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Abstract 25 

 26 

Disasters caused by heavy rainfall associated with quasi-stationary line-shaped 27 

mesoscale convective systems (MCSs) frequently occur in Japan. Thus, highly accurate 28 

quantitative precipitation forecast (QPF) information that contributes to decision-making by 29 

municipalities to issue evacuation orders is necessary. To this end, we developed a blending 30 

forecasting system (BFS) for predicting heavy rainfall associated with MCSs. The BFS 31 

blends 1-h observed rainfall and forecasts of extrapolation-based nowcasting (EXT) in the 32 

first hour and numerical weather prediction (NWP) in the second hour, predicting 3-h 33 

accumulated rainfall (P3h) and its return period (RP) of up to 2 h ahead with a higher 34 

horizontal resolution (1 km) and higher-frequency updates (every 10 min) compared to the 35 

current operational systems. A blending technique with a spatial maximum filter for tolerating 36 

forecast displacement errors (BLEDE) was applied to the predicted rainfall of EXT and NWP. 37 

To improve the accuracy of the NWP, vertical profiles of water vapor obtained with two water 38 

vapor lidars (WVLs) were assimilated into the NWP. This combination predicted rare heavy 39 

rainfall with an RP of more than 10 years in the same city where flooding occurred for a 40 

heavy rainfall event associated with quasi-stationary line-shaped MCSs in southern Kyushu 41 

on 10 July 2021. The BFS yielded such forecast information 40 min earlier than the existing 42 

warning information, indicating the potential for providing a longer lead time for evacuation. 43 
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The improvement in forecast accuracy was due to both BLEDE and WVL data assimilation 44 

(WVL-DA); however, the contribution of BLEDE was more than five times that of WVL-DA in 45 

terms of predicting the P3h for the threshold of 80 mm. Additionally, the sensitivity of the 46 

predicted rainfall to the background error covariance matrix in WVL-DA is also discussed. 47 

 48 

Keywords quantitative precipitation forecast, blending forecast, heavy rainfall, water vapor 49 

lidar, data assimilation 50 

 51 

1. Introduction 52 

Disasters caused by heavy rainfall associated with quasi-stationary line-shaped 53 

mesoscale convective systems (QSLS-MCSs) frequently occur in Japan. Such events 54 

include those in Hiroshima in August 2014 (Kato et al. 2016; Oizumi et al. 2020), northern 55 

Kyushu in July 2017 (Kato et al. 2018), and southern Kyushu in July 2020 (Hirockawa et al. 56 

2020a). Such QSLS-MCSs and associated band-shaped heavy rainfall areas with lengths 57 

of 50–300 km and widths of 20–50 km are typically referred to as “senjo-kousuitai” in Japan 58 

(Kato 2020). As municipalities issue evacuation orders during heavy rainfall, highly accurate 59 

quantitative precipitation forecast (QPF) information that contributes to decision-making by 60 

municipalities to issue evacuation orders is crucial at the municipality scale (~15 km). 61 

For heavy rainfall associated with QSLS-MCSs, it is important to predict the accumulated 62 
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rainfall with high accuracy as it is more closely related to disasters than the instantaneous 63 

rainfall intensity. For instance, 3-h accumulated rainfall (P3h) is used as one of the criteria 64 

for “information on significant heavy rainfall” issued by the Japan Meteorological Agency 65 

(JMA) (JMA 2022). 66 

Forecasting of such accumulated rainfall can be performed using blending forecasting 67 

(BF; Sun et al. 2014), which involves the use of extrapolation-based nowcasting (EXT) at 68 

the beginning of forecasting and gradually replaces it with numerical weather prediction 69 

(NWP). The forecast accuracy of NWP can be superior to that of EXT with increasing 70 

forecast time (FT) owing to the potential of NWP to predict the development and decay of 71 

rainfall. Hatsuzuka et al. (2022) statistically evaluated the prediction accuracy of P3h 72 

associated with QSLS-MCS using the JMA’s immediate, very short-range forecast of 73 

precipitation (VSRF), which is a BF. The results showed that the VSRF is useful up to FT = 2 74 

h (P3h at FT = 2 h was the sum of 1-h accumulated rainfall (P1h) of observation and 2-h 75 

accumulated rainfall of VSRF) even at the original resolution (1 km) for heavy rainfall areas 76 

of ≥ 80 mm (3 h)−1, but it does not provide useful prediction on and after FT = 3 h, even if 77 

displacement errors at municipal or larger scales (15–31 km) were tolerated. The study also 78 

demonstrated that the VSRF exhibits reduced skillfulness in the formation stage of QSLS-79 

MCSs at shorter FTs (1–2 h), a shortcoming attributed to the limitations of the extrapolation 80 

forecasts. This finding underscores the necessity to improve forecast accuracy during the 81 
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formation stage of QSLS-MCSs, as it can significantly influence the timing of warning 82 

issuance and decision-making processes related to evacuation. This study focuses on the 83 

prediction of rainfall in the formation stage of QSLS-MCSs, which is difficult but vital for the 84 

protection of the population and property. 85 

Three major problems are associated with blending prediction for forecasting heavy 86 

rainfall associated with MCS at the very short-range FT scale (several hours). The first 87 

problem is the underestimation of rainfall owing to displacement errors of forecasts (Hwang 88 

et al. 2015; Fukuhara et al. 2019). If the two forecasting methods (i.e., EXT and NWP) for 89 

the blending prediction have different forecast displacement errors, the peak of accumulated 90 

rainfall is underestimated by simply blending the two forecasts using only the temporal 91 

weight (Hwang et al. 2015). This may result in the failure to predict the potential disaster 92 

resulting from heavy rainfall. Therefore, a blending technique for tolerating forecast 93 

displacement errors (BLEDE) is required to modify rainfall distribution by considering the 94 

displacement errors of the two types of forecasts (Shimizu et al. 2020; Kato et al. 2021). The 95 

second problem is the insufficient accuracy of NWP at the very short range because of spin-96 

up issues (Sun et al. 2014; JMA 2019). This problem can be alleviated by using observation 97 

data and EXT rather than NWP for calculating P3h at the beginning of the FT. The third 98 

problem, which is also related to the insufficient accuracy of NWP used in blending methods, 99 

is the insufficient observation of low-level moisture for the assimilation with NWP. Numerous 100 
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numerical simulations have reproduced moist low-level inflows into MCSs (Kato and Goda 101 

2001; Xu et al. 2012; Luo et al. 2014; Peters and Schumacher 2015; Jeong et al. 2016; 102 

Hirota et al. 2016; Zhang et al. 2019; Kawano and Kawamura 2020). Additionally, statistical 103 

analyses of severe precipitation events associated with MCSs have revealed that low-level 104 

moist inflows are frequently involved (Unuma and Takemi 2016; Araki et al. 2021). According 105 

to these simulations, observations, and analyses, moist low-level inflows are a typical 106 

characteristic of MCSs and are crucial for comprehending how they form and are maintained. 107 

Improved vertical representations of low-level moist inflows in the numerical models can 108 

also significantly improve the forecasts of the localized heavy rainfall associated with MCSs 109 

(Kato et al. 2003; Schumacher 2015; Peters et al. 2017; Lee et al. 2018). The assimilation 110 

of water vapor vertical profiles measured by a water vapor lidar (WVL) reportedly has a 111 

positive impact on predicting heavy rainfall associated with an MCS based on an Observing 112 

System Simulation Experiment (Yoshida et al. 2020), a real case forecast experiment 113 

associated with an MCS on a warm front (Yoshida et al. 2022), and an MCS on a stationary 114 

front (Yoshida et al. 2024). 115 

Our group has been developing a blending forecasting system (BFS) for heavy rainfall 116 

associated with MCSs (Shimizu et al. 2020). The system provides a higher-resolution 117 

(horizontal grid spacing ∆x = 1 km) and higher-frequency update (every 10 min) compared 118 

to the current operational systems. A QPF of up to 2 h ahead can support the decision-119 
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making process of municipalities in issuing evacuation orders (Shimizu et al. 2020). A unique 120 

feature of the BFS is that it also provides a return period (RP) of the accumulated rainfall. 121 

The rainfall RP is an indicator of the rarity of heavy rainfall in a given area and is widely used 122 

in risk analyses. The rainfall RP may be more useful than simple accumulated rainfall in the 123 

decision-making process of municipalities (Hirano 2019). The BFS combines the blending 124 

of observation data, EXT, and NWP with a BLEDE technique alongside the assimilation of 125 

various water vapor observation data, and it is currently being applied using data from 126 

