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21 Abstract

22     The temperature profile is an important parameter of the atmospheric thermal state 

23 in atmospheric monitoring and weather forecasting. The hyperspectral infrared sounder 

24 of a geostationary satellite provides abundant spectral information and can retrieve the 

25 temperature profile. Based on the mediumwave channel data (independent variable and 

26 model input data) of FY-4A/GIIRS (geosynchronous interferometric infrared sounder) 

27 and ERA5 reanalysis data (dependent variable and model output data), the atmospheric 

28 temperature profile is retrieved by generalized ensemble learning. Firstly, the feature 

29 variables of the model are constructed. Because there are many GIIRS channels, a two-

30 step feature selection method is adopted: step 1—establish a blacklist of GIIRS 

31 channels; step 2—select feature variables by using the method of importance 

32 permutation. Secondly, they are integrated based on optimizing and adjusting the 

33 hyperparameters of three basic machine learning models (Random Forest, XGBoost 

34 and LightGBM). Generalized ensemble learning nonlinear convex optimization is used 

35 to optimize the weight of each basic model. Finally, based on high-frequency GIIRS 

36 observations of Typhoon Lekima and Typhoon Higos, testing and method evaluation 

37 of the temperature profile retrievals are carried out. The results show that LightGBM 

38 achieves the best retrieval result among the three basic models, followed by Random 

39 Forest and finally XGBoost. The root-mean-square error of the whole temperature 

40 profile in the training dataset of generalized ensemble learning is less than 0.3 K, while 
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41 that of the testing dataset is less than 1.4 K, and that between 150 and 925 hPa is less 

42 than 1 K. The retrieval results correlate well with the radiosonde temperature profile. 

43 The performance of generalized ensemble learning is better than the performances of 

44 the three basic models, but it depends on the retrieval results of LightGBM. In the 

45 Lekima experimental case, compared to other channels selected for temperature 

46 retrieval models, the importance of mediumwave channels 9 and 307 of GIIRS ranks 

47 first and second, respectively. The method in this paper provides a new solution and 

48 technical support for retrieving atmospheric parameters from hyperspectral and other 

49 satellite data.

50

51 Keywords  FY-4A/GIIRS; temperature profile retrieval; generalized ensemble 

52 learning; feature selection; hyperparameter and weight optimization

53

54 1. Introduction

55 Rainstorms have the characteristics of strong locality, obvious suddenness, and a 

56 short and concentrated precipitation period. They easily cause floods in a relatively 

57 short period of time, leading to mountain torrents, mud–rock flows, landslides, and 

58 other secondary meteorological disasters. The occurrence and development of a 

59 rainstorm is restricted by many factors, such as stratification instability, water vapor 

60 supply, and triggering via topographic uplift (Liu et al. 2019). Timely information on 

61 temperature and humidity profiles is essential for weather prediction (Lee et al. 2017), 

62 and such profiles, which are mainly used for numerical weather prediction and 
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63 disastrous-weather warnings (Menzel et al. 2018), can be obtained based on 

64 hyperspectral infrared observation data. The hyperspectral infrared detection 

65 instruments carried onboard polar orbiting meteorological satellites mainly include 

66 AIRS (Atmospheric Infrared Sounder), IASI (Infrared Atmospheric Sounding 

67 Interferometer), CrIS (Cross-Track Infrared Sounder), and HIRAS (Hyperspectral 

68 Infrared Atmospheric Sounder) (Li and Han 2017). 

69 China’s new generation geostationary meteorological satellite, FengYun-4A (FY-

70 4A), was successfully launched on 11 December 2016. The geostationary 

71 interferometric infrared sounder (GIIRS) that it carries is the world’s first hyperspectral 

72 infrared sounder loaded on a geostationary satellite. FY-4A/GIIRS has 1650 channels 

73 covering a spectral region of 700–2250 cm−1. GIIRS can remotely sense the vertical 

74 distribution of Earth’s temperature, humidity, and atmospheric composition in space, 

75 realize large-scale, rapid, and long-term observation, and provide data services for 

76 global and regional numerical weather forecasting (Yang et al. 2017).

77 At present, the atmospheric profile retrieval methods based on hyperspectral 

78 infrared data mainly include physical retrieval and statistical regression methods, as 

79 well as some related variants of both. Physical retrieval methods include one-

80 dimensional variational (1DVar) methods. Statistical methods include eigenvector, 

81 linear, and nonlinear methods—for example, artificial intelligence–based Random 

82 Forest models, convolutional neural networks (CNNs), and other methods. 

83 Regarding physical retrieval methods, Zhou et al. (2007) used a method based on 

84 hyperspectral infrared data to simultaneously retrieve surface, atmospheric 
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85 thermodynamic, and cloud microphysical parameters. Arai and Liang (2009) used a 

86 1DVar iteration technique based on optimal estimation theory to retrieve temperature 

87 profiles using AIRS data, for which the retrieved temperature error on and around the 

88 tropopause surface (80–200 hPa) was within 4 K. Jang et al. (2017) proposed a 1DVar 

89 method based on local physical a priori information to improve the accuracy of AIRS 

90 retrievals of temperature and humidity profiles. Zhu et al. (2020), based on 1DVar, 

91 concluded that the temperature retrieved by FY-3D/HIRAS was better than the 

92 background field profile, and the root-mean-square error (RMSE) of the temperature 

93 profile below 100 hPa was within 1.5 K. Xue et al. (2022) retrieved a tropospheric 

94 temperature RMSE within 2 K by using FY-4A/GIIRS mediumwave channel data 

95 based on 1DVar. However, due to the lack of temperature detection channels, the 

96 temperature RMSE retrieved from the upper atmosphere was relatively large.

97 Regarding linear statistical regression methods, Smith et al. (2012), based on the 

98 double regression method, retrieved atmospheric profile, surface temperature, and 

99 cloud parameters by using AIRS data, and the international MODIS/AIRS 

100 preprocessing package known as IMAPP (International MODIS/AIRS Processing 

101 Package) was formed. Zhang et al. (2014) used AIRS data based on eigenvector 

102 statistical regression to retrieve atmospheric temperature and humidity profiles in China. 

103 Zhang et al. (2016) proposed a new L-curve regularization parameter selection method, 

104 which used AIRS data to retrieve atmospheric temperature and humidity profiles based 

105 on statistical methods. Compared with the original L-curve method, the new method 

106 improved the retrieval accuracy.
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107 Compared with 1DVar, the advantages of linear statistical regression for 

108 atmospheric profile retrievals include high computational efficiency, stable retrieval 

109 (for example, 1DVar algorithms may fail in iterative convergence), and independence 

110 from radiative transfer models. However, the main drawback of linear statistical 

111 methods is that they cannot represent the nonlinear relationship between satellite data 

112 and atmospheric profiles. 

