiment. Each is 840 

normalized by WRMSE of CNTL to show the improvement against CNTL. Note that M100 = 841 

Be050 = Lh100km = Lv0500m = NLVAR. 842 
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 844 

Fig. 9. RMSE of temperature at 1.5-m AGL against surface observations (K) in July 2–15, 845 

2020 of CNTL, M100, M060, and M020 and (b–f) the difference from that of CNTL (b: 846 

M100–020, c: Be025–100, d: Lh025–200km, e: Lv0250–2000m, f: LVAR and NLVAR) in 847 

each forecast time (h). The error bar indicates a 95% confidence interval estimated with the 848 

bootstrap method (1000 samples). Note that M100 = Be050 = Lh100km = Lv0500m = 849 

NLVAR. 850 
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 852 

Fig. 10. As in Fig. 9, but the RMSE of specific humidity at 1.5-m AGL verified against 853 

surface observations (g kg–1). 854 
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 856 

Fig. 11. As in Fig. 9, but the ETS of precipitation at each threshold verified against R/A (mm 857 

h–1). 858 
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 860 

Fig. 12. Forecasts of 3-hour accumulated precipitation amount (mm) in (a) CNTL, (b) M020, 861 

(c) M060, (d) M100, and (e) Be100 (initial time: 12 UTC on July 3, 2020) and (f) 862 

Radar/Raingauge-Analyzed Precipitation for 18–21 UTC on July 3, 2020. Blue contours 863 

indicate Radar/Raingauge-Analyzed Precipitation of 100 mm. 864 
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 866 

Fig. 13. Analysis increments of temperature at 1.5-m AGL (color, K) and horizontal wind at 867 

10-m AGL (arrows, m s–1) in first (hybrid) 3DVar (09 UTC) for creating the analysis at 12 868 

UTC on July 3, 2020 in (a) CNTL, (b) M020, (c) M060, (d) M100, and (e) Be100 and (f) 869 

common first guess of these analyses. 870 
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 872 

Fig. 14. Ensemble standard deviations of (a–c) 𝑥-component of horizontal wind at 10-m AGL 873 

(m s–1), (d–f) 𝑦-component of horizontal wind at 10-m AGL (m s–1), (g–i) temperature at 1.5-874 

m AGL (K) used in first (hybrid) 3DVar (09 UTC) for creating the analysis at 12 UTC on July 875 

3, 2020 in (a,d,g) M020, (b,e,h) M060, and (c,f,i) M100. 876 
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 878 

Fig. 15. As in Figs. 12a–e but for (a) Lh025km, (b) Lh200km, (c) Lv0250m, (d) Lv2000m, 879 

and (e) LVAR. 880 
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 882 

Fig. 16. As in Figs. 13a–e but for (a) Lh025km, (b) Lh200km, (c) Lv0250m, (d) Lv2000m, 883 

and (e) LVAR. 884 
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 886 

Fig. A1. Structure of vertical localization matrix (𝑒−1/2-folding scale: 0.5 km). 887 
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