Kyushu. Shimizu et al. (2020) previously demonstrated the effectiveness of the BFS in the 127 

formation stage of QSLS-MCSs for heavy rainfall in Saga Prefecture on 28 August 2019. 128 

However, they have not investigated the contribution of BLEDE in the blending prediction. 129 

Moreover, the assimilation impact of water vapor observation data has remained unclear 130 

because our water vapor observation instruments had not yet been installed in Kyushu at 131 

the time of the study in 2019. In 2020, two WVLs were installed in Kyushu, enabling real-132 

time assimilation of vertical profiles of water vapor. 133 

On 10 July 2021, a back-building (BB) type of QSLS-MCS involving a band-shaped heavy 134 

precipitation area, a so-called senjo-kousuitai, occurred in Kagoshima Prefecture. The JMA 135 

announced “information on significant heavy rainfall,” which indicates the occurrence of 136 

senjo-kousuitai, in the Satsuma region of Kagoshima Prefecture in Kyushu (JMA 2021). 137 

Rivers overflowed in the Kagoshima Prefecture, causing substantial damage, such as 138 
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inundation above the floor level of houses (Kagoshima Prefecture 2022). In this study, we 139 

provided the details of the BFS (section 2: Data and method) and elucidated the contribution 140 

of the BLEDE and WVL data assimilation (WVL-DA) to the QPF (section 3: Results) of this 141 

event. The sensitivity of the predicted rainfall to the background error covariance matrix (B) 142 

in WVL-DA is also discussed (section 4: Discussion). This is the first study to demonstrate 143 

the effectiveness of BLEDE and WVL-DA for 2-h-ahead QPF of heavy rainfall associated 144 

with QSLS-MCSs. 145 

 146 

2. Data and methods 147 

 148 

2.1 BFS with the BLEDE 149 

The BFS is a unique system that blends P1h of observations, EXT, and NWP with the 150 

BLEDE to predict P3h at FT = 2 h. For the past 1 h of P3h of blending prediction (FT = −1–151 

0 h), we used the observed rainfall from X-band multiparameter (X-MP) radars of the 152 

eXtended RAdar Information Network (XRAIN; Godo et al. 2014) operated by Japan’s 153 

Ministry of Land, Infrastructure, Transport and Tourism. To resolve the spin-up problem of 154 

NWP, the blending prediction applies P1h from FT = 0–1 h of the JMA high-resolution 155 

precipitation nowcasts (Kigawa 2014; Kato et al. 2017a) as EXT for FT = 0–1 h of the BF. 156 

The P1h from FT = 1–2 h of Cloud Resolving Storm Simulator (CReSS; Tsuboki and 157 
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Sakakibara 2002) was used as the NWP model with the DA for FT = 1–2 h of the BF. The 158 

NWP settings were nearly identical to those used by Kato et al. (2018), who investigated the 159 

predictability of the July 2017 northern Kyushu heavy rainfall with the same horizontal grid 160 

spacing of ∆x = 1 km. The NWP calculation domain (thick box in Fig. 1) covered the Kyushu 161 

area with ∆x = 1 km, which was slightly narrower than that from the calculation domain of 162 

Kato et al. (2018). The NWP calculation domain was the same as the blending prediction 163 

domain. The model top was 20.6 km, a height that exceeds the 17.2 km used by Kato et al. 164 

(2018). Horizontal and vertical grid points of NWP were 464 × 480 × 50. 165 

For the forecasted P1h of EXT and NWP, the BLEDE was applied to alleviate the 166 

underestimation of the peak value of accumulated rainfall for the BF (Shimizu et al. 2020; 167 

Kato et al. 2021). For BLEDE, a spatial maximum filter was applied to replace the rainfall at 168 

each grid point with the maximum value within the L × L km2 around the grid point. Note that 169 

L is preferably determined based on a statistical scale of displacement error for each 170 

forecast. The spatial maximum filter enabled the expansion of the heavy rainfall area of each 171 

forecast. This allowed for predicting the peak of the accumulated rainfall in the BF. The L 172 

was set to 7 km for EXT and 11 km for NWP for the BFS based on the accuracy of each 173 

prediction for the northern Kyushu heavy rainfall in July 2017 (Shimizu et al. 2020). Note 174 

that the BF product of P3h is created by simply adding together the P1h of the observation, 175 

the P1h of EXT with BLEDE, and the P1h of NWP with BLEDE. The temporal weight for 176 
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blending may be advanced in the future. 177 

 178 

2.2 CReSS-3DVAR 179 

The initial values of the NWP were estimated from the three-dimensional variational 180 

method (3DVAR) with incremental analysis updates (IAU) by using the CReSS (Shimose et 181 

al. 2017). Note that the analysis of the 3DVAR with IAU using the CReSS (CReSS-3DVAR) 182 

was conducted for a slightly wider region compared to that of the NWP (see the solid box in 183 

Fig. 1); it used ∆x = 1.5 km with horizontal and vertical grid points of 288 × 352 × 50 and 184 

produced analysis values every 10 min. The forecast values at FT = 1h of the latest JMA 185 

Local Forecast Model (LFM; JMA 2019) data available in real-time were used as the initial 186 

condition of the first guess of the CReSS-3DVAR. 187 

In the CReSS-3DVAR, analysis-forecast cycling assimilation is performed in two main 188 

steps. First, analysis values are created using background forecast values of the CReSS 189 

and observation data by employing 3DVAR with IAU. Then, background forecasts of the 190 

CReSS are conducted using the analysis values as the initial condition. Specifically, 1-h 191 

interval LFM data are used as the initial condition of the first guess to carry out analysis-192 

forecast cycles up to 90 min. To incorporate observations from multiple times into the 193 

analysis values, the analysis values output every 10 min from 40–90 min are used as initial 194 

values for NWP used in blending prediction. The WVL data, described in detail in the next 195 
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subsection, are available every 15 min and are assimilated every 10 or 20 min using the 196 

3DVAR. Specifically, in the real-time analysis-forecast cycling DA, WVL data at 00, 15, 30, 197 

45, 60, and 75 min are used in the 3DVAR to create analysis values at 10, 20, 40, 50, 70, 198 

and 80 min. For instance, consider the case of conducting an NWP with a start time of 1300. 199 

In this scenario, the forecast value at 1200, which is 1 h ahead of the LFM forecast with a 200 

start time of 1100, becomes the initial value for the analysis-forecast assimilation cycle by 201 

CReSS-3DVAR. The analysis value at 1300, 1 h after the start of the assimilation cycle, is 202 

utilized as the initial value for the NWP. In this context, four WVL profiles at 1200, 1215, 203 

1230, and 1245 are assimilated through the cycling process. 204 

The following observation data were assimilated in the CReSS-3DVAR: the vertical 205 

profiles of water vapor mixing ratio (qv) from WVLs installed at Nomozaki, Nagasaki 206 

Prefecture (hereafter referred to as Na lidar) and Shimokoshikishima, Kagoshima Prefecture 207 

(hereafter referred to as Ko lidar), radial wind of X-MP radars from XRAIN, and wind direction 208 

and speed from near-surface anemometers of the Automated Meteorological Data 209 

Acquisition System (AMeDAS) of JMA. The locations of the instruments are shown in Fig. 210 

1. 211 

The water vapor and wind fields were assimilated by the same B and observation error 212 

covariance matrix (R), described in Kato et al. (2017b), except for the R for water vapor. The 213 

off-diagonal elements of R were set to zero for simplicity, in the same manner as Kato et al. 214 
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(2017b). The value of the error variance σR2 for qv in R estimated by Yoshida et al. (2022) 215 

using the method by Desroziers et al. (2005) was σR = 0.711 g kg−1, and they used 0.75 g 216 

kg−1 as the observation error for the WVL data. This study also adopted the value of 0.75 g 217 

kg−1. In the experimental setup for this study, the assimilation increment of qv and the rainfall 218 

prediction outcome hardly changed even when the value of σR was doubled or halved. The 219 

possible reason for this small sensitivity of σR is discussed in section 4. However, there may 220 

be potential for improving analysis accuracy by estimating the observation error using the 221 

method by Desroziers et al. (2005) with the model used in this study.  222 

Regarding B for water vapor, the statistical B estimated for three summer seasons in 223 

the Kanto region of Japan using the National Meteorological Center (NMC) method (Parrish 224 

and Derber 1992) was employed, as in Kato et al. (2017b). The discussions and future work 225 

concerning the sophistication of B and R are described in sections 4 and 5, respectively. 226 

