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31 Abstract

32

33 Numerical weather forecast models have biases caused by insufficient grid resolution 

34 and incomplete physical processes, especially near the land surface. Therefore, the 

35 Japan Meteorological Agency (JMA) has been operationally post-processing the 

36 forecast model outputs to correct biases. The operational post-processing method uses 

37 a Kalman filter (KF) algorithm for surface temperature prediction. Recent reports have 

38 shown that deep convolutional neural networks (CNNs) outperform the JMA operational 

39 method in correcting temperature forecast biases. This study combined the CNN-based 

40 bias correction scheme with the JMA operational KF algorithm. We expected that the 

41 combination of CNNs and a KF would improve the post-processing performance, as the 

42 CNNs modify large horizontal structures, and then, the KF corrects minor spatiotemporal 

43 deviations. As expected, we confirmed that the combination outperformed both CNNs 

44 and the KF alone. This study demonstrated the advantages of the new method in 

45 correcting coastal fronts, heat waves, and radiative cooling biases.

46

47 Keywords  deep convolutional neural network, statistical post-processing, temperature 

48 forecast, Kalman filter, fine-tuning
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50 1. Introduction

51 Temperature is an element of weather that has a large impact on daily life as well as 

52 social, agricultural, and economic activities. Numerical weather prediction (NWP) is 

53 commonly used for forecasting temperatures. However, NWP models have biases due to 

54 limited horizontal grid resolution and imperfections in physical processes. Thus, the Japan 

55 Meteorological Agency (JMA) has been operationally post-processing the NWP model 

56 outputs to correct these biases. This post-processing is called guidance (Klein and Glahn 

57 1974; Zurndorfer et al. 1979) or model output statistics (MOS; Glahn and Lowry 1972). The 

58 JMA provides temperature guidance products to support forecasters in short-range surface 

59 temperature forecasts (JMA 2023a). Furthermore, the JMA has improved temperature 

60 guidance forecasts to prevent heatstroke from extreme temperatures or crop damage from 

61 low temperatures. The JMA also aims to improve transportation safety by improving 

62 snowfall forecasts that use temperature guidance forecasts (Furuichi and Matsuzawa 

63 2009).

64 At present, the JMA has two types of temperature guidance systems in operation: a 

65 point-like temperature guidance system and a gridded temperature guidance system 

66 (Sannohe 2018). The JMA started operating a point-like temperature guidance system in 

67 1979 (JMA 1986), and a Kalman filter (KF) was introduced into the algorithm in 1996 

68 (Segami et al. 1995). The point-like temperature guidance system forecasts 1.5 m of 

69 temperature at each meteorological station. The equations were adjusted successively at 
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70 more than 900 Japanese stations in the Automated Meteorological Data Acquisition 

71 System (AMeDAS; JMA 2023b). The explanatory variables are the NWP outputs around 

72 the stations, and the objective variable is the temperature difference between the NWP 

73 outputs and observations at the stations. By statistically correcting NWP model biases, a 

74 temperature guidance system can reduce forecast errors in NWP models. However, the 

75 operational guidance system of the JMA cannot correct horizontal positioning errors, such 

76 as positional errors in coastal fronts (Takada 2018a), because it uses only explanatory 

77 variables around the stations.

78 JMA’s temperature guidance employs an online learning technique with a KF that 

79 sequentially evolves the coefficients of the prediction equations based on the latest 

80 observations. Online learning has four advantages: it can follow seasonal changes in NWP 

81 biases, NWP model updates (Takada 2018b), and changes in the environment due to 

82 observatory relocation (Takada 2018c), and it can adapt to newly established observatories 

83 without a long-term dataset. The most important advantage is that online learning has the 

84 ability to respond to NWP model updates. NWP models are regularly updated to increase 

85 performance (Wilson and Vallée 2002). As NWP models change, the biases in NWP 

86 models change, meaning that post-processing must be reconfigured with a new dataset. 

87 Online learning with the KF can accommodate these changes. The second is that it can 

88 respond to changes in the surrounding areas of stations. AMeDAS stations are relocated if 

89 their environmental conditions change. When a station has relocated, the characteristics at 

Page 4 of 52For Peer Review



4

90 that location often change significantly (Miura and Ohashi 2017). The guidance system can 

91 adapt to new locations through online learning without requiring a long-term observational 

92 dataset.

93 The other temperature guidance forecasts, i.e., gridded temperature guidance forecasts, 

94 are created from point-like temperature guidance forecasts and gridded temperature 

95 predictions of the NWP models by weighted averaging based on distance and topography 

96 (Kuroki 2017). Because the JMA’s operational gridded temperature guidance system links 

97 to the point-like temperature guidance system, there is consistency between point-like and 

98 gridded temperature guidance forecasts.

99 National weather agencies utilize post-processing algorithms for forecasting 

100 temperatures. The National Weather Service uses multiple linear regressions (MLRs) to 

101 generate both point and grid temperature guidance forecasts. They objectively analyze 

102 guidance forecasts with elevation corrections to produce gridded forecasts of weather 

103 elements, such as temperature, clouds, and snow amount (Glahn et al. 2009). The gridded 

104 guidance forecasts are spatially consistent predictions that are provided for forecasters. 

105 The Met Office employs KF for point-like temperature (Met Office 2015) and physically 

106 based corrections for height differences between the terrain in the NWP models and the 

107 actual topography for gridded temperature (Sheridan et al. 2010). Météo-France provides 

108 point-like temperature predictions using MLR, KF and random forest (Météo-France 2015, 

109 Météo-France 2020). Deutscher Wetterdienst used MLR for point-like temperature 
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110 forecasts (Veira et al. 2017). To our knowledge, no national weather agency currently uses 

111 deep learning methods for temperature forecasting post-processing.