113 The essence of artificial intelligence in retrieving atmospheric profiles is also a 

114 statistical regression method (Malmgren-Hansen et al. 2019). Cai et al. (2020) used an 

115 artificial neural network to retrieve atmospheric temperature and humidity profiles from 

116 FY-4A/GIIRS data and ERA5 data, which obtained good retrieval accuracy. Huang et 

117 al. (2021) proposed a temperature retrieval method based on GIIRS observation data, 

118 which combined a neural network with 1DVar. The key is to introduce a neural network 

119 to revise the satellite observation data. The RMSE of the temperature profile retrieved 

120 by this method between the 10 hPa and 600 hPa pressure layers was smaller than that 

121 of the official GIIRS product. Malmgren-Hansen et al. (2019) proposed the use of 

122 CNNs to retrieve atmospheric profiles from IASI observation data. CNNs have better 

123 retrieval accuracy than linear regression methods in predicting cloud profiles. In 

124 addition to temperature profile retrieval, based on machine learning modeling, Ma et 

125 al. (2021) found that four-dimensional wind fields can also be derived from FY-

126 4A/GIIRS data, which were able to provide dynamic information during Typhoon 

127 Maria. Filipe et al. (2021) used CNNs for sea surface temperature retrieval, with an 

128 error within 0.3 K. 

Page 8 of 69For Peer Review



7

129 With regard to the application of FY-4A/GIIRS official temperature profile 

130 products, Maier and Knuteson (2022) found on the basis of a case study that GIIRS 

131 profile products can capture the rapid transition from stable to unstable atmosphere. 

132 Gao et al. (2022) adopted an FY-4A/GIIRS temperature profile product and found that 

133 it could diagnose the winter precipitation types in South China and monitor the 

134 development of weather. 

135 Most of the above studies on artificial intelligence–based retrievals of temperature 

136 profiles were based on a single model. However, a single model may yield results with 

137 a low level of accuracy (Feng et al. 2022) owing to the influence of various factors such 

138 as the feature space, model size, and selection of hyperparameters. In addition, there is 

139 evidence that a single model can perform better through model integration (i.e., 

140 amalgamation to reduce bias, variance, or both) (Dietterich 2000). By integrating 

141 multiple basic machine learning models, more information on the underlying structure 

142 of data can be obtained (Brown et al. 2005). Li et al. (2020) improved the estimation of 

143 soil thickness based on multiple environmental variables using so-called stacking 

144 ensemble methods. Feng et al. (2022) constructed a hybrid learning model by using the 

145 Random Forest model with “Bagging” and LightGBM with “Boosting” as the basic 

146 learners. Compared with the single model, the hybrid learning model improved the 

147 accuracy of satellite estimations of surface PM2.5 concentrations.

148 In this paper, we use generalized ensemble learning on three basic models 

149 (Random Forest, XGBoost, and LightGBM) (Li et al. 2020). The ensemble method is 

150 used to retrieve the atmospheric temperature profile from the high-frequency data of 
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151 the FY-4A/GIIRS mediumwave channel to explore the feasibility of the method. It is 

152 divided into three steps: (1) building model feature variables, which mainly involves 

153 feature selection of the FY-4A/GIIRS data; (2) construction of the generalized 

154 ensemble learning model to retrieve the temperature profile, within which, based on 

155 optimizing and adjusting the hyperparameters of each model, the optimal weight of the 

156 model is realized; and (3) testing and evaluation of the temperature profile retrieval. 

157 The retrieval accuracies of generalized ensemble learning and the three basic models 

158 are compared to each other, as well as with that of radiosonde data.

159 This rest of the paper is organized as follows: Section 2 introduces the methods 

160 used in this paper, including the basic machine learning model, generalized ensemble 

161 learning method, permutation importance method, and model accuracy evaluation 

162 method; Section 3 introduces the data and pretreatment methods used in the experiment; 

163 Section 4 introduces the FY-4A/GIIRS retrieval atmospheric temperature profile 

164 experiment; and finally, Section 5 summarizes the main conclusions and outlines some 

165 future prospects for further research in this field.

166

167 2.  Methods

168 2.1 Basic framework for retrieving atmospheric profiles from satellite data

169 The electromagnetic waves emitted by the Sun or the object itself is affected by 

170 the absorption, scattering, and emission of atmospheric molecules in the process of 

171 radiative transmission, which ultimately reaches the sensor. Because the energy 

172 received by the sensor is affected by the atmosphere, it is possible to retrieve the 
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173 atmospheric parameters. The process of deriving atmospheric parameters from satellite 

174 observation data is called retrieval, also known as the mathematical inverse problem.

175 In order to describe the mathematical inverse problem, suppose that  is the 𝑥

176 atmospheric target parameter to be retrieved at a certain field of view (FOV) (in this 

177 paper, it represents the n-layers temperature profile), and  is the sensor observation 𝑦

178 value, then the forward relationship is as follows (Wang et al. 2021): 

179 ,                                                   (1)𝑦 = 𝐹(𝑥) +𝑣

180 where  represents a forward model. In this paper, the forward model represents 𝐹:𝑥→𝑦

181 the radiative transmission process of energy, and the radiation value of the satellite 

182 channel is obtained. The radiation value can be converted into the brightness 

183 temperature of the satellite channel through the Planck function (Yin et al. 2020). 𝑣 ∈

184  is the observation error.ℜ𝑛𝑐

185 Based on the expression method of Wang et al. (2021), Formula (1) is further 

186 approximated as

187 .                                                        (2)𝑦 ≈ 𝐹(𝑥)

188 Assuming  is reversible, the simplified basic framework for retrieval of the 𝐹

189 atmospheric profile from satellite data is as follows:

190 .                                                       (3)𝑥 ≈ 𝐹 ―1(𝑦)

191 In the actual retrieval process, due to different parameterization methods for , 𝐹 ―1

192 the retrieval methods are also different. These can be broadly divided into three 

193 categories: physical retrieval, statistical regression retrieval, and variants of related 

194 methods.
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195  in this paper adopts the three basic models (Random Forest, XGBoost, 𝐹 ―1

196 LightGBM) and the generalized ensemble learning model of these three models, 

197 respectively, to analyze the feasibility of such methods to retrieve atmospheric profiles.

198

199 2.2 Random Forest

200 Random Forest is an ensemble of algorithms based on a classification and 

201 regression tree methodology (Breiman 2001). It is a commonly used data mining 

202 method in retrieving atmospheric parameters from satellite data (Lee et al. 2019). Each 

203 independent tree in the Random Forest is created from a randomly selected subset of 

204 training samples and input variables. For a regression problem, the results of multiple 

205 independent trees are averaged to generate the Random Forest output. Random Forest 

206 has two basic model hyperparameters that need to be adjusted: the number of trees 

207 (n_estimators) and the maximum depth of trees (max_depth). The default values are 

208 used to set other different hyperparameters. In order to find the optimal or suboptimal 

209 combination of the two hyperparameters, hyperparameter optimization is carried out 

210 based on the mean square error (MSE).

211

212 2.3 XGBoost and LightGBM

213 Gradient Boosting is a tree based on the ensemble method, which combines weak 

214 models for prediction. Two relatively new and fast Gradient Boosting methods are 

215 adopted in this paper—namely, XGBoost (eXtreme Gradient Boosting) and LightGBM 

216 (Light Gradient Boosting Machine).
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217 XGBoost is an improved algorithm based on a gradient enhanced decision tree, 

218 which can effectively construct an enhanced tree and run parallel computing (Lee et al. 

219 2019). Compared with the traditional Gradient Boosting Decision Tree algorithm, 

220 which only uses the information of the first derivative, XGBoost performs a second-

221 order Taylor expansion of the loss function and provides greater efficiency in solving 

222 the optimal solution. The basic hyperparameters of the XGBoost model in this paper 

223 are n_estimators (which represents the number of trees), max_Depth (which indicates 

224 the maximum depth of the tree), gamma (which represents the minimum loss reduction 

225 required for further partitioning at the leaf node of the tree), and learning_rate (which 

226 indicates the subsampling rate of the column when constructing each tree). These four 

227 basic hyperparameters are optimized based on the MSE.