 227 

2.3 WVL data 228 

The WVLs emit vertical laser pulses at a wavelength of 355 nm with a pulse energy of 229 

200 mJ for operation. They have a repetition rate of 10 Hz, detecting N2 and H2O Raman 230 

backscattering signals and elastic backscattering from aerosols and cloud particles. The 231 

vertical profiles of qv for the WVLs are calculated based on the H2O to N2 signal ratio of the 232 

Raman backscattering signals (Sakai et al. 2019). Under cloudless conditions, the height 233 
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measurement range of the WVLs is approximately 0.2–1 km above ground level (AGL) 234 

during the daytime and approximately 0.2 km to several kilometers AGL at nighttime. The 235 

cloud base limits the maximum measurement height. More details on the specifications of 236 

the WVLs were previously provided by Sakai et al. (2019) and Shiraishi et al. (2019). We 237 

used the real-time qv data obtained with WVLs with a vertical resolution of 75 m at altitudes 238 

below 1 km and 150 m at altitudes above 1 km at a temporal resolution of 15 min. 239 

The quality control of qv was performed by rejecting the data with a measurement 240 

uncertainty α of more than 10%. The α was calculated as the ratio of Δqv to qv, and Δqv is 241 

defined in equation (2) in Sakai et al. (2019), which is the measurement uncertainty of qv 242 

estimated from the photon counts by assuming Poisson statistics and the uncertainty of the 243 

calibration coefficient. The measurement uncertainty of qv increases in locations with low 244 

water vapor concentration, within thick clouds, and due to sunlight during the day, among 245 

other factors. The value of α = 10% is smaller than the α = 30% used by Yoshida et al. (2022), 246 

who conducted a numerical simulation with WVL-DA using the Na WVL. This is because we 247 

performed assimilation every 10 min and averaged the data over a shorter 15-min interval 248 

rather than the 20 min of Yoshida et al. (2022). As a result, using α = 30% introduced noise 249 

into the data. After checking several months of WVL observation data, we found that α = 250 

10% virtually eliminates the inclusion of noise. To be cautious, we confirmed no noise in the 251 

data to be assimilated after conducting quality control with α = 10% in our experiments. 252 
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Reducing the value of α leads to more data being excluded, especially at higher altitudes; 253 

therefore, developing more advanced quality control methods for qv of WVL data will be a 254 

future work. 255 

For the analysis of CReSS-3DVAR used for the CReSS forecast initialed at 0100 256 

Japan Standard Time (JST; JST = UTC + 9 h) on 10 July 2021, the assimilation cycle started 257 

1 h before the start time of the CReSS forecast (0000 JST on 10 July 2021), and at most, 258 

four profiles (0000, 0015, 0030, and 0045 JST) were assimilated to create the analysis. The 259 

WVL data obtained with Na lidar had no missing data, with all four profiles being assimilated, 260 

while the WVL data obtained with Ko lidar had missing data in real-time, with only one profile 261 

at 0000 JST assimilated. In these valid profiles, the previously mentioned quality control 262 

excluded data with α > 0.1, where the uncertainty in estimating qv is large. 263 

 264 

2.4 Settings of forecast experiment 265 

In this paper, we show results with the initial time at 0100 JST on 10 July 2021 for the 266 

CReSS forecast, focusing on the formation stage of the MCS. To create the initial value of 267 

the CReSS forecast, the assimilation cycle of CReSS-3DVAR was started at 0000 JST on 268 

10 July 2021 using FT = 1 h of the LFM initialized at 2300 JST on 9 July 2021. The LFM 269 

forecast values were also utilized as boundary conditions of the CReSS forecast. 270 

The forecast with the initial time set at 0100 JST was selected based on evaluating 271 
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the forecast results at 10-min intervals. This forecast showed that, in the P3H of the blended 272 

forecast after applying BLEDE, the line-shaped precipitation area predicted near the location 273 

where the flood occurred expanded, and for the first time, the RP exceeded 10 years, 274 

indicating a heightened risk of disaster at that moment. However, within the forecasts using 275 

the analysis with drying increments added by the Ko lidar, there were time periods when the 276 

forecast accuracy using the Ko WVL-DA was lower compared to the accuracy without using 277 

the Ko WVL-DA. Therefore, the assimilation of WVL data was not successful in all time 278 

periods, and whether the assimilation of WVL data consistently provides a statistically 279 

positive effect on the prediction of QSLS-MCSs remains an issue to be investigated in future 280 

studies. 281 

 282 

2.5 Return period calculation 283 

The BFS also allows for the calculation of the RP of the blended P3h. RP is referred to as 284 

the average recurrence interval of X mm of P3h if the frequency of P3h of ≥ X mm between 285 

occurrences is estimated to be RP years. A long RP indicates that rainfall is rare in the given 286 

area, with a high disaster probability due to heavy rainfall. However, it should be noted that 287 

as the RP was calculated using the probability distribution function estimated from 288 

Radar/Raingauge-Analyzed Precipitation of JMA (Nagata 2011) for the past 28 years (1989–289 

2016) (Hirano 2019), a RP significantly exceeding 28 years may be relatively inaccurate, 290 
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and the absolute value of RP should be used with caution. 291 

 292 

2.6 Verification method 293 

A quantitative accuracy evaluation was conducted for forecasted rainfall using XRAIN 294 

data as true values. The XRAIN data with a resolution of ∆x = 0.25 km were interpolated to 295 

the NWP grid with a resolution of ∆x = 1.0 km using bilinear interpolation, and the 296 

accumulated rainfall was calculated and compared with the forecasted accumulated rainfall. 297 

The accuracy evaluation metrics included the ratio of the domain-averaged forecasted 298 

rainfall to the domain-averaged observed rainfall and traditional grid-scale categorical 299 

verification statistics (e.g., Wilks 2006), such as the critical success index (CSI), probability 300 

of detection (POD), false alarm ratio (FAR), and bias score (BIAS). 301 

 302 

3. Results 303 

 304 

3.1 Synoptic situation and WVL observations 305 

Figure 2a shows a surface weather map at 0300 JST on 10 July 2021. The Baiu front was 306 

located in the north of Kyushu at 200–300 km away from the southern Kyushu area, where 307 

heavy rainfall associated with the MCS occurred. According to the analysis value of LFM at 308 

950 hPa at 0000 JST on 10 July 2021 (Fig. 2b), moist air (qv > 19 g kg−1) flowed from the 309 
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southwest into the southern Kyushu area. 310 

Figures 3 and 4 show the qv obtained with WVLs and LFM (FT = 1 h) used for the initial 311 

values of CReSS-3DVAR above the Ko and Na WVL stations, respectively. An increase of 312 

qv from approximately 16 to 20 g kg−1 was observed below 500 m altitude from 1800 JST 313 

on 0900 July to 0000 JST on 10 July as measured by the WVL at Ko (Fig. 3a), while the qv 314 

of the LFM showed no such increase (Fig. 3b). Figure 3c represents the difference in qv 315 

between the WVL and the LFM, showing that the qv obtained with the Ko lidar were lower 316 

(drier) than those obtained using the LFM at altitudes below 500 m before 2300 JST, but 317 

they were higher (moister) than the LFM at 0000 JST, when it was used for assimilation. The 318 

qv vertical profile at 0000 JST (Fig. 3d) shows that the WVL observation was moister below 319 

600 m by up to 1 g kg−1. The qv obtained with the WVL at Na (Fig. 4a) did not show significant 320 

temporal changes compared to the Ko lidar and was approximately 16 g kg−1 at an altitude 321 

of 500 m at 0000 JST on 10 July. The WVL observation above the Na station was drier than 322 

that of the LFM in lower layers (~250–1000 m) by up to 2 g kg−1 at 0000 JST on 10 July (Fig. 323 

4d). 324 

 325 

3.2 Application of the BLEDE in the context of blending forecast with WVL-DA 326 

Figure 5 shows the evaluation of the BLEDE technique through the process of the BF with 327 

WVL-DA. We identified a gap between the peak of the P1h of the northwestern band (red 328 
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ellipse) based on EXT (Fig. 5g) and that based on NWP (Fig. 5h). The BF of P3h (Fig. 5i), 329 

derived from adding P1 of observation (Fig. 5f), EXT without BLEDE (Fig. 5g), and NWP 330 

without BLEDE (Fig. 5h) predicted only a narrow rainfall area of exceeding 80 mm with its 331 

peak < 100 mm, exhibiting its peak of RP < 5 years (Fig. 5j). At the same time, the 332 

application of the BLEDE with spatial maximum filter to the P1h of EXT and NWP indicated 333 

that the heavy rainfall area of P1h of EXT and NWP expanded (Figs. 5l and 5m). 334 