112 Recently, several studies have been conducted on temperature predictions via 

113 deep-learning methods. To our knowledge, studies have yet to combine gridded and 

114 point-like forecasts. Dongjin et al. (2022) compared several machine learning and deep 

115 learning methods and showed that convolutional neural networks (CNNs) were effective at 

116 post-processing next-day maximum temperatures. They reported that CNNs performed 

117 well among the other post-processing models by using spatial information surrounding 

118 stations; however, they did not refer to the relocation of stations. In general, it is impossible 

119 to train networks until sufficient observation data are stored at a new site after relocation. In 

120 the study of gridded temperature forecasting, Bing et al. (2022) verified convolutional long 

121 short-term memory (ConvLSTM; Shi et al. 2015) models as a forecasting method for 

122 timeseries gridded temperatures. They applied them to create hourly forecasts of the 2-m 

123 temperature for the subsequent 12 h over Europe. Although these methods did not reach 

124 the capabilities of current NWP models, they demonstrated that deep neural networks may 

125 achieve forecast quality beyond the nowcasting range in a data-driven way. Kudo (2022) 

126 studied gridded forecasts of 1.5-m temperature using CNNs. They reported that the CNN 

127 has the ability to correct the horizontal position bias in temperatures in NWP models. Their 

128 “DNN-based gridded temperature predictions” surpassed the JMA's operational gridded 

129 temperature guidance forecast by approximately 0.25°C in terms of the root mean square 

Page 6 of 52For Peer Review



6

130 error (RMSE). Furthermore, their study showed that the CNN corrects NWP model biases, 

131 such as positional errors of coastal fronts and extreme temperatures, which are difficult to 

132 predict in the operational guidance forecast of the JMA. However, their study did not focus 

133 on point-like predictions; therefore, the performance at each station is uncertain.

134 The present study combined the bias corrections of CNNs and the KF to produce 

135 point-like temperature predictions. Since CNNs can correct the large horizontal structure of 

136 NWP models and KFs can correct small spatiotemporal errors, we expect that the 

137 combination of each method will improve post-processing performance. In addition, the 

138 method could adapt the relocations of stations and NWP model updates through online 

139 learning with the KF.

140

141 2. Data and Methodology

142 2.1 Meteorological data

143 Following a previous study (Kudo 2022), the present study used the operational 

144 mesoscale nonhydrostatic regional model (MSM; JMA 2023c) outputs of the JMA for 

145 explanatory variables with a 5-km horizontal resolution and a three-hour interval. The 

146 dataset period ranged from 00 UTC on October 8, 2010, to 21 UTC on December 31, 2021, 

147 with the MSM forecasts initialized at 00, 03, 06, 09, 12, 15, 18, and 21 UTC. For training the 

148 CNNs, we used only 15-hour predictions from each initial time, as in Kudo (2022). 

149 However, the CNN inference forecast range was 3 to 39 hours at 3-hour intervals to clarify 
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150 the performance of the CNNs.

151 The objective variable was the 1.5-m temperature extracted from the operational 

152 estimated weather distribution products of the JMA (Wakayama et al. 2020). The products 

153 are 1-km grid data of hourly temperature, weather category, and sunshine duration over 

154 land in Japan. The temperature is estimated from observed temperatures and the gridded 

155 climatological normal temperature calculated by the JMA. The gridded climatological 

156 normal is estimated from gridded data of climatological normal from the most recent 30 

157 years at each observatory. It is calculated by MLRs based on the statistical relationship 

158 between normal and topographic/urban factors. The estimated temperatures are generated 

159 by interpolating observations with the gridded climatological normal. Therefore, the 

160 estimated temperatures are expected to be close to reality, even in areas where there are 

161 no observation sites. The cross-validation of the estimated temperature showed that the 

162 bias was approximately 0°C and that the RMSE was approximately 1°C (JMA 2016).

163 We averaged the estimated temperatures in 5-km grids following the MSM grids. The 

164 estimated surface temperature (EST) in the 5-km grid dataset served as the target or 

165 ground truth for the gridded prediction, i.e., the observational temperature distribution. The 

166 dataset covered the same period as that of the MSM forecast.

167

168 2.2 Structure of the neural networks

169 Fig. 1 shows the CNN model used in the present study, which is the same as the encoder–
Fig. 1

Table 1
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170 decoder-based deep CNNs proposed in Kudo (2022). The CNN model consisted of 

171 2-dimensional convolution, max-pooling, and fully connected layers with sigmoid or ReLU 

172 (Nair and Hinton 2010) activation functions and batch normalization. Table 1 describes the 

173 parameters used in the model. The network input seven types of variables and output a 

174 1.5-m temperature with 128 × 128 grid points at 5 km intervals. The seven types of input 

175 variables were surface temperature; temperatures at 975, 925, and 850 hPa; mean sea 

176 level pressure (MSLP); and surface wind components U and V derived from the MSM. 

177 These explanatory variables are empirically selected using the training and validation 

178 datasets by Kudo (2022). The surface temperature is a physical quantity in the MSM 

179 outputs that has the characteristics closest to the objective variable. It is considered highly 

180 correlated with EST. Temperatures at 975, 925, and 850 hPa are expected to represent the 

181 impact of the atmospheric boundary layer on surface temperatures through the vertical 

182 turbulent transport of heat. The locations of low-pressure systems and fronts can be 

183 estimated from MSLP and surface wind data, providing overviews of the synoptic situation. 

184 For the JMA's operational point-like temperature guidance system, surface temperature 

185 and wind are used as explanatory variables (Sannohe 2018). The input variables were 

186 standardized with each input channel's maximum and minimum values ranging between 0 

187 and 1. After encoding and decoding, the output variables were inversely transformed. The 

188 CNN model was trained with the EST for each forecast lead time using the mean square 

189 error loss function with the Adam optimizer (Kingma and Ba 2015). The input and target 
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190 datasets were divided into three parts—training, validation, and test periods—as shown in 

191 Table 2. The validation dataset was used only for hyperparameter adjustment. The test 

192 dataset was used to verify the prediction accuracy of the CNN model.

193

194 2.3 Prediction procedure
195 2.3.1 CNN model prediction

196 This study defined six areas (jp01, jp02, jp03, jp04, jp05, and jp06) as target domains to 

197 cover most of Japan, as shown in Fig. 2. Each domain had 128 × 128 grid points to cover 

198 the whole area of Japan's second-largest island, Hokkaido (jp01). While Kudo (2022) 

199 implemented CNN model prediction with a size of 64 × 64 grid points to cover the area 

200 around Tokyo, we doubled the size and targeted nearly all of the Japanese archipelago. 

