

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is DOI:10.2151/jmsj.2024-025 J-STAGE Advance published date: May 23rd, 2024 The final manuscript after publication will replace the preliminary version at the above DOI once it is available.

Radiative effects on the formation of the stably stratified layer in the lower atmosphere of Venus

Yoshiyuki O. TAKAHASHI

⁵ Department of Planetology, Kobe University, Japan

4

7

6 Center for Planetary Science, Kobe University, Japan

and

8	Yoshi-Yuki HAYASHI
9 10	Department of Planetology, Kobe University, Japan Center for Planetary Science, Kobe University, Japan
11	and
12	George L. HASHIMOTO
13	Department of Earth Sciences, Okayama University, Japan
14	and

15	Kiyoshi KURAMOTO
16	Department of Cosmosciences, Hokkaido University, Japan
17	and
18	Masaki ISHIWATARI
19	Department of Cosmosciences, Hokkaido University, Japan
20	and
21	Hiroki KASHIMURA
22	Department of Planetology, Kobe University, Japan
23	Center for Planetary Science, Kobe University, Japan
24	May 14, 2024

Corresponding author: Yoshiyuki O. Takahashi, Department of Planetology, Kobe University, 1-1, Rokkodaicho, Nada-ku, Kobe 657-8501, Japan. E-mail: yot@gfd-dennou.org

25 Contents

26	1		Introduction	3
27	2		Model and experimental setup	7
28	3		Radiative-convective equilibrium of the control	
29			experiment	10
30	4		Sensitivity of the formation of the stable layer	13
31		4.1	Sensitivity to cloud settings	14
32		4.2	Sensitivity to gas distribution	15
33		4.3	Sensitivity to intensity of continuum absorption $\ldots \ldots \ldots$	16
34	5		Discussion	17
35	6		Conclusions	19
36	$\mathbf{A}_{\mathbf{j}}$	ppen	dix A Update of the k -distribution table for Venus	22
37	A	ppen	dix B Radiative temperature tendency spectrum	25
38	\mathbf{A}	ppen	dix C The cloud model by Haus et al. (2015)	25

Abstract

The formation of the stable layer below about 2×10^6 Pa pressure level 40 (about 20 km altitude) of the atmosphere of Venus detected by in situ 41 observations is investigated by the use of a radiative-convective equilibrium 42 model. We demonstrate that, assuming mixing ratio profiles of absorbers 43 to be at the upper limits of the observed ranges for H_2O and SO_2 and the 44 lower limit for CO, a stable layer forms as a radiative-convective equilibrium 45 state, but its stability is lower than the observed one. Also, increasing the 46 continuum absorption coefficient of CO_2 and/or H_2O , which are not well 47 constrained observationally or experimentally, results in the formation of a 48 stable layer whose stability is comparable to the observed one. These results 49 suggest a practical method to form the stable layer in the dynamical models 50 of the Venus atmosphere. Further, these results indicate that the important 51 targets of future observations and laboratory measurements are to obtain 52 more precise profiles of the mixing ratios of H_2O , CO, and SO_2 in the 53 Venus atmosphere, and to determine the continuum absorption coefficients 54 of those. 55

39

Keywords Venus lower atmosphere; stable layer below clouds; radiative convective equilibrium; continuum absorption

58 1. Introduction

The structure of the lower atmosphere of Venus, below the cloud layer 59 around 50 to 70 km, has not been understood well due to the existence of 60 the globally-covering thick cloud layer. In situ observations of the Venera 61 probes, the Pioneer Venus probes, and the VEGA-2 lander indicated that 62 the atmosphere below the cloud layer was generally statically stable except 63 for several altitude regions. One of the peculiar features of the lower atmo-64 sphere of Venus is the existence of a stable layer below about 20 km altitude 65 $(\sim 2 \times 10^6$ Pa pressure level). 66

The observed stability of the lower atmosphere of Venus varies with 67 altitude. The atmospheric layer is stable just below the cloud base down 68 to about 30 km altitude ($\sim 1 \times 10^6$ Pa), close to neutral around 20–30 km 69 altitude ($\sim 2 \times 10^6 - 1 \times 10^6$ Pa), stable from about 20 km to at least about 12 70 km altitude ($\sim 4 \times 10^6$ Pa) where the Pioneer Venus probe sounding ended 71 (Seiff 1983) or to about 6.5 km altitude ($\sim 6 \times 10^6$ Pa) based on the VEGA-2 72 lander observation (Seiff and the VEGA Balloon Science Team 1987), and 73 suggested to be unstable further below down to the surface. The layer close 74 to statically neutral around 20–30 km altitude ($\sim 2 \times 10^6 - 1 \times 10^6$ Pa) was 75

observed to have variability in its depth by the Pioneer Venus probes and
the VEGA-2 lander (Seiff 1983; Seiff and the VEGA Balloon Science Team
1987), but the neutral layer was detected by all observations.