Furthermore, the predicted P3h with BLEDE (Fig. 5n) revealed a broader band-shaped 335 

rainfall area exceeding 80 mm with its peak > 120 mm, exhibiting its peak of RP > 10 years 336 

(Fig. 5o). 337 

The RP > 10 years area was predicted for Isa City (green line in Fig. 5e), Kagoshima 338 

Prefecture, where flooding was reported (Kagoshima Prefecture 2022). The blending 339 

prediction was completed by 0110 JST on 10 July 2021, and the landslide alert information, 340 

which was one of the criteria for a municipality to issue an evacuation order, was announced 341 

by the Kagoshima Prefecture and the JMA at 0150 JST on the same day for Isa City. This 342 

suggests that the system has the potential to provide 40 min of additional early lead time for 343 

evacuation than existing warning information, although further research needs to be done 344 

to determine what RP will cause disasters. 345 

 346 

3.3 Comparison of blending rainfall predictions with and without WVL-DA and BLEDE 347 
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To investigate the contribution of BLEDE and WVL-DA to blending rainfall forecast 348 

accuracy, we quantitatively compared forecast accuracy for the verification area shown in 349 

Fig. 6 using P3h = 80 mm as a threshold, which is one of the definitions of senjo-kousuitai 350 

(Hirockawa et al. 2020b). Figure 6 illustrates P3h at 0300 JST on 10 July 2021 for 351 

observation, along with the resulting predictions with and without WVL-DA and BLEDE. The 352 

observation (Fig. 6a) revealed band-shaped rainfall areas with P3h > 80 mm, while BFs 353 

without BLEDE (Figs. 6d and 6e) showed a large underestimation of the area with P3h > 80 354 

mm regardless of WVL-DA. On the other hand, the application of BLEDE (Figs. 6b and 6c) 355 

reduced the underestimated bias of P3h > 80 mm, and its shape was closer to the 356 

observation. Quantitatively, with WVL-DA, CSI was 0.16 without BLEDE, whereas with 357 

BLEDE, CSI was 0.49, an improvement of 0.33. 358 

On the other hand, the prediction results with and without WVL-DA were not as 359 

significantly different as those with and without BLEDE; however, the accuracy was slightly 360 

better with WVL-DA. Specifically, the northern P3h > 80 mm band was closer to the 361 

observation with WVL-DA (Fig. 6b), located more to the southwest than that without WVL-362 

DA (Fig. 6c). Quantitatively, with BLEDE, the change in the forecast accuracy indices from 363 

without WVL-DA to with WVL-DA was POD = 0.57 to 0.64, FAR = 0.36 to 0.31, BIAS = 0.90 364 

to 0.93, and CSI = 0.43 to 0.49, indicating that POD, FAR, and BIAS improved, resulting in 365 

an improvement in prediction accuracy CSI. However, the improvement in CSI accuracy by 366 
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WVL-DA was 0.06, which was smaller than the improvement by BLEDE of 0.33. In summary, 367 

the improvement in forecast accuracy was due to both BLEDE and WVL-DA, but the 368 

contribution of BLEDE was more than five times greater than that of WVL-DA in terms of the 369 

prediction of P3h for the threshold of 80 mm. 370 

 371 

3.4 Assimilation impact of WVL data on NWP 372 

The assimilation impact of WVL data on NWP was further examined. The predicted P1h 373 

(Figs. 7b and 7c) underestimated the observations (Fig. 7a) by ~36–39 mm for the maximum 374 

value regardless of WVL-DA; however, the average rainfall in the area shown in the figure 375 

increased by about 20% from 1.4 mm to 1.7 mm due to the WVL-DA, and the heavy rainfall 376 

area of > 20 mm h−1 predicted downstream of Ko moved more upstream and closer to the 377 

observation in the experiment with WVL-DA than without WVL-DA. The CSI with a threshold 378 

of 20 mm for P1h increased from 0.02 to 0.06, indicating a slight increase in forecast 379 

accuracy by WVL. The underestimation of forecasted rainfall and the positive impact of 380 

WVL-DA on both location and values of forecasted rainfall was consistent with the result of 381 

Yoshida et al. (2022), who revealed that the forecasted 6-h accumulated rainfall for heavy 382 

rainfall associated with BB-type MCS was underestimated; however, location and maximum 383 

value were slightly modified by WVL-DA. 384 

 385 
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3.5 Water vapor mixing ratio comparison 386 

Figure 8 illustrates the difference in water vapor mixing ratio (qv-diff) between the analysis 387 

values of CReSS-3DVAR with and without WVL-DA. The assimilation of the WVL data 388 

caused the increase of qv > 0.5 g kg−1 around the Ko lidar and the decrease of 389 

qv < −1.5 g kg−1 around the Na lidar at 550 m AGL at 0010 JST on 10 July 2021, immediately 390 

after the assimilation of first vertical profiles of WVLs (dashed lines in Figs. 3a and 4a; Fig. 391 

8a). The altitude of 550 m AGL was selected because the water vapor flux at an altitude of 392 

500 m closely related to heavy precipitation (Kato 2018), and it was the closest to the 500 393 

m in our forecast experiments. The vertical cross-section (Fig. 8b) along the dashed line in 394 

Fig. 8a indicates that an increase and decrease in qv was mainly confined below 1500 m. 395 

The areas of the increase in qv were advected downstream (to the northeast) by the 396 

background southwesterly wind at the start time of NWP at 0100 JST on 10 July 2021 (Fig. 397 

8c). The time integration of the NWP model in the CReSS-3DVAR analysis-forecast 398 

assimilation cycle produces convections with local water vapor variations (e.g., the positive 399 

water vapor anomaly at 31.8° latitude and 1700 m altitude in Fig. 8d). The qv increase was 400 

around the northeast of the Ko lidar and upstream of the rainfall area of P1h (green and red 401 

contours in Fig. 8c) predicted by the NWP with WVL-DA without BLEDE (Fig. 7b) from 0200 402 

JST to 0300 JST on 10 July 2021 (FT = 1–2 h) used in the BF. The qv increase was 403 

consistent with the increase of area-averaged rainfall of P1h (FT = 1–2 h) predicted by the 404 
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NWP due to the WVL-DA. An additional experiment without Na WVL-DA showed that the 405 

rainfall prediction was almost the same as that in the case of both Ko and Na WVLs. These 406 

results indicate that humidification below the lower 1000 m altitude by assimilating the Ko 407 

WVL data resulted in an increase in area-averaged rainfall and improved accuracy of P1h. 408 

 409 

4. Discussion  410 

 411 

4.1 Sensitivity experiments on the background error covariance matrix (B) in WVL-DA 412 

In the 3DVAR assimilation method used in BFS, B, which expresses the error characteristics 413 

of the model, plays an important role in producing the initial analysis values for the forecast. 414 

The results presented so far have used B estimated by the NMC method for the summer 415 

season in the Kanto region; the NMC method estimates B from the statistics of forecast 416 

errors between different forecast lead times. However, such climatological values of B may 417 

not fully capture the error characteristics under rainy season conditions when QSLS-MCSs 418 

occur over the sea in Kyushu. Therefore, to explore the possibility of further improving 419 

forecast accuracy through the assimilation of WVL data, we discuss the changes in the 420 

predicted rainfall based on the setting of B. 421 

 422 

a. Settings of sensitivity experiments on B 423 
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To investigate the sensitivity of WVL-DA to B, experiments were conducted by arbitrarily 424 

assigning a Gaussian function to B for pseudo-relative humidity in both vertical and 425 

horizontal directions. Pseudo-relative humidity is defined by scaling the mixing ratio by the 426 

background saturation mixing ratio. In these experiments, we focused on the length scales 427 

of vertical and horizontal error correlations (Lz and Lh), as well as the amplitude of error 428 

variance (σB2) for pseudo-relative humidity, and carried out three types of sensitivity 429 

experiments: 430 

(1) Sensitivity to Lz: Lz = 0.5, 1.0, 1.5, and 2.0 km (Lh = 20 km, σB = 3.16%) 431 