201 We trained the CNN model at each target domain separately to reduce the consumption of 

202 GPU memory and calculation time. In addition, it was appropriate to train the networks 

203 separately in domains because each domain had different meteorological and 

204 climatological properties with different land-to-sea ratios.

205 The study introduced a fine-tuning procedure, which retrains the networks using the data 

206 immediately preceding the validation period, from January 1 to December 31, 2019, to 

207 correct for long-term trends in the NWP models. One of the advantages of applying 

208 fine-tuning in a short training period is that it takes less time than reconstructing the network 

209 in a long training period. By applying fine-tuning, the network can be trained on NWP 

210 models without using a long-term training dataset. This approach is favorable for 

Fig. 2

Table 2
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211 operational systems with frequent NWP model updates.

212
213 2.3.2 Post-processing with a Kalman filter

214 The JMA’s operational point-like temperature guidance system uses a KF to predict 

215 surface temperatures at each observatory. In addition, in-situ observations and NWP 

216 outputs are used as input data. The NWP outputs are interpolated from the surrounding 

217 grids to the forecast points. In the guidance system, the predictand (i.e., the target of 

218 forecasting) is defined as the temperature difference between the NWP outputs and 

219 observations. The prediction equation is represented by a linear combination of predictors 

220 and coefficients as follows (JMA 2023a):

221 𝑦𝜏 + 1 = 𝒄𝝉 + 𝟏𝑿𝝉 + 𝟏

222 where  represents the sequence number of NWP initial times,  represents the τ 𝑦𝜏 + 1

223 predictand,  represents the predictors (  matrix), and  represents the 𝒄𝝉 + 𝟏 1 × n 𝑿𝝉 + 𝟏

224 coefficients (  matrix). The coefficients  are determined from both the previous n × 1 𝑿𝝉 + 𝟏

225 estimate  and the forecast error to minimize the diagonal sum of the error covariance 𝑿𝝉

226 matrix. This indicates that the coefficients are optimized at each initial time based on the 

227 difference between the previous forecast and the observations. As a result, the system with 

228 KFs has the flexibility to follow seasonal changes, NWP model updates, and changes due 

229 to observatory relocation.

230 The purpose of this study is to develop a post-processing system for DNN-based gridded 

231 forecasts with a KF. Hereafter, we call this the “DNN-based point-like temperature guidance 
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232 forecast” (DNN-KF). The KF algorithm to be introduced in DNN-KF is the same as that of 

233 JMA's operational point-like temperature guidance forecast.

234 The DNN-KF generated temperature predictions in the following two steps. First, the 

235 trained CNN model generated gridded temperature forecasts. Second, online learning with 

236 the KF was applied for each station. In the first step, the CNN model corrected large-scale 

237 structural biases, while in the second step, the KF model corrected point- and 

238 season-dependent spatiotemporal biases. By constructing a dual-processing system, we 

239 expected to improve the forecast accuracy by removing both large- and local-scale biases.

240 As shown in Table 2, we set the training and test periods of the KF so as not to overlap 

241 with the training, fine-tuning, and validation periods of the CNN model. The initial 

242 coefficients were copied from the operational guidance system on December 31, 2019.

243

244 2.4 Verification method

245 The verification metric in the study is the RMSE, which is defined as follows:

246 RMSE =
1
𝑇

𝑇

∑
𝑡 = 1

1
𝑁

𝑁

∑
𝑛 = 1

(𝐹𝑛𝑡 ― 𝑂𝑛𝑡)2,

247 where T and N denote the numbers of time slices and observation points, respectively.  𝐹𝑛𝑡

248 and  denote the predicted and observed temperatures at point n and time t, 𝑂𝑛𝑡

249 respectively.

250 The relative improvement, or skill score (Wilks 2011), is defined as a reduction in the 

251 RMSE normalized by the RMSE for a reference forecast,
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252 relative improvement ≡
RMSE𝑟𝑒𝑓 ― RMSE𝑡𝑔𝑡

RMSE𝑟𝑒𝑓
× 100,

253 where  is the RMSE for a reference forecast and  is the RMSE for a 𝑅𝑀𝑆𝐸𝑟𝑒𝑓 𝑅𝑀𝑆𝐸𝑡𝑔𝑡

254 targeted forecast.

255 We compared the DNN-KF with the predictions of MSM, operational point-like/gridded 

256 temperature guidance (point-like/gridded MSM-KF), and “DNN-based gridded temperature 

257 prediction (DNN).” Both the point-like MSM-KF and DNN-KF predict temperatures at 

258 observation sites using KF. The point-like MSM-KF/DNN-KF is derived from the MSM/DNN 

259 along with in-situ observations. The point-like predictions are verified by calculating the 

260 RMSE at the observation sites, while the gridded predictions are verified by linearly 

261 interpolating the predictions to the observation sites. The MSM/DNN verified at each 

262 observatory is denoted as "interpolated MSM/DNN."

263

264 3. Results and Discussion

265 3.1 Averaged scores

266 Figure 3 shows the monthly averaged RMSEs of each forecast for the test period. The 

267 green, blue, brown, and red lines indicate the interpolated MSM, the point-like MSM-KF, the 

268 interpolated DNN, and the DNN-KF, respectively. As shown in the figure, the DNN-KF 

269 outperforms the other predictions throughout the period.

270 Figure 4 shows the average RMSEs of each forecast classified by forecast lead times for 

271 the one-year test period from January 1 to December 31, 2021. The results indicate that the 

Fig. 3

Fig. 4
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272 DNN-KF is superior to the other methods in terms of the forecasting lead times.

273 Figure 5a shows the relative improvement in the interpolated DNN over the interpolated 

274 MSM, and Fig. 5b shows that the improvement in the DNN-KF over the DNN. The red 

275 points represent improvement, and the blue points represent deterioration. The RMSEs 

276 improved at most stations. These results revealed that the combination outperformed the 

277 CNNs or the KF alone. Kudo (2022) also showed that the DNN is more accurate than the 

278 MSM by training the DNN with the MSM outputs and EST including in-situ observations. 

279 The higher accuracy of the DNN-KF over the DNN is explained by the fact that the KF 

280 learns the error characteristics of the locations and has no interpolation errors. The 

281 operational point-like MSM-KF also uses in-situ observations through online learning and 

282 has no interpolation error. However, the DNN-KF has a higher accuracy than the MSM-KF 

283 as shown in Fig. 4, at least on an annual average basis, partly because the DNN is more 

284 accurate than the MSM as input data.