The neutral layer would be produced by "convection" which includes the small scale one, such as that shown by numerical simulations (e.g., Baker et al. 2000a; Baker et al. 2000b), and the large scale circulation. The existence of the unstable layer close to the surface is curious, since it should be neutralized by "convection". Compositional separation is suggested as a mechanism to stabilize the thermal instability of the layer (Lebonnois and Schubert 2017).

As for the stable layer below about 20 km altitude ($\sim 2 \times 10^6$ Pa), it is not a regional or temporal one which is produced dynamically, but is a global and persistent one. It has been observed by the Venera 10–12 probes, four Pioneer Venus probes, and the VEGA-2 lander, over wide range of local time from 0:07 to 13:45 and latitude from 31.2°S to 59.3°N.

The stable layer in the lower atmosphere of Venus should have a large influence on the vertical transport of minor constituents and angular momentum, since convection is suppressed in the stable layer. The stable layer may play an important role even in the generation of superrotation by suppressing the vertical mixing, since a small vertical eddy viscosity is required to generate fast superrotation in General Circulation Model (GCM) exper⁹⁷ iments (Sugimoto et al. 2019).

A number of numerical studies have been performed to investigate the 98 structure of the lower atmosphere of Venus by the use of one-dimensional 99 radiative-convective equilibrium models (Pollack and Young 1975; Matsuda 100 and Matsuno 1978; Takagi et al. 2010; Ikeda 2011; Lee and Richardson 101 2011; Lebonnois et al. 2015; Mendonça et al. 2015; Takahashi et al. 2024) 102 and GCMs (e.g., Lebonnois et al. 2018). However, most of these studies 103 treated the Venus atmosphere as an ideal gas, and the stability could not 104 be calculated accurately in those studies. Among them, Takahashi et al. 105 (2024) treated the Venus atmosphere as a mixture of real gases by the 106 use of the thermodynamic properties derived from the EOS-CG mixture 107 model (EOS-CG: Equation of State for Combustion Gases and Combustion 108 Gas-like Mixtures) (Gernert and Span 2016), which describes the reduced 109 Helmholtz energy of real gas mixture. However, the stable layer below about 110 20 km altitude ($\sim 2 \times 10^6$ Pa) was not represented in the radiative-convective 111 equilibrium presented by Takahashi et al. (2024). 112

In this study, the formation of the stable layer below about 2×10^6 Pa pressure level (~20 km altitude) in the atmosphere of Venus is investigated by the use of a one-dimensional radiative-convective equilibrium model with the thermodynamic property of the real gas. We do not step into the possibility of compositional separation suggested by Lebonnois and Schubert

(2017), but try to examine the thermal structure of the atmosphere under 118 the assumption of constant mean molecular weight. We focus on the verti-119 cal thermal structure in the global mean sense in this study, though recent 120 studies by the use of GCMs have shown the presence of a large scale activity 121 in the Venus lower atmosphere (e.g., Lebonnois et al. 2016; Sugimoto et al. 122 2019). The use of the one-dimensional model is appropriate since the lower 123 atmosphere of Venus is horizontally nearly uniform, e.g., the difference in 124 temperature observed by four Pioneer Venus probes is a few kelvins in the 125 lower atmosphere (Seiff et al. 1980), and that indicated by Galileo NIMS is 126 no more than ± 2 K (Hashimoto et al. 2008). 127

In the followings, the radiative-convective equilibrium model for Venus 128 atmosphere used in this study is described in Section 2. The experimental 129 setup for the control experiment, which reproduces the radiative-convective 130 equilibrium by Takahashi et al. (2024), is also described, there. In Section 131 3, the equilibrium structure of the control experiment is described along 132 with the characteristics of its radiative temperature tendency spectra. The 133 sensitivity experiments are performed to investigate whether the stable layer 134 forms or not in the cases with the different cloud settings, the different ra-135 diatively active gas distributions, and the increased intensities of continuum 136 absorption of gases in Section 4. Implications of the results are discussed in 137 Section 5. Finally, conclusions of this study are presented in Section 6. 138