228 Compared with XGBoost, the LightGBM (Ke et al. 2017) method proposed by 

229 Microsoft offers improved performance and computation time. The main techniques 

230 are as follows: (1) gradient-based unilateral sampling, which is helpful for selecting the 

231 observed value with the largest amount of information; and (2) Exclusive Feature 

232 Binding, which takes advantage of the sparseness of high-dimensional data. The 

233 sparsity of this feature space makes it possible for the high-dmensional data to be nearly 

234 dimensionally reduced without loss. Therefore, it is possible that the LightGBM 

235 method is more suitable for hyperspectral infrared multi-channel data. The basic 

236 hyperparameters of the LightGBM model in this paper are learning rate (learning_rate), 

237 maximum number of leaves per tree (num_leaves), and number of trees (n_estimators). 

238 In this paper, these hyperparameters are optimized based on the MSE.
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239

240 2.4 Generalized ensemble learning

241 Generalized ensemble learning, or an integrated model with good performance, 

242 requires that the basic model shows a certain degree of “diversity” in estimation or 

243 prediction, and at the same time possesses a high degree of accuracy (Brown et al. 2005). 

244 It is assumed that the hyperparameters of each basic model have been tuned before 

245 generalized ensemble learning is executed. The prediction made with the optimized 

246 model will be used as the input of the generalized ensemble learning optimization 

247 model to find the optimal integration weight of different basic models. Based on the 

248 optimization model proposed by Krogh and Vedelsb (1995), Shahhosseini et al. (2022) 

249 and Feng et al. (2022), a generalized ensemble learning model for retrieving 

250 atmospheric temperature profiles from satellite data is constructed.

251 The input data of the basic model in this paper is the brightness temperature  of 𝑦

252 the mediumwave channel in FY-4A/GIIRS (marked as the feature variable or model 

253 independent variable), and the output data of the model is the temperature profile  𝑥

254 (model dependent variable), as shown in Formula (3). Generalized ensemble learning 

255 nonlinear convex optimization is used to find the optimal ensemble weight for the 

256 temperature retrieval of the composite basic model.

257 The objective minimization function of generalized ensemble learning nonlinear 

258 convex optimization is defined as follows:
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259 ,                                    (4){𝑚𝑖𝑛 {1
𝑛∑𝑛

𝑖 = 1(𝑥𝑖 ― ∑𝑘
𝑗 = 1𝑤𝑗

∧
𝑥 𝑖𝑗)

2}
∑𝑘

𝑗 = 1𝑤𝑗 = 1
𝑤𝑗 ≥ 0,∀𝑗 = 1,2,...,𝑘

260 where  is the ensemble weight corresponding to the basic model ,  is the total 𝑤𝑗 𝑗 𝑛

261 number of atmospheric temperature profiles,  is the actual value of the value  to 𝑥𝑖 𝑖

262 be inverted, and  is the estimate of the retrieval value  of the basic model . 
∧
𝑥 𝑖𝑗 𝑖 𝑗

263 Although the tree-based algorithm model is simple, it can solve linear and 

264 nonlinear modeling problems. Due to the different principles of different models, the 

265 accuracy of prediction results varies among different machine learning models. The 

266 basic models and ensemble learning model in this paper are implemented by the pytorch 

267 and scikit learning packages. Ensemble learning uses the sequential least-squares 

268 programming algorithm in Python’s Scipy optimization library to solve constrained 

269 optimization problems (João et al. 2021).

270

271 2.5 Variable selection and permutation importance method

272 Variable selection is essential to reduce data dimensionality and extract more 

273 informative features before model development. Variable selection is one of the most 

274 important steps in machine learning modeling. It can reduce the number of prediction 

275 variables to several important ones, making the model easier to explain. The 

276 contributions of some variables to the model may not be so important, or they may 

277 reduce the overall performance of the model, so it is necessary to analyze the 

278 importance of variable features.
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279 According to Strobl et al. (2007), when the independent variables of the model 

280 have different measurement scales or different categories, the default variable 

281 importance measurement of random forests may not be reliable. In order to overcome 

282 this problem and find more important input variable features, this paper uses the 

283 research results of Altmann et al. (2010) for reference, and employs the permutation 

284 importance method to calculate the feature importance of the three basic models.

285 It should be noted that, owing to the black box nature of the generalized ensemble 

286 learning model, only basic models are used to calculate the feature importance.

287

288 2.6 Model accuracy evaluation method

289 Pearson’s correlation coefficient (CC), the root-mean-square error (RMSE), and 

290 the mean absolute error (MAE) are used as the criteria for accuracy evaluation, with 

291 particular attention paid to the RMSE. It is generally believed that the smaller the 

292 RMSE is between the retrieval temperature profile and the real temperature profile, the 

293 higher the degree of accuracy is of the retrieval method.

294 The formula for Pearson’s correlation coefficient is

295 ;                                        (5)CC =
∑𝑚

𝑘 = 1(𝑆𝑘 ―
―
𝑆 )(𝑅𝑘 ―

―
𝑅)

∑𝑚
𝑘 = 1(𝑆𝑘 ―

―
𝑆 )

2
∑𝑚

𝑘 = 1(𝑅𝑘 ―
―
𝑅)

2

296 the RMSE formula is

297 ;                                          (6)RMSE =
1
𝑚∑𝑚

𝑘 = 1(𝑆𝑘 ― 𝑅𝑘)2

298 and the MAE formula is

299 ,                                              (7)MAE =
1
𝑚∑𝑚

𝑘 = 1|𝑆𝑘 ― 𝑅𝑘|
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300 where  is the total number of matched samples,  is the temperature profile 𝑚 𝑆𝑘

301 retrieved from FY-4A/GIIRS data,  represents the ERA5 or radiosonde temperature 𝑅𝑘

302 profile, and  and  represent their average values, respectively.
―
𝑆

―
𝑅

303

304 3. Data and preprocessing

305 In this paper, the mediumwave channel brightness temperature of FY-4A/GIIRS 

306 (model-independent variable) and ERA5 temperature profile data (model-dependent 

307 variable) are used as the input and output data of the basic and ensemble models.

308 3.1 FY-4A/GIIRS data

309 FY-4A/GIIRS is the first hyperspectral infrared atmospheric vertical sounder 

310 carried by a geostationary meteorological satellite. The GIIRS on-orbit spatial 

311 resolution is 16 km. Each detector of GIIRS has 32×4 sensor elements to form the pixel 

312 array of 32×4. A total of 1650 channels of GIIRS cover a spectral region of 700–2250 

313 cm−1. There are 689 longwave channels and 961 mediumwave channels. The 

314 atmospheric temperature and humidity profiles retrieved by GIIRS can provide large-

315 scale, continuous, and fast remote sensing information for weather forecasts. For a 

316 detailed introduction to GIIRS, readers can refer to Yang et al. (2017) and Yin et al. 