285

286 3.2 Case studies
287 3.2.1 Coastal front positioning error

288 On December 29, 2021, a sharp temperature change caused by a coastal front occurred 

289 in the Kanto (jp03) region. Figure 6a shows the observational temperature distribution. The 

290 coastal front was close to the estimated 10°C isothermal line in the southern part of the 

291 region.

292 Figures 6b, 6c, and 6d show each 5-km gridded temperature prediction difference in the 

Fig. 5

Fig. 6

Fig. 7
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293 MSM, gridded MSM-KF, and DNN from the EST, respectively. The MSM and gridded 

294 MSM-KF predicted the coastal front further north than the actual position. In contrast, the 

295 DNN predicted the position of the 10°C isothermal line as being close to the actual position. 

296 Consequently, the DNN substantially reduced the errors at Nerima (marked by the cross). 

297 Figure 7 shows the time series of observed and predicted temperatures initialized at 21 

298 LST or 12 UTC on December 28, 2021, at Nerima. The point-like MSM-KF predicted 

299 temperatures higher than the observations (OBS), while the DNN-KF predicted 

300 temperatures closer to the OBS than did the interpolated MSM and MSM-KF.

301 Several previous studies reported that the MSM has systematic errors in forecasting 

302 coastal fronts north of their actual position (Hara 2014; Kawano et al. 2019). Suzuki et al. 

303 (2021) used the MSM to conduct sensitivity experiments. These authors discovered that 

304 differences in topography between reality and NWP models can cause positional errors. 

305 The authors insist that the positional error is a bias that statistical methods can remove. 

306 However, some biases cannot be adequately removed by the point-like MSM-KF (Sannohe 

307 2018). One of the possible reasons is that the point-like MSM-KF only uses explanatory 

308 variables from the grids surrounding the target point. Conversely, the CNN model uses 

309 explanatory variables from the entire target area so that the DNN can correct positional 

310 errors associated with coastal fronts.

311

312 3.2.2 Heat wave

Fig. 8
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313 On July 1, 2022, the maximum temperature exceeded 35°C in the inland area of the Kanto 

314 region (Fig. 8a). The temperatures of the MSM and the gridded MSM-KF were lower than 

315 those of the EST. In contrast, the DNN agreed with the EST, especially in the heat wave 

316 area. Notably, the MSM has a negative bias in predicting daytime surface temperatures in 

317 summer (Hara and Kurahashi 2017; Kusabiraki and Moriyasu 2013). Kusabiraki (2020) 

318 indicated that the large negative bias in the MSM was due to excessive upper-level cloud 

319 coverage and subsequent insufficient downward shortwave radiation at the surface. To 

320 eliminate these issues, cloud microphysical processes improved in 2020 (JMA 2021). In 

321 2022, evapotranspiration processes improved to further reduce the negative bias (JMA 

322 2022). However, negative bias was not completely eliminated. The DNN could efficiently 

323 correct the negative bias in this case.

324 Figure 9 shows the time series of observed and predicted temperatures initialized at 15 

325 LST or 06 UTC on June 30, 2022, at Tokyo (shown in Fig. 8). Temperatures on July 1, 

326 2022, predicted by the interpolated MSM and point-like MSM-KF were lower than that of 

327 OBS. The interpolated DNN adjusted the interpolated MSM prediction moderately in the 

328 morning but excessively in the afternoon, causing the interpolated DNN to be much greater 

329 than the OBS at 15 and 18 LST. The training data for the DNN included only the period of 

330 2012–2019, which was before the reduction in the MSM negative bias. This result is 

331 probably the reason for the excessive adjustment of the DNN in the afternoon, as the MSM 

332 prediction in 2022 was performed by the bias-reduced version. However, the DNN-KF 

Fig. 9

Fig. 

10
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333 successfully corrected the excessive adjustment of the DNN. Since the online learning of 

334 the DNN-KF was continuously performed from 2020 to the present (June 30, 2022), the 

335 DNN-KF learned the tendency for excessive DNN adjustment.

336 Figure 10 shows the interannual changes in the ME and the RMSE at each observatory in 

337 the Kanto region at 15 LST from 2020 to 2022 in summer. In 2020 and 2021, the negative 

338 biases of the interpolated MSM were large, and those of the interpolated DNN and the 

339 DNN-KF were close to zero. In 2022, the negative bias of the interpolated MSM was 

340 reduced, and the interpolated DNN had a positive bias, but the bias of the DNN-KF 

341 remained close to zero. The RMSE of the DNN-KF was also smaller than that of the 

342 interpolated MSM and DNN. This result demonstrated that the combination of the two 

343 methods, i.e., the DNN and KF, resulted in better forecasts, indicating the robustness of the 

344 DNN-KF to minor changes in forecast models.

345

346 3.2.3 Low temperature caused by radiative cooling

347 The MSM and MSM-KF exhibit poor performance in predicting low temperatures caused 

348 by radiative cooling (Sannohe 2018), as temperature decreases due to radiative cooling 

349 vary greatly depending on weather conditions, such as clouds and wind, and it is difficult to 

350 accurately predict these factors with current NWP models. However, according to Kudo 

351 (2022), CNNs can predict such low temperature cases because they use surface and lower 

352 troposphere temperatures along with MSLP and wind components as predictors. This is 
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353 because the bias in the MSM surface temperature becomes larger when the temperature 

354 lapse rate in the lower troposphere is close to the dry adiabatic lapse rate, such as at a time 

355 of radiative cooling.