(2) Sensitivity to Lh: Lh = 10, 15, 20, and 25 km (Lz = 1.5 km, σB = 3.16%) 432 

(3) Sensitivity to σB: σB = 1.58, 3.16, and 6.32% (Lz = 1.5 km, Lh = 20 km) 433 

For the vertical component of B, we used a kernel function with the following distribution: 434 

, 435 

where hi and hj are the altitudes of the ith and jth matrix elements of the error covariance 436 

matrix, hp is the peak altitude, and Lp is the length scale that controls the peak width. The 437 

second exponential function ensures symmetry between i and j. It adopts a Gaussian 438 

function when i = j analogous to the first exponential function. In this experiment, the 439 

amplitude of the error variance was set to be maximum at the lowest level of the model (hp 440 

= 0 km), consistent with the structure of B obtained using the NMC method described below, 441 



 

 
24 

 

and to decrease with the length scale Lp from there toward the upper level. For simplicity, 442 

Lp was set equal to Lz. The same k was used in the sensitivity experiments for Lh and σB 443 

as in the case of the Lz sensitivity experiment, with Lz = 1.5 km. As the sensitivity to σB was 444 

found to be very small in the sensitivity experiment, the sensitivity to Lh and Lz is presented 445 

below. 446 

To demonstrate the validity of the parameters given here, we describe the structure of B 447 

obtained by the NMC method. First, for the vertical component of B calculated by the NMC 448 

method, the vertical e-folding scale, which is equivalent to Lz, averaged at altitudes below 449 

1 km was 0.5 km. The amplitude of the diagonal component of the error covariance reaches 450 

a maximum value of σB2 = 3.7 %2 (σB = 1.9 %) at the lowest layer and decays to around 2 451 

km in altitude, with an e-folding scale, which is equivalent to Lp, was 1.3 km. However, it 452 

maintained an amplitude of σB2 = 1.0 to 2.6%2 from altitudes of 2 km to 10 km and became 453 

nearly zero above 11 km. The e-folding scale of the horizontal component of B, which is 454 

equivalent to Lh, calculated by the NMC method was 11 km for the vertical first mode of 455 

empirical orthogonal functions and < 4 km for subsequent modes. 456 

In this idealized experiment section, we aimed to investigate the sensitivity of predicted 457 

precipitation amounts to the structure of B. Therefore, we conducted experiments using 458 

standard values larger than those estimated by the NMC method, which could yield a more 459 

significant impact. The standard values used were Lh = 20 km, Lz = Lp = 1.5km, σB2 = 10%2 460 
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(σB=3.16%). The setting most similar to the structure of B obtained with the NMC method 461 

was Lh = 10 km, Lz = 0.5km, Lp = 1.5 km, σB = 1.58 %. Future work should statistically 462 

verify whether the standard values adopted for the idealized experiments are appropriate 463 

for the environment in which QSLS-MCSs occur. 464 

 465 

b. Results of sensitivity experiment on B 466 

 Figure 9 shows the results for Lz = 0.5 km and Lz = 1.5 km as a representative example 467 

of the sensitivity to Lz. With the assimilation of low-level water vapor data obtained from the 468 

Ko WVL observations, the increment of qv became positive and moistened around the Ko 469 

WVL (Fig. 9c). Examining the vertical distribution of this positive increment of qv near Ko 470 

WVL, we find that while the increment of qv only reached up to approximately 1.5 km for Lz 471 

= 0.5 km (Fig. 9a), it increased up to approximately 4 km for Lz = 1.5 km (Fig. 9b), indicating 472 

that more water vapor was added through assimilation. The P1h of NWP for FT = 1–2 h was 473 

greater for Lz = 1.5 km (Fig. 9e) than Lz = 0.5 km (Fig. 9d), consistent with the greater 474 

moistening for Lz = 1.5 km. The P3h with BLEDE was also larger for Lz = 1.5 km (Fig. 9h) 475 

compared to Lz = 0.5 km (Fig. 9g) and closer to the observations (Fig. 9i). 476 

 Figure 10 shows the sensitivity of forecasted rainfall to Lz quantitatively using the area-477 

average rainfall ratio R (Fig. 10a) and CSI (Fig. 10b). R monotonically increased with the 478 

increase of Lz for both P1h and P3h, consistent with the increased humidification amount 479 
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with the assimilation of Ko WVL data. Though the area-average rainfall of P1h was 480 

significantly underestimated in all experiments (R < 50%), that of the blended P3h with 481 

BLEDE was almost comparable to the observation (R ~ 100%) for Lz = 0.5 km, slightly 482 

overestimated as Lz increased. Forecast accuracy, as seen in P1h’s CSI for the threshold 483 

of 20 mm, monotonically increased from Lz = 0.5 km (CSI=0.03) to Lz = 1.5 km (CSI = 0.23), 484 

with the latter being the maximum. The CSI for P3h for the threshold of 80 mm also 485 

monotonically increased from Lz = 0.5 km (CSI=0.48) to Lz = 1.5 km (CSI=0.63), with the 486 

latter being the maximum. 487 

 The sensitivity to Lh showed similar trends to that of Lz. Figure 11 presents representative 488 

examples of sensitivity to Lh, showing the results for Lh = 10 km and Lh = 20 km. The 489 

increment of qv added around Ko WVL by WVL-DA was wider for Lh = 20 km (Fig. 11b) 490 

compared to Lh = 10 km (Fig. 11a), indicating more widespread moistening. P1h and P3h 491 

were larger for Lh = 20 km than Lh = 10 km. Quantitatively, the area-average rainfall 492 

increased with Lh for both P1h and P3h (Fig. 12a). Moreover, forecast accuracy was 493 

minimum at Lh = 10 km (CSI = 0.45 for P3h) and maximum at Lh = 20 km (CSI = 0.63 for 494 

P3h).  495 

 The results of these sensitivity experiments revealed that the forecast results can vary 496 

significantly depending on how the vertical and horizontal structures of B are defined. In 497 

particular, with the settings of Lh = 20 km and Lz = 1.5 km, the CSI for P3h is 0.63, which is 498 
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clearly more accurate compared to the CSI of 0.49 obtained using the B estimated by the 499 

NMC method. Therefore, depending on the settings of B, not only the BLEDE but also the 500 

assimilation of WVL-DA could greatly contribute to improving forecast accuracy. 501 

 502 

c. Discussion on sensitivity experiments for B 503 

 The Ko WVL data used in this DA experiment were restricted to the lower layer below an 504 

altitude of 600 m, perhaps due to the presence of clouds aloft. As a result, increasing Lz 505 

extended the increment of lower-level humidification to the upper atmosphere, significantly 506 

impacting the forecasted rainfall. However, without humidifying observations above 600 m 507 

altitude, this impact would likely have been smaller. As there was no valid Ko WVL data 508 

above 600 m in this experiment, it is not possible to discuss the optimal value of Lz based 509 

on forecast accuracy. 510 

 If clouds are above the WVL, observations are limited to below the cloud base. The 511 

possibility of such a limitation is expected to be high in an environment where QLSL-MCSs 512 

occur. The results of this sensitivity experiment suggest that using a large Lz when 513 

observations above the cloud base are not available may lead to the erroneous spreading 514 

of lower-level observations to the upper atmosphere, which may negatively affect the 515 

accuracy of forecasts. Therefore, the appropriate selection of Lz is vital for effectively 516 

utilizing limited WVL observation data. Moreover, the potential differences in NWP error 517 



 

 
28 

 

characteristics due to differences between sea and land, as well as environmental variations, 518 

must also be considered. As the influence on forecast accuracy is significant for both Lh and 519 

Lz, the optimal selection of Lh and Lz is an important future work. 520 

 521 

4.2 Bias correction for qv 522 

In the results of this study, we presented outcomes without implementing bias 523 

correction for qv of WVL data. To investigate the qv bias, we calculated the O–B (observation 524 

minus background field) over a two-week period from July 9 to July 22, 2021. The results 525 

revealed qv biases of −0.60 g kg−1 for Ko WVL and −0.70 g kg−1 for Na WVL, confirming the 526 

presence of a drying bias in WVL compared to the model’s first guess, which largely reflects 527 

the LFM’s 1-h-ahead forecast. Furthermore, the qv bias depended on the qv values and 528 

altitude, and this drying bias exhibited larger values below an altitude of 1 km. Therefore, if 529 

bias correction were to be implemented, it would involve increasing the observed qv below 530 