317 (2020). The FY-4A/GIIRS data used in this paper are from the official website of the 

318 National Satellite Meteorological Center.

319 3.2 Cloud detection products

320 The Advanced Geosynchronous Radiation Imager (AGRI) of the FY4-A satellite 

321 provides a full-disk cloud detection product (Cloud Mask, or CLM for short) with a 
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322 resolution of 4 km (Min et al. 2017). This cloud detection product is used to identify 

323 FY-4A/GIIRS clear-sky and cloudy FOVs.

324 3.3 ERA5 and FNL data

325 The ERA5 data are from the official website of the European Center for Medium-

326 range Weather Forecasts (ECMWF) (Zhu et al. 2023). The data (reanalysis-era5-

327 pressure-levels) were downloaded through a Python script. The experiment used ERA5 

328 hourly data, including 37 layers of atmospheric pressure and temperature. Only the 

329 temperature profiles of ERA5 are used as labels for the retrieval algorithm in this paper. 

330 The other parameters of ERA5 are not used in the retrieval algorithm, including as input 

331 data for the algorithm. The ERA5 temperature profile is also used as reference standard 

332 data for the model.

333 The Final Global Data Assimilation System (FNL) data of the National Centers 

334 for Environmental Prediction (NCEP) are used to establish the GIIRS channel blacklist 

335 in this paper (Noh et al. 2017).

336 3.4 Radiosonde data

337 The radiosonde temperature profile data are taken as the true value for verifying 

338 the accuracy of some of the experiments in this paper. The radiosonde data come from 

339 the China Integrated Meteorological Information Service System.

340 3.5 Data preprocessing and experimental data

341 3.5.1 Data preprocessing

342 In the temperature profile retrieval experiment, it is necessary to preprocess the 

343 data to improve their quality. The hamming apodization function (Di et al. 2018) with 
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344 a three-point filter (0.23, 0.54 and 0.23) of the running mean is used to process the FY-

345 4A/GIIRS observation data (Yin et al. 2020). Furthermore, the CLM of FY-4A/AGRI 

346 is matched to GIIRS FOV points by an interpolation method to judge the FOV cloud 

347 amount information of the GIIRS FOV. For more information on interpolation methods, 

348 readers can refer to Yin et al. (2020) and Zhang et al. (2019).

349 The FY-4A/GIIRS and ERA5 temperature data are synchronized in time and space 

350 through interpolation. So as not to introduce other errors, the layer of ERA5 is taken as 

351 the benchmark in constructing the samples of the machine learning model. The ERA5 

352 temperature profile comprises 37 layers from 1 hPa in the upper part to 1000 hPa near 

353 the ground.

354 To unify the data, the radiosonde temperature profile is interpolated to the 37 

355 pressure layers of ERA5.

356

357 3.5.2 Experimental data

358 Compared with other similar instruments, FY-4A/GIIRS has higher temporal 

359 resolution. In a short time, GIIRS can provide a large number of observation data in the 

360 same area, which is highly suitable for training machine learning models (Huang et al. 

361 2021). To better monitor the development of typhoons, the China Meteorological 

362 Administration conducted FY-4A/GIIRS high-frequency observations in a designated 

363 area during the lifetimes of Typhoon Lekima (international code: 1909) and Typhoon 

364 Higos (international code: 2007). The high-frequency data here provide a data source 

365 for the study of temperature profile retrieval in this paper. FY-4A/GIIRS can fully cover 
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366 the specified area every 30 min (shown in Fig. 1), so the sample data volume is feasible 

367 for researching the algorithm’s application in this paper.

368 In 2019, Typhoon Lekima landed in China, causing 14.024 million people in 

369 Zhejiang, Jiangsu, Anhui, and other regions to be affected, with a direct economic loss 

370 totaling 51.53 billion RMB. The time period of the research materials in this paper is 

371 from 2000 UTC 8 August 2019 to 1100 UTC 10 August 2019, which is the time period 

372 for high-frequency observation of Lekima. The data cover the region (12.8°–49.1°N, 

373 98.1°–160.4°E). The data period to further verify the effectiveness of the algorithm is 

374 from 1200 UTC 18 August 2020 to 1200 UTC 19 August 2020. This is the time period 

375 for high-frequency observation of Higos. The coverage area is roughly (7.0°–33.5°N, 

376 98.5°–136.0°E). The trained parameters of the Lekima case are used as the basis for 

377 retrieving the temperature profile from GIIRS data during the Higos period, and then 

378 the current model is updated with the latest data. 

379 Figure 1 shows the coverage of the GIIRS high-frequency observation area during 

380 the periods of Lekima and Higos. The color shading in Fig. 1a denotes the brightness 

381 temperature distribution observed by GIIRS channel 1029 at 0000 UTC 10 August 2019. 

382 Similarly, the color shading in Fig. 1b denotes the brightness temperature distribution 

383 observed by GIIRS channel 1029 at 0000 UTC 19 August 2020. The magenta line in 

384 the figure shows the track of typhoon movement.

385

386 4. FY-4A/GIIRS retrieval of atmospheric temperature profile experiment

387 The main purpose of this study is to verify the advantages and feasibility of 
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388 generalized ensemble learning for temperature profile retrieval. There are two main 

389 steps for developing the training and testing datasets for retrieval models (Zhu et al. 

390 2023): the first step is to form spatiotemporally matched FY-4A/GIIRS (model input) 

391 and ERA5 (model output) datasets; and in the second step, the matched dataset is 

392 randomly divided into training (80% of the samples) and testing (20% of the samples) 

393 datasets. The training and testing datasets cover the spatial and temporal variations 

394 during the typhoon period, and the training has a certain representativeness in this 

395 situation. The training dataset is used for model training and hyperparameter 

396 optimization. The testing dataset is used to independently evaluate the algorithm’s 

397 performance (Zhu et al. 2023). 

398 This paper refers to previous methods, such as that of Cai et al. (2020) based on 

399 4018 training samples and 2678 test samples, to test the network and verify the retrieval 

400 accuracy of the model, and Malmgren-Hansen et al. (2019) to retrieve temperature 

401 profiles based on one-day IASI data. The aim of this paper is to reverse the atmospheric 

402 temperature profiles during Typhoon Lekima and Higos (international code: 1909 and 

403 2007, respectively). 

404 We have done three separate training and testing experiments using three datasets: 

405 clear-sky FOVs of Lekima, clear-sky FOVs of Higos, and all-sky FOVs of Higos. 80% 

406 of the total sample number is used for training and hyperparameter optimization of 

407 Random Forest and the other models. The remaining 20% is used for independent 

408 testing and validation (sections 4.4, 4.5.1 and 4.5.2). Lekima’s clear-sky FOVs during 

409 0000–1500 UTC 9 August 2019 are selected, with a total sample number of 24159. The 

Page 21 of 69 For Peer Review



20

410 data coverage area is approximately (12.8°–49.1°N, 98.1°–160.4°E). The optimized 

411 parameter results obtained in this part are further used to retrieve the temperature profile 

412 at 0000 UTC 10 August 2019. The retrieval results at this time are compared with the 

413 radiosonde data (section 4.5.3). Considering that there are some regional overlaps 

414 between Lekima and Higos (shown in Fig. 1), the hyperparameter combination 

415 optimized in this part will be taken as the basic setting used to study the GIIRS retrieval 

416 temperature profile during Higos.

417 The clear-sky FOV data (21462 FOVs) of the Higos case are used as the total 

418 sample, with the data period being 1900 UTC 18 August 2020 to 0900 UTC 19 August 

419 2020, and the coverage area (7.0°–33.5°N, 98.5°–136.0°E) (section 4.6.1). Further, 

420 Higos’ all-sky FOVs (clear-sky and cloudy FOVs) temperature retrieval is conducted. 

421 To save on computational resources, the total sample size for the all-sky FOVs data in 

422 this paper is 25600 (section 4.6.2).  The all-sky FOVs data are collected on 0000 UTC 

423 19 August 2020, and cover the area (7.0°–33.5°N, 98.5°–136.0°E).