356 In the early morning on November 16, 2021, the clear sky enhanced radiative cooling, 

357 inducing low temperatures in eastern Hokkaido (jp01), as shown in Fig. 11a (at 15 LST on 

358 November 16 or 21 UTC on November 15, 2021). The EST indicates a temperature of less 

359 than -6°C in the plain of eastern Hokkaido around Shibecha (marked by the cross). Figures 

360 11b, 11c, and 11d show the temperature differences initialized at 21 LST on November 14, 

361 2021. The MSM and gridded MSM-KF temperatures were higher than those of the EST in 

362 eastern Hokkaido. Figure 11d shows that the DNN was closer to the EST than the other 

363 DNNs were. The CNN model could correct the low temperature bias induced by radiative 

364 cooling.

365 Figure 12 shows the time series of observed and predicted temperatures initialized at 21 

366 LST on November 14, 2021, at Shibecha. The MSM predicted temperatures higher than the 

367 OBS. The MSM-KF roughly corrected the interpolated MSM bias. The interpolated DNN 

368 was also higher than the OBS, although it was better than the interpolated MSM prediction. 

369 The DNN-KF was the most accurate prediction, as it successfully corrected the 

370 temperature bias.

371 These results showed that the DNN outperformed the MSM in terms of the low 

372 temperatures caused by radiative cooling. The DNN-KF improved the DNN. However, 

Fig. 

11

Fig. 

12
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373 these CNN-based schemes failed to correct the temperature bias outside the eastern part 

374 of Hokkaido, where the CNN-based error correction did not work effectively.

375

376 4. Conclusion

377 We propose a new method for point-like temperature predictions that is more accurate 

378 than the point-like MSM-KF, the JMA’s operational point-like temperature guidance 

379 forecast. To generate point-like forecasts from gridded predictions, we adopted a KF. As a 

380 result, the new method outperformed the point-like MSM-KF. The DNN-KF outperformed 

381 the MSM-KF in terms of the 6-h to 39-h forecast lead times throughout the test period. 

382 Furthermore, the DNN successfully corrected NWP model biases, such as coastal front 

383 positioning errors and extreme temperatures, which are difficult to correct by the MSM-KF. 

384 Our case study revealed that the KF was capable of correcting forecast errors of the DNN 

385 caused by NWP model updates through online learning. This study showed that the 

386 combination of DNNs and a KF can generate more accurate temperature predictions at 

387 each observatory. Our method has the ability to predict extreme low temperatures in a 

388 radiative cooling case where operational guidance could not. However, it is still difficult to 

389 adequately predict radiative cooling cases, so we need to identify the conditions under 

390 which our method does not work well.

391 We further improve the CNNs to increase the prediction accuracy by our proposed method 

392 of combining CNNs and a KF. We intend to find a more appropriate set of hyperparameters 
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393 and input variables for training CNNs. We would also like to find more suitable network 

394 constructions by trying other models, such as U-Net and ResNet. The inputs to the CNNs 

395 were the mesoscale model results, which are among the NWP products of the JMA; 

396 however, replacing the input with a global or local scale model is a candidate for future 

397 experiments. We also consider the use of multiple NWP models as inputs to CNNs rather 

398 than as single NWP models.

399 Inputting NWP outputs into deep learning models such as CNNs is already gaining 

400 momentum in this area. Our method corrects NWP outputs with not only CNNs but also 

401 KFs that the JMA conventionally uses for post-processing. Many national weather agencies 

402 use conventional machine learning methods, such as KFs, MLRs, and neural networks, for 

403 operational post-processing of NWP outputs. It will be interesting to see if this combination 

404 of deep learning methods and their operating machine learning methods will also be 

405 effective at post-processing for their NWP outputs. Operational NWP models are updated 

406 regularly in general. We have shown the ability of the DNN-KF following changes in NWP 

407 biases through online learning with KFs. This method can be applied to outputs from other 

408 NWP models. We expect that our method will lead to an improvement in the operational 

409 post-processing of NWP outputs.

410

411 Data Availability Statement

412 The model source codes used in this study are available subject to a license 

Page 20 of 52For Peer Review



20

413 agreement with the JMA headquarters. The datasets of the mesoscale model outputs of the 

414 JMA were operationally provided via the Japan Meteorological Business Support Center 

415 (http://www.jmbsc.or.jp/en/index-e.html) and are freely available for research purposes.

416

417 Acknowledgments

418 This work was supported by the Japanese Society for the Promotion of Sciences (JSPS) 

419 KAKENHI (Grant Number JP21H03593).

420

421 References

422 Bing, G., M. Langguth, Y. Ji, A. Mozaffari, S. Stadtler, K. Mache, and M. G. Schultz, 2022: 

423 Temperature forecasting by deep learning methods. Geosci. Model Dev., 15, 8931–

424 8956, doi:10.5194/gmd-15-8931-2022.

425 Dongjin, C., Y. Cheolhee, S. Bokyung, I. Jungho, Y. Donghyuck, and C. Dong-Hyun, 2022: 

426 A novel ensemble learning for post-processing of NWP Model's next-day maximum air 

427 temperature forecast in summer using deep learning and statistical approaches. Wea. 

428 Climate Extremes, 35, doi:10.1016/j.wace.2022.100410.

429 Furuichi, Y., and N. Matsuzawa 2009: Snowfall amount guidance. Textbook for Numerical 

430 Weather Prediction. 47, Japan Meteorological Agency, 27-38 (in Japanese). [Available at 

431 https://www.jma.go.jp/jma/kishou/books/nwptext/47/chapter2.pdf.]

432 Glahn, B., K. Gilbert, R. Cosgrove, D. P. Ruth, and K. Sheets, 2009: The gridding of MOS. 

Page 21 of 52 For Peer Review

http://www.jmbsc.or.jp/en/index-e.html
https://www.jma.go.jp/jma/kishou/books/nwptext/47/chapter2.pdf


21

433 Wea. Forecasting, 24, 520-529, doi:10.1175/2008WAF2007080.1.

434 Glahn, H. R., D. A. Lowry, 1972: The Use of Model Output Statistics (MOS) in Objective 

435 Weather Forecasting, J. Appl. Meteor. Climatol., 11, 1203-1211, 

436 doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

437 Hara, T., 2014: Studies on recent remarkable cases. Textbook for Numerical Weather 

438 Prediction. 47, Japan Meteorological Agency, 118-144 (in Japanese). [Available at 

439 https://www.jma.go.jp/jma/kishou/books/nwptext/47/chapter4.pdf.]