1 km and adding a correction in the direction of moistening. In the results presented in this 531 

paper, even without bias correction, the assimilation of Ko WVL led to moistening increments 532 

below an altitude of 600 m. If bias correction had been applied, the humidification increments 533 

would likely have been greater. Even when assimilating Ko WVL and adding humidity, the 534 

rainfall amounts forecasted by NWP were significantly underestimated. Therefore, it is 535 

conjectured that an increase in qv through bias correction would work toward improving 536 
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forecast accuracy, and the essence of the result that WVL-DA could enhance forecast 537 

accuracy would remain unchanged. The qv bias depended on qv values and altitude, 538 

therefore a detailed examination of the bias correction method is necessary. Rather than a 539 

fixed-value correction, it is hypothesized that a linear regression correction dependent on qv 540 

values and/or altitude might yield more accurate analysis values. The examination and 541 

application of such bias correction techniques are areas we would like to address in future 542 

work. Additionally, as the JMA’s improvement of LFM may alter the characteristics of the 543 

lower-level water vapor bias, it is desirable to perform bias correction each time LFM is 544 

refined. This is because the forecast values of the LFM are utilized as the initial and 545 

boundary conditions for CReSS, which provides the background forecast in the assimilation 546 

process. 547 

 548 

4.3 Potential reasons for the small influence of σR 549 

In the experimental setup for this study, the assimilation increment of qv and the rainfall 550 

prediction results hardly changed even when the value of σR was doubled or halved as 551 

described in section 2. Potential reasons for this small sensitivity to σR could be that i) the 552 

assimilation system was set up to emphasize observational data and ii) that oversaturated 553 

observational data were assimilated. 554 

With respect to reason i), the degree to which the assimilated results approach the 555 
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observations and the model (background field) in a 3DVAR system generally depends not 556 

only on the ratio of σR and σB, but also on the structure of B and R, especially on the structure 557 

of the off-diagonal component, which indicates spatial correlation. In the present setup, R 558 

contained the diagonal component only, while B contained the off-diagonal component and 559 

accounted for spatial correlations. The analytical values in this experiment were very similar, 560 

independent of whether σR was doubled or halved, and much closer to the observed data 561 

than to the background field. This suggests that the settings of σR, σB, B, and R for this 562 

3DVAR assimilation system particularly emphasized observational data. 563 

We respect to reason ii), the pseudo-relative humidity RH* that was calculated from the 564 

background field was close to saturation, with an RH* above 96% for all assimilated Ko 565 

WVL observations below an altitude of 0.6 km. In particular, two points at an altitude 566 

around 0.4 km were slightly oversaturated. The assimilation of these observations resulted 567 

in nearly the same RH* profile after assimilation, even when σR was doubled or halved, 568 

which was approximately saturated at altitudes between 0.4 and 1.2 km. This assimilation 569 

of oversaturated observations and the use of approximately saturated initial conditions 570 

could have resulted in little difference in the results of the precipitation predictions among 571 

the sensitivity experiments related to σR. 572 

Although the sensitivity of the predicted rainfall to σR was small in this experimental setup, 573 

the sensitivity could be larger depending on environmental field conditions and the settings 574 
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of B and R. Therefore, using the method of Desroziers et al. (2005), the accuracy of the 575 

analysis and forecasts could be improved by estimating σR with the model employed in the 576 

current study, which is a topic for future work. 577 

 578 

5. Concluding remarks 579 

Recently, disasters caused by heavy rainfall associated with QSLS-MCS have become 580 

frequent. Thus, high-accuracy prediction of such events is necessary. To this end, we 581 

developed the BFS for heavy rainfall associated with MCS. The forecast system blends 1-h 582 

observed rainfall and forecasts of EXT in the first hour and NWP in the subsequent hour. 583 

Thus, P3h and its RP up to 2 h ahead with a higher horizontal resolution (1 km) and higher-584 

frequency updates (every 10 min) compared to the current operational systems was 585 

predicted. The BLEDE was applied to the predicted rainfall of EXT and NWP to alleviate the 586 

underestimation of the peak value of accumulated rainfall for the BF. The vertical profiles of 587 

water vapor from two WVLs (Ko and Na) were assimilated into the NWP along with the wind 588 

observations from X-band MP radars and near-surface anemometers from AMeDAS. The 589 

analysis of rainfall, associated with a BB-type QSLS-MCS on 10 July 2021, indicated that 590 

the BFS yielded the prediction of a rare heavy rainfall with RP > 10 years in the same city 591 

where flooding occurred. Notably, the system yielded such forecast information 40 min 592 

earlier than the existing warning information, indicating the potential to provide more 593 
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evacuation time. The improvement in forecast accuracy was due to both BLEDE and WVL-594 

DA; however, the contribution of BLEDE was more than five times greater than that of WVL-595 

DA in terms of the prediction of P3h for the threshold of 80 mm. This is the first study to 596 

demonstrate the effectiveness of BLEDE and WVL-DA for 2-h ahead forecasting of heavy 597 

rainfall associated with QSLS-MCS. 598 

In the discussion section, sensitivity experiments for WVL-DA by varying the horizontal 599 

structure, vertical structure, and amplitude of B for pseudo-relative humidity showed that the 600 

predicted rainfall can vary significantly depending on how the vertical and horizontal 601 

structure of B is set. Particularly, in environments where QSLS-MCSs occur and clouds exist 602 

above the WVL, limiting the WVL observations to below the cloud base can pose challenges. 603 

Giving a large vertical scale of the Gaussian function of B (Lz) may erroneously spread the 604 

lower-layer observations aloft. This could possibly adversely affect forecast accuracy. This 605 

suggests that the appropriate selection of Lz is vital for effectively utilizing limited 606 

observation data of WVL. In addition, in this case, not only Lz but also the horizontal scale 607 

of the Gaussian function of B (Lh) had a significant impact on forecast accuracy, indicating 608 

that the optimal determination of B through the optimal selection of Lh and Lz holds the 609 

potential to substantially improve precipitation forecast accuracy through DA. Research and 610 

development toward its realization are important future tasks. 611 

We highlight future challenges for selecting the optimal B. First, within the framework of 612 
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3DVAR used in this study, it is necessary to carry out the NMC method for the area above 613 

the sea during the rainy season in Kyushu, determine the statistically optimal Lh and Lz, 614 

and create a climatological B (Bc). However, even with a Bc, the structure of B is likely to 615 

differ between cases where QLSL-MCSs occur or not. Therefore, it would be effective to 616 

create Bc for various environments and allow automatic selection of the appropriate Bc for 617 

the current environment using a machine learning technique. In frameworks different from 618 

3DVAR, ensemble-based DA methods like the local ensemble transform Kalman filter (Hunt 619 

et al. 2007) may offer the possibility of utilizing a better B by using a flow-dependent B (Be). 620 

We also plan to advance the development of hybrid DA, combining Bc and Be (Tong and 621 

Xue 2005). 622 

Next, we describe issues related to estimating the observation error covariance matrix R 623 

for WVL-DA. The value of the error variance σR2 for qv in R was taken from the value 624 

estimated by Yoshida et al. (2022) using the method by Desroziers et al. (2005) (σR = 0.75 625 

g kg−1), and we assumed it as a constant in the vertical and time direction. As observation 626 

errors include model representation errors, it is necessary to calculate σR using the method 627 

by Desroziers et al. (2005) with the model used for DA. In the experimental setup for this 628 

study, the assimilation increment of qv and the rainfall prediction results hardly changed even 629 

when the σR of qv was doubled or halved. Therefore, the sensitivity of the prediction to σR of 630 

qv is expected to be small. As discussed in section 4, possible reasons for this small 631 
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sensitivity to σR could be that the assimilation system was set up to emphasize observational 632 

data and that oversaturated observational data were assimilated. However, in different 633 

environmental conditions, the setting of the σR may affect the prediction. As described above, 634 

by creating the optimal B and seeking the optimal R using the method by Desroziers et al. 635 

(2005), there may be potential for improving prediction accuracy. Furthermore, the 636 

uncertainty of the qv estimated by WVL changes from moment to moment, depending on 637 

the observation altitude and the presence of sunlight or cloud, among other factors. 638 