424 It should be noted that establishing a representative training dataset is crucial for 

425 the application of machine learning models. Due to limited computing resources, the 

426 model in this study only uses limited data for training. Therefore, it may be suitable for 

427 all-sky FOV temperature retrievals of this type of typhoon, but its accuracy may 

428 decrease when applied to another typhoon situation. When using machine learning for 

429 retrieval, caution should be exercised as it strongly relies on the representativeness of 

430 the training dataset. Therefore, the key to establishing a trustworthy model is to develop 

431 a training dataset that covers all weather conditions.
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432

433 4.1 Flow of temperature profile retrieval by generalized ensemble learning

434 Figure 2 shows the logical relationship framework and flow chart of the 

435 generalized ensemble learning retrieval of the temperature profile in this paper.

436

437 4.2 Why are feature variables selected?

438 The main reasons are:

439 (1) The features of hyperspectral infrared data. The optimal selection of 

440 hyperspectral channels is critical in satellite data assimilation and numerical model 

441 applications (Coopmann et al. 2022). When using hyperspectral data to retrieve 

442 atmospheric profiles, the increase in computing resources due to high-dimensional 

443 inputs and outputs may lead to a dimensionality-related disaster. There may be 

444 redundant information between different channels of GIIRS, especially the channels 

445 with close peak levels of channel weighting functions.

446 (2) Requirements of the adopted machine learning model. Because the dataset used 

447 has a large number of input variables, it is easy for overfitting to be caused in the 

448 training process of the model (such as Random Forest), so feature selection is necessary 

449 to establish a scalable machine learning model.

450 The purpose of the FY-4A/GIIRS feature variable selection in this paper is to 

451 select better input variables to be included in the employed model and reduce the 

452 dimensionality of the dataset. There are two steps: (1) establish the GIIRS channel 

453 blacklist; (2) use the permutation importance method to select the more important 

Page 23 of 69 For Peer Review



22

454 feature variables.

455

456 4.3 Establishment of the GIIRS channel blacklist

457 Referring to the universal steps of optimal selection of hyperspectral infrared 

458 detector channels, this paper has two steps: first, establish the channel blacklist; and 

459 second, adopt relevant methods (such as entropy reduction) in the remaining channels 

460 for optimal channel selection (Noh et al. 2017; Coopmann et al. 2022). The steps to 

461 establish the FY-4A/GIIRS mediumwave channel blacklist are as follows:

462 (1) Remove the channels with large instrument noise. Based on the mean and 

463 standard deviation of brightness temperature bias of mediumwave channels in FY-

464 4A/GIIRS, the channels with large noise are eliminated by combining the channel 

465 signal-to-noise ratio.

466 (2) Eliminate the channels with large simulation error of the radiative transfer 

467 model. Simulation error is defined as the difference between the observed brightness 

468 temperature and the simulated brightness temperature.

469 (3) Considering that it is difficult to determine the surface emissivity, “some 

470 channels” where the peak value of the weighting function is located on the surface are 

471 eliminated. Here, “some channels” are only part of the channel blacklist.

472 In the establishment of the GIIRS channel blacklist, the FNL data are used as the 

473 background field profile of the GIIRS brightness temperature simulation. In this paper, 

474 a fast radiative transfer model called RTTOV (Radiative Transfer for the TIROS 

475 Operational Vertical Sounder) (Saunders et al. 2018) is used to simulate the FY-
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476 4A/GIIRS brightness temperature.

477 Figure 3 shows the distribution of 961 channels, the channel blacklist, and the 

478 reserved channels for feature variable selection in FY-4A/GIIRS. The ordinate is the 

479 simulated brightness temperature of the GIIRS channels obtained by simulating the 

480 midlatitude summer profile with RTTOV.

481 The formula used for the relationship between the wavenumber and mediumwave 

482 channel number of FY-4A/GIIRS in Fig. 3 is as follows:

483 ,                          (8)                                     𝑊𝑁𝑖 = 1650 + (𝑖 ― 1) × 0.625

484 where   is the wavenumber of channel number . The wavenumber of channel 1 𝑊𝑁𝑖 𝑖

485 is 1650 cm−1; the wavenumber of channel 2 is 1650.625 cm−1; and so on. The 

486 relationship is also applicable to Fig. 4.

487

488 4.4 Selection of feature variables based on permutation importance

489 The first step of feature variable selection is based on the establishment of a 

490 channel blacklist for GIIRS. On the basis of obtaining the optimal or suboptimal 

491 combination of the hyperparameters of the basic models, the importance of the feature 

492 variables is calculated by using the permutation feature importance method. The 

493 importance of permutation features is measured by calculating the reduction in model 

494 prediction error when each feature is unavailable (Breiman et al. 2001). To make a 

495 feature unavailable, it is replaced in the testing or verification set and the impact of this 

496 permutation on the prediction accuracy is measured. In other words, if the model error 

497 is increased after the permutation, the permutation feature is considered important, 
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498 because the model depends on this feature for prediction. If the prediction error is not 

499 significantly changed after the permutation, this feature is considered unimportant, 

500 because the model ignores it during its prediction. 

501 Figure 4 shows the importance ranking of the first 100 variables of Random Forest, 

502 the first 37 variables of XGBoost (the 38th and subsequent values are almost 0 in 

503 XGBoost), and the first 25 variables of LightGBM, based on GIIRS data during the 

504 Lekima case. The weighting function distribution of mediumwave channels 9 and 307 

505 in GIIRS is further given. The weighting function is obtained by calculating the 

506 midlatitude summer profile through the RTTOV model (Saunders et al. 2018).

507 It can be seen from Fig. 4 that, in this case, the brightness temperature of the 

508 mediumwave channels in GIIRS is different in the different basic models (Random 

509 Forest, XGBoost, and LightGBM). This may also prove the “diversity” of the 

510 requirements of generalized ensemble learning. 

511 Among the feature variable combinations formed by the three basic models, the 

512 importance of mediumwave channels 9 and 307 of GIIRS ranks first and second, 

513 respectively. In the specific retrieval of temperature profiles, not only are the data from 

514 these two channels used, but the channel combination data are also used dynamically 

515 (Coopmann et al. 2022). The peak values of the weighting function of channels 9 and 

516 307 are 267.10 hPa and 490.65 hPa, respectively. Note that the weighting function here 

517 is not normalized and is only for display.

518

519 4.5 Model hyperparameter optimization and temperature profile retrieval experiment: 
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520 Lekima case

521 Based on the FY-4A/GIIRS mediumwave channel clear-sky data and ERA5 data, 

522 the accuracy of retrieving atmospheric temperature profiles from generalized ensemble 

523 learning and basic models (Random Forest, XGBoost, and LightGBM) is compared and 

524 analyzed.

525 In Random Forest, XGBoost, and LightGBM, different combinations of 

526 hyperparameters will lead to large differences in the prediction performance of the 

527 models, so it is necessary to optimize their hyperparameters. In addition, the generalized 

528 ensemble learning is carried out after the hyperparameters have been optimized and 

529 adjustment of the basic models has been completed. The following subsection takes 

530 Random Forest as an example to analyze the temperature RMSE and MAE of different 

531 hyperparameter combinations. This scheme can serve as a reference for the other 

532 models.