440 Hara, T., and H. Kurahashi, 2017: Changes in the characteristics of meso-scale numerical 

441 prediction system. Textbook for Numerical Weather Prediction. 50, Japan Meteorological 

442 Agency, 48-55 (in Japanese). [Available at 

443 https://www.jma.go.jp/jma/kishou/books/nwptext/50/chapter2.pdf.]

444 Japan Meteorological Agency, 1986: Progress of guidance in Japan. Textbook for Weather 

445 Prediction Technique, 35, Japan Meteorological Agency, 19-20 (in Japanese)Japan 

446 Meteorological Agency, 2021: Development results. Numerical Prediction Development 

447 Center Annual Report 2020. Japan Meteorological Agency, 15-76 (in Japanese). 

448 [Available at 

449 https://www.jma.go.jp/jma/kishou/books/npdc/r02/npdc_annual_report_r02_2-02.pdf.]

450 Japan Meteorological Agency, 2016: Launch of provision of estimated weather distribution 

451 products. Technical Information on Distribution Materials. 422, Japan Meteorological 

452 Agency, 11 pp (in Japanese). [Available at 

Page 22 of 52For Peer Review

https://www.jma.go.jp/jma/kishou/books/nwptext/47/chapter4.pdf
https://www.jma.go.jp/jma/kishou/books/nwptext/50/chapter2.pdf
https://www.jma.go.jp/jma/kishou/books/npdc/r02/npdc_annual_report_r02_2-02.pdf


22

453 https://www.data.jma.go.jp/add/suishin/jyouhou/pdf/422.pdf.]

454 Japan Meteorological Agency, 2022: Meso-scale numerical prediction system vertical layer 

455 augmentation, forecast range extension, and physical process improvements. Numerical 

456 Prediction Development Center Annual Report 2021. Japan Meteorological Agency, 

457 92-99 (in Japanese). [Available at 

458 https://www.jma.go.jp/jma/kishou/books/npdc/r03/npdc_annual_report_r03_4-03.pdf.]

459 Japan Meteorological Agency, 2023a: NWP application products. Outline of the 

460 Operational Numerical Weather Prediction at the Japan Meteorological Agency. Japan 

461 Meteorological Agency, 157-188. [Available at 

462 https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_0

463 4.pdf.]

464 Japan Meteorological Agency, 2023b: Data Assimilation Systems. Outline of the 

465 Operational Numerical Weather Prediction at the Japan Meteorological Agency. Japan 

466 Meteorological Agency, 14 pp [Available at 

467 https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_0

468 2.pdf.]

469 Japan Meteorological Agency, 2023c: Numerical Weather Prediction Models. Outline of the 

470 Operational Numerical Weather Prediction at the Japan Meteorological Agency. Japan 

471 Meteorological Agency, 53-156 [Available at 

472 https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_0

Page 23 of 52 For Peer Review

https://www.data.jma.go.jp/add/suishin/jyouhou/pdf/422.pdf
https://www.jma.go.jp/jma/kishou/books/npdc/r03/npdc_annual_report_r03_4-03.pdf
https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_04.pdf
https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_04.pdf
https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_02.pdf
https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_02.pdf
https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_03.pdf


23

473 3.pdf.]

474 Kawano, K., M. Ujiie, M. Kunii, and S. Nishimoto, 2019: Meso-scale ensemble prediction 

475 system. Textbook for Numerical Weather Prediction. 52, Japan Meteorological Agency, 

476 1-15 (in Japanese). [Available at 

477 https://www.jma.go.jp/jma/kishou/books/nwptext/52/chapter1.pdf.]

478 Kingma, D. P., and J. L. Ba, 2015: Adam: A method for stochastic optimization. Conference 

479 paper at the Third International Conference on Learning Representations 2015, San 

480 Diego, U.S.A., 15 pp, doi:10.48550/arXiv.1412.6980.

481 Klein, W. H., and H. R. Glahn, 1974: Forecasting local weather by means of Model Output 

482 Statistics. Bull. Amer. Meteor. Soc., 55, 1217-1227, 

483 doi:10.1175/1520-0477(1974)055<1217:FLWBMO>2.0.CO;2.

484 Kudo 2022: Statistical Post-Processing for Gridded Temperature Prediction Using 

485 Encoder–Decoder-Based Deep Convolutional Neural Networks, J. Meteorol. Soc. 

486 Japan., 100, 2019-232, doi:10.2151/jmsj.2022-011.

487 Kuroki, Y., 2017: Improvement of gridded temperature guidance and changes of guidance 

488 for snowfall amount and categorized weather. Textbook for Numerical Weather 

489 Prediction. 50, Japan Meteorological Agency, 94-101 (in Japanese). [Available at 

490 https://www.jma.go.jp/jma/kishou/books/nwptext/50/chapter4.pdf.]

491 Kusabiraki, H., and S. Moriyasu, 2013: Verification in the operational numerical weather 

492 prediction models. Report of Numerical Prediction Division. 59, Japan Meteorological 

Page 24 of 52For Peer Review

https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-latest-nwp/pdf/outline2023_03.pdf
https://www.jma.go.jp/jma/kishou/books/nwptext/52/chapter1.pdf
https://www.jma.go.jp/jma/kishou/books/nwptext/50/chapter4.pdf


24

493 Agency, 16-24 (in Japanese).

494 Kusabiraki, H., 2020: Radiation. Report of Numerical Prediction Division. 66, Japan 

495 Meteorological Agency, 61-68 (in Japanese). [Available at 

496 https://www.jma.go.jp/jma/kishou/books/nwpreport/66/chapter2.pdf.]

497 Météo-France, 2015: JOINT WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL 

498 DATA PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER 

499 PREDICTION RESEARCH ACTIVITIES FOR 2015, Météo-France. [Available at 

500 https://wmoomm.sharepoint.com/:w:/s/wmocpdb/EfAO2BxjA7NDgdRscNaL488Brn1XlsY

501 87wefjuIq7uRBug.]