Therefore, analysis accuracy may improve by utilizing the real-time indicator α for the 639 

uncertainty of qv estimation by WVL, introducing dependence on time and vertical direction 640 

in R of qv. Additionally, in this study, R was simplified to a diagonal matrix, and all WVL 641 

observation data were used for assimilation without thinning vertically. However, assimilation 642 

with diagonal R without considering error correlation in R may have an excessive impact of 643 

the observations. When R is used as a diagonal matrix, the optimal scale of thinning in the 644 

vertical direction needs to be considered. In addition, to effectively use high-vertical-645 

resolution observation data of WVL, utilizing off-diagonal elements of R and incorporating 646 

observation error correlation may lead to an improvement in analysis and prediction 647 

accuracy. Thus, careful research is warranted regarding the estimation of R. 648 

Bias correction of qv data by WVL is one of the future challenges. In this study, we present 649 

results without performing qv bias correction between WVL and the model’s first guess, 650 
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largely reflecting the LFM’s 1-h-ahead forecast. The reason for this is that the characteristics 651 

of this bias depend on the qv values and altitude, necessitating the selection of an 652 

appropriate correction method. Even without performing this bias correction, we 653 

demonstrated that the assimilation of Ko WVL data could add moistening increments and 654 

potentially improve rainfall forecast accuracy. However, it is conjectured that bias correction 655 

could lead to further improvements. In the future, we plan to explore methods such as linear 656 

regression correction depending on altitude and/or qv values, aiming to create more 657 

accurate analysis values. Ultimately, developing a bias correction method that can flexibly 658 

respond to changes in qv bias characteristics accompanying the JMA’s improvement of LFM 659 

is desired. 660 

This study had several additional limitations. First, it addressed only a single case of 661 

heavy rainfall. Thus, long-term statistical evaluation of the prediction accuracy of the BFS is 662 

further required for a large number of MCS cases. We intend to improve the BFS by 663 

optimizing the spatial scale of the maximum filter used in the BLEDE and the blending ratio 664 

between EXT and NWP. The possibility of decreased forecast accuracy due to increased 665 

false alarms caused by applying BLEDE should also be statistically investigated. Second, 666 

improving the accuracy of EXT and NWP themselves is necessary. In particular, the 667 

accuracy of NWP can be improved by assimilating the data from the observation network, 668 

which our group recently developed at Kyushu. This network includes water vapor 669 



 

 
36 

 

observations based on digital terrestrial broadcasting waves (Kawamura et al. 2017), 670 

microwave radiometers, and wind observations by Doppler lidar. Assimilation of ground-671 

based cloud radar data (Kato et al. 2022) may also be useful for predicting MCS. Third, we 672 

hope to investigate the relationship between locations with long RPs of accumulated rainfall 673 

and locations where disasters occur (e.g., Hirano 2019), thereby evaluating the 674 

effectiveness of the RP for P3h as an indicator of high disaster potential. Improving the BFS 675 

in this way can provide more accurate forecasts of heavy rainfalls, facilitating municipalities 676 

in issuing evacuation orders during heavy rainfalls associated with MCS. 677 

  678 
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Figure Legends 860 
 861 
 862 

Fig. 1. Forecast and assimilation domain as well as location of instruments used for data 863 

assimilation. Red stars represent the locations of water vapor lidars (WVLs: Nomozaki [Na] 864 

and Shimokoshikishima [Ko]). Blue circles represent the observation range (80 km) of X-865 

band MP radars (Sakurajima, Uki, Yamaga, Kusenbu, Sugadake, Furutsuki, and Kazashi) 866 

of XRAIN. White squares represent the locations of surface anemometers of the Automated 867 

Meteorological Data Acquisition System (AMeDAS) of JMA. Different colors represent 868 

topographic elevations. 869 

 870 

Fig. 2. Synoptic conditions: (a) Surface weather map at 0300 JST on 10 July 2021 provided 871 

by JMA. (b) Water vapor mixing ratio (qv; shade) and wind (vectors) at 950 hPa at 0000 JST 872 

on 10 July 2021 from the analysis value of the local forecast model (LFM). 873 

 874 

Fig. 3. Water vapor mixing ratio (qv) above the Shimokoshikishima (Kagoshima Prefecture) 875 

water vapor lidar (WVL) station (Ko). (a) qv obtained using the WVL, (b) qv from FT = 1 h of 876 

LFM, (c) difference in qv (WVL – LFM (FT = 1 h)), and (d) vertical profile of qv for the WVL 877 

and the LFM (FT = 1 h) at 0000 JST on 10 July 2021 (dotted line in (a) and (b)). Vertical 878 

profiles of qv obtained with the WVL during the period shown in the box with the thick black 879 
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border in (a) were used for the assimilation of the CReSS-3DVAR in the creation of the 880 

objective analysis values used for the NWP forecast initial values started at 0100 JST on 10 881 

July 2021. The gray shading represents the periods for which WVL data were unavailable 882 

in real time. The data from the LFM were plotted for every hour on the hour, covering a range 883 

from 30 min before to 30 min after the hour. 884 

 885 

Fig. 4. Same data types as in Fig. 3 but for above the Nomozaki (Nagasaki Prefecture; Na) 886 

WVL station. 887 

 888 

Fig. 5. Process of the blending forecast with water vapor lidar data assimilation (WVL-DA), 889 

showing the effectiveness of the BLEDE. (a)–(c) show observation of 1-h accumulated 890 

rainfall (P1h) from XRAIN; (d) is 3-h accumulated rainfall (P3h) determined by summing (a)–891 

(c), and (e) is the return period of (d). (f) and (k) are the same as (a). (g) is P1h of EXT from 892 

high-resolution precipitation nowcasts of JMA initialized at 0100 JST on 10 July 2021, 893 

indicating that P1h is accumulated for the FT from 0 to 1 h. (h) is P1h of NWP of CReSS 894 

with WVL-DA initialized at 0100 JST on the same day, indicating that P1h is accumulated 895 

for the FT from 1 to 2 h. (i) is P3h by summing (f)–(h), and (j) is the return period of (i). The 896 

BLEDE with a spatial maximum filter of scale L = 7 km and 11 km was applied to P1h of 897 

EXT (g) and NWP (h), resulting in (l) and (m), respectively. (n) is the sum of (k)–(m), and (o) 898 
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is the return period of (n). Red ellipses represent the northwestern band. Green stars 899 

represent the locations of WVLs. The green line in (e) represents Isa City, Kagoshima 900 

Prefecture, where flooding occurred. 901 

 902 

Fig. 6. Three-hour accumulated rainfall at 0300 JST on 10 July 2021. (a) is the observation 903 

from XRAIN. (b–e) are 2-h-ahead blending forecasts initialized at 0100 JST, displayed by 904 

the 2×2 matrix of with or without water vapor lidar data assimilation (WVL-DA) and blending 905 

technique with spatial maximum filter for tolerating forecast displacement errors correction 906 

(BLEDE). Green stars represent the locations of WVLs. 907 

 908 

Fig. 7. (a)–(c) One-hour accumulated rainfall (P1h) for (a) observation by XRAIN, (b) NWP 909 

with WVL-DA, and (c) NWP without WVL-DA at 0300 JST on 10 July 2021. NWP forecasts 910 

were initialized at 0100 JST on the same day, indicating the P1h of (b) and (c) are 911 

accumulated from the FT of 1 to 2 h. The boxes in (b) and (c) indicate the area drawn in Fig. 912 

9. 913 

 914 

Fig. 8. Difference in water vapor mixing ratio (qv-diff) (shade and black contours) between 915 

the analysis values of CReSS-3DVAR with and without WVL-DA (a)–(b) at 0010 JST on 10 916 

July 2021, immediately after the first vertical profiles of WVLs were assimilated and (b)–(d) 917 
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at the start time of NWP at 0100 JST on 10 July 2021. (a) and (c) are horizontal distributions 918 

at 550 m AGL, and (b) and (d) are the vertical cross-sections along the dotted lines in (a) 919 

and (c), respectively. The contour interval of qv-diff is 0.5 g kg−1. Color contours represent 920 

P1h of NWP with WVL-DA without BLEDE (Fig. 7b) from 0200 JST to 0300 JST on 10 July 921 

2021 (FT = 1–2 h) used in the blending forecast (green: 10, 20, 30, 40, and 50 mm; red: 60 922 

mm). Stars represent the locations of water vapor lidars (WVLs). 923 

 924 

Fig. 9. Representative examples showing the sensitivity of predicted rainfall to Lz (Lz = 0.5 925 

km and 1.5 km). (a) and (b) are vertical (dotted line in c) and (c) horizontal (at altitude 550 926 

m) cross-sections of the assimilation increment of the water vapor mixing ratio (Qv-INC) for 927 

Lz = 1.5 km. (d)–(f) 1-h accumulated rainfall (P1h) for FT = 1–2 h predicted by NWP; (g)–(i) 928 