533

534 4.5.1 Hyperparameter optimization experiment with Random Forest

535 Figure 5 shows the vertical distribution of RMSE and MAE for the temperature 

536 retrieval of the training and testing datasets under different parameter combinations of 

537 Random Forests. The unit is K. We select the parameter combination of n_estimators 

538 (10, 20, 30, and 40) and max_depth (5, 10, 15 and 20) for test verification; and to better 

539 show the retrieval accuracy of different parameter combinations, only some of the 

540 results are presented in Fig. 5. The data period is 0000–1500 UTC 9 August 2019.

541 It can be seen from Fig. 5 that, under different combinations of n_estimators and 
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542 max_depth, the RMSE and MAE show basically the same variation error curve. 

543 Compared with other hyperparameter combinations, the temperature profile retrieval 

544 result is best when n_estimators is 40 and max_depth is 20 (marked as “40-20”). In the 

545 training sample prediction of 40-20, the MAE of the whole profile (37 layers) calculated 

546 from the temperature profile is less than 0.41 K, and the RMSE is less than 0.6 K. In 

547 the independent test verification sample prediction of 40-20, the MAE of the 

548 temperature profile retrieval is less than 0.93 K, the RMSE is less than 1.33 K, and the 

549 RMSE between 150 and 875 hPa is less than 1 K. The reason for the large RMSE of 

550 the upper and lower layers may be that the upper and some near-surface channels are 

551 deleted from the blacklist of feature selection channels. In addition, near the surface at 

552 about 1000 hPa, the radiation received by the satellite comes not only from the surface 

553 atmosphere but also from infrared radiation from the Earth’s surface. Retrieval near the 

554 surface is affected by relatively more factors, which may lead to insufficient learning 

555 of the model in this part, resulting in relatively low retrieval accuracy (Cai et al. 2020).

556 Because different samples and different models can obtain different results, it is 

557 impossible to directly compare the results in this paper quantitatively with the 

558 temperature retrieval results from other matched or similar hyperspectral data. For 

559 example, Malmgren-Hansen et al. (2019) used CNNs to obtain a temperature profile 

560 RMSE within 1.94 K based on IASI data. The average error of the FY-4A/GIIRS 

561 retrieval temperature profile obtained by Huang et al. (2021) was within 2 K. Xue et al. 

562 (2022) obtained a tropospheric temperature retrieval RMSE within 2 K based on 1DVar. 

563 Compared with the quantitative results of these studies, in this paper, Random Forest 
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564 also obtained good retrieval results.

565

566 4.5.2 Temperature profile retrieval experiment based on different models

567 In this paper, we refer to the Random Forest parameter optimization method to 

568 optimize the other models’ parameters. Considering the timeliness, n_estimators in 

569 Random Forest is set to 20. In addition, together with the computing resource costs, 

570 Table 1 shows the parameter combinations of the basic models (Random Forest, 

571 XGBoost, LightGBM) in this paper. A hyphen (-) means the absence of the parameter 

572 or it is not within the scope of hyperparameter optimization considered in this paper.

573 On the basis of the hyperparameter optimization of the basic models, Fig. 6 

574 compares the accuracies of the temperature profile retrievals of the basic models and 

575 the generalized ensemble learning model in the Lekima’s clear-sky FOVs. The dashed 

576 straight lines in Fig. 6 indicate 0.3 K and 1 K in the training and testing sets, respectively.

577 It can be seen from Fig. 6 that the three basic models achieve good results. 

578 LightGBM has the best temperature profile retrieval effect, followed by Random Forest, 

579 and finally XGBoost. In the training samples (Fig. 6a), the RMSE of different 

580 atmospheric pressure layer temperatures obtained from Random Forest is less than 

581 0.632 K, while that of XGBoost is less than 0.506 K, that of LightGBM is less than 

582 0.270 K, and that of the generalized ensemble learning model is less than 0.253 K. The 

583 maximum values of RMSE in the vertical layers of the models in the testing dataset 

584 (Fig. 6b) are 1.364 K (Random Forest), 1.523 K (XGBoost), 1.358 K (LightGBM), and 

585 1.267 K (GEL), respectively, which is mainly because the RMSEs of the upper layers 
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586 (1 hPa, 2 hPa, 3 hPa, 5 hPa) and near-surface layers (950 hPa, 975 hPa, 1000 hPa) are 

587 large. In addition, apart from the RMSEs at 100 hPa and 125 hPa, which are also slightly 

588 larger, the RMSEs of the other vertical layers are all less than 1 K.

589 Figure 7 shows the ensemble weights of the generalized ensemble learning model 

590 in the Lekima’s clear-sky FOVs temperature retrieval of the three basic models 

591 (Random Forest, XGBoost, LightGBM) in different pressure layers (1, 2, 3, 5, ..., 950, 

592 975, 1000 hPa) in this experiment.

593 It can be seen from Fig. 6 and Fig. 7 that generalized ensemble learning obtains 

594 the optimal retrieval effect. LightGBM has the highest retrieval accuracy among the 

595 three basic models, so it has the largest ensemble weight to the generalized ensemble 

596 learning model. Ranked second is Random Forest, and lastly XGBoost. XGBoost has 

597 an ensemble weight of 0 for the generalized ensemble learning model in some 

598 atmospheric layers.

599 Furthermore, Fig. 8 shows the scatter distribution of temperature retrieval versus 

600 true ERA5 target values in different model testing datasets of Lekima’s clear-sky FOVs. 

601 The data period is 0000–1500 UTC 9 August 2019. The proportion of test data is 20% 

602 of the total sample of 24159, which is approximately 4830 FOVs. The data volume of 

603 the 37 layers in the statistical testing dataset is 178710.

604 It can be seen from Fig. 8 that, for the testing dataset, the temperature retrieval 

605 value and the target value are almost on a y = x diagonal. Compared with the three basic 

606 models, the generalized ensemble learning model obtains higher retrieval accuracy. The 

607 correlation coefficients between the retrieval values obtained from the four models and 
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608 the true values exceeds 0.99.

609

610 4.5.3 Comparison between the retrieved temperature profile and radiosonde data

611 The retrieval accuracy of the algorithm in this paper is not only related to the 

612 selected model itself, but also more likely to the accuracy of the ERA5 data. Different 

613 from the lag and temporal resolution of the ERA5 data, GIIRS can make high-frequency 

614 observations in close to real time. The observation area can be covered every 15 or 30 

615 min in the high-frequency observation area. GIIRS can realize targeted adaptive 

616 observations, so retrieval of these data is crucial for the application before high-impact 

617 weather (Gao et al. 2022).

618 In this part, the temperature profiles of radiosonde stations in Anhui and 

619 surrounding areas are selected to verify the retrieval effect. The independent sample is 

620 selected for validation at 0000 UTC 10 August 2019. Figure 9a shows the distribution 

621 of 19 radiosonde stations (magenta and yellow dots). The background of Fig. 9a is the 

622 actual observed brightness temperature of the FY-4A/AGRI window channel. Figure 

623 9b shows the distribution of total column water vapor in the ERA5 data. Due to space 

624 limitations, only the retrieval results of temperature profiles at the positions marked 

625 with yellow dots (A, B, C, D) are provided in this paper. 