502 Météo-France, 2020: JOINT WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL 

503 DATA PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER 

504 PREDICTION RESEARCH ACTIVITIES FOR 2015, Météo-France. [Available at 

505 https://wmoomm.sharepoint.com/:b:/s/wmocpdb/EQOKo5TMgDRAjyv3SFawEqIBGl4OK

506 HS4txHR_PufRbIWTA.]

507 Met Office, 2015: JOINT WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL 

508 DATA PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER 

509 PREDICTION RESEARCH ACTIVITIES FOR 2015, Met Office. [Available at 

510 https://wmoomm.sharepoint.com/:b:/s/wmocpdb/EfYms7k874hOry4vAkDu-MoBOVC936

511 3_VDOrvxJM-Sar8g.]

512 Miura, H., and Y. Ohashi, 2017: Influences of the relocations of the Okayama Local 

Page 25 of 52 For Peer Review

https://www.jma.go.jp/jma/kishou/books/nwpreport/66/chapter2.pdf
https://wmoomm.sharepoint.com/:w:/s/wmocpdb/EfAO2BxjA7NDgdRscNaL488Brn1XlsY87wefjuIq7uRBug
https://wmoomm.sharepoint.com/:w:/s/wmocpdb/EfAO2BxjA7NDgdRscNaL488Brn1XlsY87wefjuIq7uRBug
https://wmoomm.sharepoint.com/:b:/s/wmocpdb/EQOKo5TMgDRAjyv3SFawEqIBGl4OKHS4txHR_PufRbIWTA
https://wmoomm.sharepoint.com/:b:/s/wmocpdb/EQOKo5TMgDRAjyv3SFawEqIBGl4OKHS4txHR_PufRbIWTA
https://wmoomm.sharepoint.com/:b:/s/wmocpdb/EfYms7k874hOry4vAkDu-MoBOVC9363_VDOrvxJM-Sar8g
https://wmoomm.sharepoint.com/:b:/s/wmocpdb/EfYms7k874hOry4vAkDu-MoBOVC9363_VDOrvxJM-Sar8g


25

513 Meteorological Observatory on the measured air-temperature. Naturalistae, 21, 7-15.

514 Nair, V., and G. E. Hinton, 2010: Rectified linear units improve restricted Boltzmann 

515 machines. Proceedings of the Twenty-seventh International Conference on Machine 

516 Learning (ICML-10), Haifa, Israel, 807-814.

517 Sannohe, Y., 2018: Temperature guidance. Report of Numerical Prediction Division. 64, 

518 Japan Meteorological Agency, 132-143 (in Japanese). [Available at 

519 https://www.jma.go.jp/jma/kishou/books/nwpreport/64/chapter4.pdf.]

520 Segami, T. M. Obayashi, M. Kunitsugu, and T. Fujita, 1995: Kalman filter. Textbook for 

521 Numerical Weather Prediction, 28, Japan Meteorological Agency, 66-78 (in Japanese)

522 Sheridan, P., S. Smith, A. Brown, and S. Vosper, 2010: A simple height-based correction 

523 for temperature downscaling in complex terrain. Meteor. Appl., 17, 329-339, 

524 doi:10.1002/met.177.

525 Shi, X., Z. Chen, H. Wang, D. Yeung, W. Wong, W. Woo, 2015: Convolutional LSTM 

526 Network: A Machine Learning Approach for Precipitation Nowcasting. Advances in 

527 Neural Information Processing Systems 28: Annual Conference on Neural Information 

528 Processing Systems 2015, NeurIPS 2015, 7-12 December 2015, Montreal, Quebec, 

529 Canada. Cortes, C., N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), 

530 802-810, doi:10.48550/arXiv.1506.04214.

531 Suzuki, K., T. Iwasaki, and T. Yamazaki, 2021: Analysis of systematic error in Numerical 

532 Weather Prediction of coastal fronts in Japan's Kanto Plain. J. Meteor. Soc. Japan, 99, 

Page 26 of 52For Peer Review

https://www.jma.go.jp/jma/kishou/books/nwpreport/64/chapter4.pdf


26

533 27-47, doi:10.2151/jmsj.2021-002.

534 Takada, S., 2018a: Introduction to guidance. Report of Numerical Prediction Division. 64, 

535 Japan Meteorological Agency, 3-8 (in Japanese). [Available at 

536 https://www.jma.go.jp/jma/kishou/books/nwpreport/64/chapter1.pdf.]

537 Takada, S., 2018b: Support for NWP updates. Report of Numerical Prediction Division. 64, 

538 Japan Meteorological Agency, 88-90 (in Japanese). [Available at 

539 https://www.jma.go.jp/jma/kishou/books/nwpreport/64/chapter3.pdf.]

540 Takada, S., 2018c: The impact of and response to observatory relocation. Report of 

541 Numerical Prediction Division. 64, Japan Meteorological Agency, 91-93 (in Japanese). 

542 [Available at https://www.jma.go.jp/jma/kishou/books/nwpreport/64/chapter3.pdf.]

543 Veira, A., R. Hess, S. Trepte, G. Vogt, and B. Reichert, 2017: Model Output Statistics for 

544 Point Forecasts at Deutscher Wetterdienst: Current Status and Future Developments. 

545 European Conference for Applied Meteorology and Climatology 2017, European 

546 Meteorological Society, EMS2017-378. [Available at 

547 http://meetingorganizer.copernicus.org/EMS2017/EMS2017-378-1.pdf.]

548 Wakayama, I., T. Imai, T. Kitamura, and K. Kobayashi, 2020: About estimated weather 

549 distribution. Weather service bulletin, 87, Japan Meteorological Agency, 1-18 (in 

550 Japanese). [Available at 

551 https://www.jma.go.jp/jma/kishou/books/sokkou/87/vol87p001.pdf.]

552 Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International 

Page 27 of 52 For Peer Review

https://www.jma.go.jp/jma/kishou/books/nwpreport/64/chapter1.pdf
https://www.jma.go.jp/jma/kishou/books/nwpreport/64/chapter3.pdf
https://www.jma.go.jp/jma/kishou/books/nwpreport/64/chapter3.pdf
http://meetingorganizer.copernicus.org/EMS2017/EMS2017-378-1.pdf
https://www.jma.go.jp/jma/kishou/books/sokkou/87/vol87p001.pdf


27

553 Geophysics Series, Vol. 100, Academic Press, 704 pp.

554 Wilson, L. J. and M. Vall´ee, 2002: The Canadian Updateable Model Output Statistics 

555 (UMOS) System: Design and Development Tests. Wea. Forecasting, 17, 206–222, 

556 doi:10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2.