3-h accumulated rainfall (P3h) for FT = −1–2 h; The P3h of (g) and (h) are blended prediction 929 

using blended using BLEDE. (a), (d), and (g) are experiments using Lz = 0.5 km; (b), (c), 930 

(e), and (h) experiments are experiments using L = 1.5 km; (f) and (i) are XRAIN 931 

observations. 932 

 933 

Fig. 10 Sensitivity of predicted rainfall to Lz. (a) ratio of predicted area-averaged rainfall to 934 

observation (R) and (b) CSI. The verification domain for the area-averaged rainfall and CSI 935 

is the domain shown in Fig. 9d. The dashed line means P1h for NWP at FT=1–2h, and the 936 
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solid line means P3h for blending prediction with BLEDE. Sensitivity experiments (WVL-DA-937 

GAU) where the forecast error covariance matrix is approximated using Gaussian functions 938 

are shown in red lines. The threshold values for the CSI calculations are 20 mm for P1h and 939 

80 mm for P3h. For reference, the experiment using the NMC method (WVL-DA-NMC; same 940 

as the WVL-DA experiment shown in section 3) is shown by the blue line, and the experiment 941 

without assimilating water vapor lidar data (No-WVL-DA) is shown by the black line. 942 

 943 

Fig. 11 Same as in Fig. 9 but for the sensitivity to Lh; (a) and (b) are horizontal cross-sections, 944 

and (c) is the vertical cross-section for Lh = 20 km. 945 

 946 

Fig. 12. Same as in Fig. 10, but for the sensitivity to Lh. 947 



 
Fig. 1. Forecast and assimilation domain as well as location of instruments used 
for data assimilation. Red stars represent the locations of water vapor lidars 
(WVLs: Nomozaki [Na] and Shimokoshikishima [Ko]). Blue circles represent the 
observation range (80 km) of X-band MP radars (Sakurajima, Uki, Yamaga, 
Kusenbu, Sugadake, Furutsuki, and Kazashi) of XRAIN. White squares represent 
the locations of surface anemometers of the Automated Meteorological Data 
Acquisition System (AMeDAS) of JMA. Different colors represent topographic 
elevations. 



 

Fig. 2. Synoptic conditions: (a) Surface weather map at 0300 JST on 10 July 2021 
provided by JMA. (b) Water vapor mixing ratio (qv; shade) and wind (vectors) at 
950 hPa at 0000 JST on 10 July 2021 from the analysis value of the local forecast 
model (LFM). 
  



 

Fig. 3. Water vapor mixing ratio (qv) above the Shimokoshikishima (Kagoshima 
Prefecture) water vapor lidar (WVL) station (Ko). (a) qv obtained using the WVL, 
(b) qv from FT = 1 h of LFM, (c) difference in qv (WVL – LFM (FT = 1 h)), and (d) 
vertical profile of qv for the WVL and the LFM (FT = 1 h) at 0000 JST on 10 July 
2021 (dotted line in (a) and (b)). Vertical profiles of qv obtained with the WVL 
during the period shown in the box with the thick black border in (a) were used 
for the assimilation of the CReSS-3DVAR in the creation of the objective analysis 
values used for the NWP forecast initial values started at 0100 JST on 10 July 
2021. The gray shading represents the periods for which WVL data were 
unavailable in real time. The data from the LFM were plotted for every hour on 
the hour, covering a range from 30 min before to 30 min after the hour. 
  



 

Fig. 4. Same data types as in Fig. 3 but for above the Nomozaki (Nagasaki 
Prefecture; Na) WVL station. 
  



 

Fig. 5. Process of the blending forecast with water vapor lidar data assimilation 
(WVL-DA), showing the effectiveness of the BLEDE. (a)–(c) show observation of 
1-h accumulated rainfall (P1h) from XRAIN; (d) is 3-h accumulated rainfall (P3h) 
determined by summing (a)–(c), and (e) is the return period of (d). (f) and (k) are 
the same as (a). (g) is P1h of EXT from high-resolution precipitation nowcasts of 
JMA initialized at 0100 JST on 10 July 2021, indicating that P1h is accumulated 
for the FT from 0 to 1 h. (h) is P1h of NWP of CReSS with WVL-DA initialized at 
0100 JST on the same day, indicating that P1h is accumulated for the FT from 1 
to 2 h. (i) is P3h by summing (f)–(h), and (j) is the return period of (i). The BLEDE 
with a spatial maximum filter of scale L = 7 km and 11 km was applied to P1h of 
EXT (g) and NWP (h), resulting in (l) and (m), respectively. (n) is the sum of (k)–
(m), and (o) is the return period of (n). Red ellipses represent the northwestern 
band. Green stars represent the locations of WVLs. The green line in (e) 
represents Isa City, Kagoshima Prefecture, where flooding occurred. 
  



 
Fig. 6. Three-hour accumulated rainfall at 0300 JST on 10 July 2021. (a) is the 
observation from XRAIN. (b–e) are 2-h-ahead blending forecasts initialized at 
0100 JST, displayed by the 2×2 matrix of with or without water vapor lidar data 
assimilation (WVL-DA) and blending technique with spatial maximum filter for 
tolerating forecast displacement errors correction (BLEDE). Green stars 
represent the locations of WVLs. 
  



 
Fig. 7. (a)–(c) One-hour accumulated rainfall (P1h) for (a) observation by XRAIN, 
(b) NWP with WVL-DA, and (c) NWP without WVL-DA at 0300 JST on 10 July 
2021. NWP forecasts were initialized at 0100 JST on the same day, indicating the 
P1h of (b) and (c) are accumulated from the FT of 1 to 2 h. The boxes in (b) and 
(c) indicate the area drawn in Fig. 9. 
  



 
Fig. 8. Difference in water vapor mixing ratio (qv-diff) (shade and black contours) 
between the analysis values of CReSS-3DVAR with and without WVL-DA (a)–(b) 
at 0010 JST on 10 July 2021, immediately after the first vertical profiles of WVLs 
were assimilated and (b)–(d) at the start time of NWP at 0100 JST on 10 July 
2021. (a) and (c) are horizontal distributions at 550 m AGL, and (b) and (d) are 
the vertical cross-sections along the dotted lines in (a) and (c), respectively. The 
contour interval of qv-diff is 0.5 g kg−1. Color contours represent P1h of NWP with 
WVL-DA without BLEDE (Fig. 7b) from 0200 JST to 0300 JST on 10 July 2021 
(FT = 1–2 h) used in the blending forecast (green: 10, 20, 30, 40, and 50 mm; 
red: 60 mm). Stars represent the locations of water vapor lidars (WVLs). 
 
  



 
Fig. 9. Representative examples showing the sensitivity of predicted rainfall to Lz 
(Lz = 0.5 km and 1.5 km). (a) and (b) are vertical (dotted line in c) and (c) 
horizontal (at altitude 550 m) cross-sections of the assimilation increment of the 
water vapor mixing ratio (Qv-INC) for Lz = 1.5 km. (d)–(f) 1-h accumulated rainfall 
(P1h) for FT = 1–2 h predicted by NWP; (g)–(i) 3-h accumulated rainfall (P3h) for 
FT = -1–2 h; The P3h of (g) and (h) are blended prediction using blended using 
BLEDE. (a), (d), and (g) are experiments using Lz = 0.5 km; (b), (c), (e), and (h) 
experiments are experiments using L = 1.5 km; (f) and (i) are XRAIN observations. 
  



 
Fig. 10 Sensitivity of predicted rainfall to Lz. (a) ratio of predicted area-averaged 
rainfall to observation (R) and (b) CSI. The verification domain for the area-
averaged rainfall and CSI is the domain shown in Fig. 9d. The dashed line means 
P1h for NWP at FT=1–2h, and the solid line means P3h for blending prediction 
with BLEDE. Sensitivity experiments (WVL-DA-GAU) where the forecast error 
covariance matrix is approximated using Gaussian functions are shown in red 
lines. The threshold values for the CSI calculations are 20 mm for P1h and 80 
mm for P3h. For reference, the experiment using the NMC method (WVL-DA-
NMC; same as the WVL-DA experiment shown in section 3) is shown by the blue 
line, and the experiment without assimilating water vapor lidar data (No-WVL-DA) 
is shown by the black line. 
  



 
Fig. 11 Same as in Fig. 9 but for the sensitivity to Lh; (a) and (b) are horizontal 
cross-sections, and (c) is the vertical cross-section for Lh = 20 km. 
  



 
Fig. 12. Same as in Fig. 10, but for the sensitivity to Lh. 