626 Figure 10 shows four (labeled A, B, C, and D) radiosonde temperature profiles 

627 (marked as radiosonde data), ERA5 temperature profiles (marked as Era5-reanalysis), 

628 and retrieval results of different models under clear-sky conditions at this time. The 

629 different models are Random Forest, XGBoost, LightGBM, and the generalized 
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630 ensemble learning model. The training model and parameter optimization results 

631 obtained earlier are used here to verify the retrieval effect.

632 It should be noted that: (1) the drift of the radiosonde data is not considered here; 

633 (2) the nearest-neighbor method is used to match the ERA5 data to the radiosonde 

634 stations, so there may be some differences between some radiosonde and ERA5 

635 temperatures; and (3) for quantitative metrics, only the correlation between the 

636 retrieved temperature profile and the radiosonde temperature profile is considered here.

637 Overall, it can be seen from Fig. 10 that the temperature profiles retrieved by the 

638 different models and the target temperature profiles (radiosonde data and ERA5 data) 

639 have good consistency, and the fitting at the temperature change corner is good. The 

640 vertical change in the temperature profile is critical for identifying the type of weather 

641 (Gao et al. 2022). At four radiosonde stations, the correlation coefficient between the 

642 temperature profiles retrieved by the four models and radiosonde (ERA5) data exceeds 

643 0.92 (0.99).

644 Furthermore, Table 2 shows the accuracy of the temperature profiles retrieved by 

645 the different models of the four radiosonde stations. Here, the RMSE is the statistical 

646 value between the retrieval results of the different models and ERA5. The superscripted 

647 asterisk mark in the table signifies the minimum temperature RMSE obtained by 

648 different retrieval methods in each column.

649 According to Fig. 10 and Table 2, in the ERA5/TCWV (23.004 mm) of FOV A  

650 (34.07°N, 111.07°E) and ERA5/TCWV (58.483 mm) of FOV B (30.73°N, 111.37°E), 

651 the generalized ensemble learning retrieval temperature profile has the highest accuracy 
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652 among the four models. For the FOV C (30.58°N, 114.05°E) of ERA5/TCWV (51.112 

653 mm), the temperature retrieval accuracy of Random Forest is the highest. For the FOV 

654 D (28.12°N, 112.78°E) of ERA5/TCWV (57.57 mm), LightGBM has the highest 

655 temperature retrieval accuracy. Although the ensemble method is comprehensively 

656 affected by the retrieval results of the three basic models, the retrieval accuracy of 

657 LightGBM seems comparable to the generalized ensemble learning model on the whole.

658

659 4.6 Algorithm promotion and application: temperature profile retrieval experiment of 

660 the Higos case

661 The optimal combination results of the parameters of different models and sample 

662 data obtained in the previous section are used for the GIIRS mediumwave channel 

663 brightness temperature to retrieve the temperature profile during the Higos period. The 

664 retrieval is divided into clear-sky FOVs and all-sky FOVs, the latter of which include 

665 all clear-sky and cloudy FOVs.

666

667 4.6.1 Clear-sky FOV temperature profile retrieval

668 In this part, the accuracy of the temperature profiles retrieved from different 

669 models of clear-sky FOVs is analyzed. Figure 11 shows the temperature profile RMSE 

670 for the training and testing dataset. Here, the clear-sky FOV data (21462 FOVs) of the 

671 Higos case are used as the total sample.

672 It can be seen from Fig. 11 that the three basic models achieve good retrieval 

673 results. In the training sample set, the RMSE of different atmospheric pressure layer 
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674 temperatures obtained from Random Forest, XGBoost, LightGBM, and generalized 

675 ensemble learning are less than 0.786 K, 0.484 K, 0.194 K, and 0.186 K, respectively. 

676 Because the retrieval effect of LightGBM is close to that of generalized ensemble 

677 learning, the two RMSE curves are nearly coincident. In the testing dataset, although 

678 the temperature RMSE of the four models between 1 and 3 hPa is larger, the 

679 temperature RMSE of the four models for the majority of pressure layers, between 5 

680 and 1000 hPa, is less than 1 K. Compared with the LightGBM retrieval results in the 

681 training and testing dataset, the maximum accuracy of generalized ensemble learning 

682 retrieval for temperature profiles is improved by 4.580% and 5.781%, respectively. 

683

684 4.6.2 All-sky FOV temperature profile retrieval

685 High-impact weather is often accompanied by the occurrence and development of 

686 clouds (McNally 2002), so it is important to be able to carry out temperature profile 

687 retrievals under cloudy FOVs. The nonlinear relationship between brightness 

688 temperature and atmospheric variables can be well described based on methods such as 

689 Random Forest, without the complex relationship of physical models (Cai et al. 2020). 

690 Unlike the retrieval of temperature profiles for clear-sky FOVs, the all-sky FOV 

691 samples used for training and testing here include clear-sky and cloudy FOVs.

692 Figure 12 shows an analysis of the accuracy of temperature profiles retrieved by 

693 different models under all-sky FOVs.

694 It can be seen from Fig. 12 that the three basic models achieve good results. The 

695 RMSE of temperature profiles retrieved from Random Forest, XGBoost, LightGBM, 
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696 and generalized ensemble learning in the training sample set is less than 0.723 K, 0.598 

697 K, 0.323 K and 0.284 K, respectively. In the testing dataset, the retrieval accuracy of 

698 generalized ensemble learning is better than that of the three basic models. Surprisingly, 

699 under the condition of all-sky FOVs (including cloudy FOVs), except for the 1, 2 and 

700 3 hPa pressure layers, the temperature RMSE of all the pressure layers is less than 1 K.

701  The accuracy and stability with the retrieval algorithm are highly dependent on 

702 the representativeness of the training dataset (Zhu et al. 2023). It is found that, at lower 

703 levels (below approximately 800 hPa), the retrieval results for the all-sky FOVs have 

704 more accurate temperatures than those for the clear-sky FOVs. This may be attributable 

705 to the different sample sizes and the high vertical resolution information of the 

706 hyperspectral data. 

707 Further research shows that, under the condition of all-sky FOVs, the RMSE of 

708 temperature profiles retrieved by the different models is larger at 100–200 hPa than at 

709 other pressure layers. This is consistent with the findings of Xue et al. (2022). However, 

710 according to Malmgren-Hansen et al. (2019), temperatures at low altitudes (>200 hPa) 

711 are the most important for meteorological models.

712 It can be seen from Fig. 6, Fig. 11 and Fig. 12 that the RMSE of all layers of the 

713 profile of the generalized ensemble learning temperature in the training dataset is within 

714 0.3 K, while that in the testing dataset is within 1.4 K, and between 150 and 925 hPa it 

715 is within 1 K. 

716 Furthermore, Fig. 13 shows the retrieved temperature profile and temperature 

717 deviation obtained by using generalized ensemble learning under all-sky FOVs. The 
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718 deviation here is defined as the difference between the target and retrieval value. The 

719 abscissa is the sample number, with a total of 5120 profiles. 

720 Combined with Fig. 13, we can see that, in addition to the upper atmospheric 

721 pressure layers, the generalized ensemble learning retrieval of temperature profiles 

722 obtains good results.

723 To analyze the reason for the larger RMSE of 100–200 hPa temperature compared 

724 with other pressure layers, the following section discusses the importance of feature 

725 variables and the peak layer of the channel weighting function corresponding to 

726 important variables. The calculation method of the weighting function is similar to that 

727 in Fig. 4.