557 Zurndorfer, E. A., J. R. Bocchieri, G. M. Carter, J. P. Dallavalle, D. B. Gilhousen, K. F. 

558 Hebenstreit, and D. J. Vercelli, 1979: Trends in comparative verification scores for 

559 guidance and local aviation/public weather forecasts. Mon. Wea. Rev., 107, 799-811, 

560 doi:10.1175/1520-0493(1979)107<0799:TICVSF>2.0.CO;2.

561

562

Page 28 of 52For Peer Review



28

563 List of Figures

564

565

566

567 Fig. 1 Schematic diagram of the deep convolutional neural network proposed in Kudo 

568 (2022). Only the input/output image size differs from that of Kudo (2022). The details of 

569 the operation units, such as Conv1 and Conv2, are described in Table 1.

570
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571

572

573 Fig. 2 The six target areas (jp01-06) covering the major regions of Japan. This map is 

574 based on the Digital Map 5000000 Japan and Its Surroundings (Integration) published by 

575 the Geospatial Information Authority of Japan. The bathymetric contours are derived from 

576 the General Bathymetric Chart of the Oceans (GEBCO) Digital Atlas published by the 

577 British Oceanographic Data Centre (BODC) for the Intergovernmental Oceanographic 

578 Commission (IOC) and the International Hydrographic Organization (IHO). The shoreline 

579 data are derived from the Vector Map Level 0 (VMAP0) of the National Imagery and 

580 Mapping Agency of the United States and the United States Geological Survey (USGS) 
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581 Information Services.

582

583

584

585 Fig. 3 Monthly averaged RMSEs at each observatory of temperature forecasts for the 

586 interpolated MSM, operational point-like guidance (point-like MSM-KF), interpolated 

587 DNN-based gridded prediction (DNN), and DNN-based point-like guidance forecast 

588 (DNN-KF).

589

590

591

592 Fig. 4 Average RMSEs classified by forecast lead times for the interpolated MSM, point-like 
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593 MSM-KF, interpolated DNN, and DNN-KF from January 1 to December 31, 2021.

594

595

596

597

598 Fig. 5 The relative improvements in (a) the interpolated DNN over the interpolated MSM 

599 and (b) the DNN-KF over the interpolated DNN at each observatory. Red (blue) circles 

600 represent improved (deteriorated) observatories. The test period is from January 1 to 

601 December 31, 2021.

602
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603

604

605 Fig. 6 (a) Surface temperatures in the Kanto (jp03) region at 15 LST on December 29, 2021 

606 for the real-time estimated surface temperature (EST) distribution provided by the JMA 

607 (contours and color shading), (b) the temperature forecast of the MSM (contours) and its 

608 differences from the EST (color shading), (c) the forecast of the gridded MSM-KF 

609 (contours) and its differences from the EST (color shading), and (d) the forecast of the 

610 DNN (contours) and its differences from the EST (color shading). The forecasts are 

611 initialized at 21 LST on December 28, 2021.

612

Page 33 of 52 For Peer Review



33

613

614

615 Fig. 7 Time series of temperatures for in-situ observations (OBS), the interpolated MSM 

616 forecast, point-like MSM-KF, interpolated DNN, and DNN-KF at Nerima (shown in Fig. 6), 

617 initiated at 21 LST on December 28, 2021.

618
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619

620

621 Fig. 8 Same as Fig. 6 but for the projection time at 12 LST on July 1, 2022 and the initial 

622 time at 15 LST on June 30, 2022.

623
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624

625

626 Fig. 9 Same as Fig. 7 but for the initial time at 15 LST on June 30, 2022 at Tokyo (shown in 

627 Fig. 8).

628
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629

630

631 Fig. 10 Interannual changes in (a) MEs and (b) RMSEs of temperature forecasts at each 

632 observatory in the Kanto region for the interpolated MSM, interpolated DNN, and 

633 DNN-KF predictions at 15 LST from 2020 to 2022 in summer.

634
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635

636

637 Fig. 11 Same as Fig. 6 but for the northernmost region of Japan (jp01, jp02) with a 

638 projection time at 06 LST on November 16, 2021 and an initial time at 21 LST on 

639 November 14, 2021.
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641

642

643 Fig. 12 Same as Fig. 7 but for the initial time at 21 LST on November 14, 2021 at Shibecha 

644 (shown in Fig. 11).

645
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647 List of Tables

648

649 Table 1. Functions and parameters used in the network shown in Fig. 1.

Unit Function Parameters

Conv2d
kernel_size = 5, stride = 1, padding = 2, number of 
channels: 7 → 32

MaxPool2d kernel_size = 2, stride = 2
BatchNorm2d number of channels: 32

Conv1

ReLU

Conv2d
kernel_size = 5, stride = 1, padding = 2, number of 
channels: 32 → 64

MaxPool2d kernel_size = 2, stride = 2
BatchNorm2d number of channels: 64

Conv2

ReLU
Linear number of units: 65536 → 4096
BatchNorm1d number of units: 4096FC1
ReLU
Linear number of units: 4096 → 65536
BatchNorm1d number of units: 65536FC2
ReLU

ConvTranspose2d
kernel_size = 2, stride = 2, padding = 0, number of 
channels: 64 → 32

BatchNorm2d number of channels: 32
ConvT1

ReLU

ConvTranspose2d
kernel_size = 2, stride = 2, padding = 0, number of 
channels: 32 → 1

BatchNorm2d number of channels: 1
ConvT2

Sigmoid

650

651
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652 Table 2. Time periods for training, validation, fine-tuning, and testing.

Dataset period

DNN-based gridded 

prediction (DNN)

DNN-based 

point-like guidance 

forecast (DNN-KF)

Oct. 8 in 2010 – Dec. 31 in 2018 training -

Jan. 1 – Dec. 31 in 2019 validation, fine-tuning -

Jan. 1 – Dec. 31 in 2020 test training

Jan. 1 – Dec. 31 in 2021 test test

653
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