728 Figure 14 shows an analysis of the variable importance of the reserved channels 

729 (shown in Fig. 3) based on Random Forest after the establishment of the GIIRS channel 

730 blacklist. Furthermore, the peak layer distribution of the GIIRS channel weighting 

731 function for the top 100 feature variable importance rankings is given. The discussion 

732 is divided into clear-sky and all-sky FOVs. Here, the brightness temperature of the 

733 GIIRS channel is used as a feature variable for both the basic and ensemble models. 

734 The number of channels corresponds to the number of feature variables in the model.

735 It can be seen from Fig. 14 that there are no channels selected among the top 100 

736 channels of variable importance between the 0 and 200 hPa pressure layers. In future 

737 research, GIIRS shortwave channel data will be added to improve the retrieval accuracy 

738 of all pressure layer temperatures.

739
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740 4.6.3 Preliminary analysis of the reasonableness of retrieved temperature profiles under 

741 all-sky FOVs

742 Figure 15 shows the GIIRS channel weighting function distribution of the top 36 

743 Random Forest importance values of the midlatitude summer profile. Note that this is 

744 only for explaining the reason for the reasonableness of retrieved temperature profiles 

745 under all-sky FOVs. The channel brightness temperature distribution of the GIIRS 

746 Jacobian (Coopmann et al. 2022) at 0000 UTC 10 August 2019 in different peak layers 

747 is further given.

748 The main reason for obtaining better retrieval accuracy under all-sky (clear sky 

749 and cloudy) conditions is analyzed. Firstly, we consider the high vertical resolution of 

750 GIIRS (Fig. 15a). The peak GIIRS channel weighting function exists in almost every 

751 atmospheric pressure layer (Coopmann et al. 2022). The information layers detected by 

752 different channels are different, indicating different brightness temperature 

753 distributions (Fig. 15b). Some channels may be contaminated by clouds, but other 

754 channels may be usable. For example, obtaining the cloud fraction and cloud top 

755 pressure (CTP) at a certain FOV through algorithms such as the minimum residual 

756 method (Lee et al. 2020), when the peak layer of a certain channel’s weighting function 

757 is higher (lower) than the CTP, then the channel is not (is) contaminated by clouds.

758 Therefore, the channel height assignments cloud detection method of ECMWF 

759 (McNally and Watts, 2003; Coopmann et al. 2022) utilizes vertical information from 

760 hyperspectral data. Secondly, compared to the idealized channel weighting function, 

761 the peak layer of the actual weighting function has a certain width (Joiner et al. 2007). 
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762 This width indicates that the information of the pressure layer near the peak layer can 

763 also be detected, so the temperature of the pressure layer nearby can also be retrieved. 

764 And thirdly, the training dataset in this paper includes clear-sky and cloud data. The 

765 clear-sky data around the clouds plays a certain role in the retrieval of cloud areas 

766 (Malmgren-Hansen et al. 2019). In future work, a separate study will be conducted on 

767 the retrieval of temperature profiles under cloudy FOVs.  

768

769 5. Conclusion and future work

770 Real-time or near-real-time acquisition of vertical temperature profile information 

771 is essential for monitoring and forecasting high-impact weather. Geostationary satellite 

772 hyperspectral data have the characteristics of high temporal and vertical resolution, 

773 which can be used for atmospheric profile retrieval. In this study, based on FY-

774 4A/GIIRS and ERA5 data, the atmospheric temperature profile is retrieved using the 

775 generalized ensemble learning and basic models (Random Forest, XGBoost, and 

776 LightGBM). The main conclusions can be summarized as follows:

777 (1) Feature variable selection. Based on the establishment of a GIIRS channel 

778 blacklist, the feature variables of the basic models are selected by using the permutation 

779 importance method. In the Typhoon Lekima experimental case, compared to other 

780 channels selected for retrieval models, the importance of mediumwave channels 9 and 

781 307 in GIIRS ranks first and second, respectively. 

782 (2) Ensemble weight. On the basis of hyperparameter optimization, generalized 

783 ensemble learning is used to optimize the weight of each basic model. The integrated 
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784 method improves the accuracy of atmospheric temperature profile retrievals. Among 

785 the three basic models, XGBoost shows the lowest performance and LightGBM the 

786 best. Therefore, compared with the other basic models, LightGBM has the largest 

787 ensemble weight value under different pressure layers.

788 (3) Temperature profile retrieval under clear-sky FOVs. The RMSE of the whole 

789 temperature profile in the training dataset of the generalized ensemble learning model 

790 is less than 0.3 K. The retrieval temperature RMSE of the testing dataset between 150 

791 hPa and 925 hPa is within 1 K. The temperature profiles retrieved by different models 

792 correlate well with the target temperature profiles (radiosonde data and ERA5 data).

793 (4) Temperature profile retrieval under all-sky FOVs. The RMSE of temperature 

794 profiles retrieved by different models is slightly larger at 0–200 hPa, while that of other 

795 pressure layers is less than 1 K. The reason is that no channel is selected among the top 

796 100 channels of variable importance in the 0–200 hPa pressure layer. However, 

797 temperatures at low altitudes (>200 hPa) are the most important for meteorological 

798 models (Malmgren-Hansen et al. 2019).

799 Although the method in this paper achieves good retrieval results, there are also 

800 some shortcomings. For example, although high-frequency observation data are used, 

801 the sample size of the data of the machine learning algorithm is still small (Ma et al. 

802 2021). Some model parameters (such as max_features and min_samples_split of 

803 Random Forest) do not participate in optimization but use default values. In addition, 

804 due to the constraints of computing resources, some parameters (such as n_estimators 

805 of Random Forest) are set too small. Bias correction of the FY-4A/GIIRS observation 
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806 data is also not considered, which is important because the existence of bias may affect 

807 the establishment of the relationship between the brightness temperature and 

808 temperature profile, thereby potentially affecting the accuracy of temperature profile 

809 retrievals. Future work should involve building a unified framework while considering 

810 the optimization and adjustment of hyperparameters and the weighted integration of 

811 basic models. The GIIRS longwave channel or multi-source or multi-dimensional data 

812 should be further added to retrieve the atmospheric temperature and humidity profiles. 

813 Finally, another step would be to apply the retrieved profile data to the monitoring and 

814 forecasting of high-impact weather (Gao et al. 2022).   
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1313

1314 Table 1. Optimal or suboptimal combinations of hyperparameters of the basic models. 

Basic machine 

learning model

Model hyperparameters

n_estimators max_depth learning_rate gamma num_leaves

Random Forest 20 20 - - -

XGBoost 50 9 0.9 5 -

LightGBM 95 - 0.7 - 50

1315

1316 Table 2. RMSE of vertical-layer temperature retrieval by different models compared 

1317 with ERA5 (unit: K).
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Model Radiosonde station (Latitude N, Longitude E)

A (34.07°N, 

111.07°E)

B (30.73°N, 

111.37°E)

C (30.58°N, 

114.05°E)

D (28.12°N, 

112.78°E)

Random Forest 0.542 1.055 0.134* 0.895

XGBoost 0.591 0.498 0.357 0.525

LightGBM 0.118 0.118 0.159 0.062*

Generalized 

ensemble 

learning

0.117* 0.116* 0.157 0.066

1318 Note: The superscripted asterisk mark in the table signifies the minimum temperature 

1319 RMSE obtained by different retrieval methods in each column.
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