¹³⁹ 2. Model and experimental setup

We use the radiative-convective equilibrium model developed by Taka-140 hashi et al. (2024) with k-distribution tables newly generated in this study. 141 Radiative-convective equilibrium is obtained by integrating time evolution 142 equations for energies of atmosphere and a uniform slab at the surface. In 143 atmospheric energy calculation, thermodynamic variables are evaluated for 144 a mixture of real gases composed of 96.5 % CO_2 and 3.5 % N_2 (von Zahn 145 et al. 1983) by the use of the EOS-CG mixture model (Gernert and Span 146 2016). The dry convective adjustment is applied when the lapse rate is 147 greater than the dry adiabatic lapse rate. In addition, surface tempera-148 ture is assumed to be the same as atmospheric temperature just above the 149 surface. 150

The radiative fluxes are calculated by the use of the correlated k-distribution 151 radiation model of Takahashi et al. (2023). In this study, the k-distribution 152 tables used in this radiation model were newly generated from the results 153 of our line-by-line model (Takahashi et al. 2023) to perform parameter ex-154 periments with a variety of profiles of radiatively active gases and particles, 155 and with different intensities of continuum absorption of gases. The details 156 of the line-by-line model and optical parameters, such as a molecular ab-157 sorption database, a line shape function, continuum absorption coefficients, 158 and the solar insolation spectrum, used to generate the k-distribution table 159

are described by Takahashi et al. (2023), and the specification of the newly
generated table can be found in Appendix A.

In the correlated k-distribution radiation model, the radiative trans-162 fer equation with the generalized two-stream approximation (Meador and 163 Weaver 1980) is solved with the method of Toon et al. (1989). In calcu-164 lating radiative fluxes, absorption and Rayleigh scattering by gases, and 165 absorption and scattering by particles are taken into account. Radiatively 166 active gas components considered in radiation calculations are H_2O , CO_2 , 167 $CO, SO_2, HF, OCS, and N_2$. As for the particles, radiatively active cloud 168 particles referred to as modes 1, 2, 2', and 3, which have different radii 169 (Esposito et al. 1983; Ragent et al. 1985), are considered. In addition, 170 "unknown UV absorber", which contributes almost the half of absorption 171 of solar radiation (Crisp 1986), is also included. 172

We take into account continuum absorptions of the CO_2 - CO_2 collision 173 induced absorption, hereafter referred to as CO_2 continuum absorption, 174 and the H_2O continuum absorption. The coefficient for CO_2 continuum 175 absorption is obtained from several sources (Takahashi et al. 2023). For 176 temperatures outside of the temperature range of the data, the values at the 177 closest temperature in the data are used. The coefficient for H_2O continuum 178 absorption is obtained from the version 3.0 of the MT_CKD model, which is 179 the empirical model of the continuum absorption for the Earth's atmosphere 180

(the description on version 2.5 of the MT_CKD model is given by Mlawer
et al. (2012)).

The atmospheric energy equation is discretized and radiative-convective 183 equilibrium calculations are performed with 80 atmospheric layers (81 lev-184 els) based on the VIRA (Venus International Reference Atmosphere) model 185 (Seiff et al. 1985). Initial condition is the low latitude temperature profile of 186 the VIRA model. In time integration, profiles of atmospheric compositions, 187 the clouds, and the UV absorber are fixed. The incident solar radiation flux 188 at the top of the atmosphere is assumed to be 2635 W m⁻². The surface 189 albedo is set to 0.05 in wavenumber larger than 7700 $\rm cm^{-1}$, and is zero in 190 smaller wavenumber range. In order to evaluate the global mean of solar 191 radiation, radiative fluxes are calculated at two solar zenith angles of 37.9° 192 and 77.8°, and are averaged, and halved considering no solar flux at night 193 (Takahashi et al. 2023). 194

The control experiment is performed with profiles of the radiatively active gases based on Pollack et al. (1993) (Fig. 1a), and the clouds and the UV absorber based on Crisp (1986) (Fig. 1b) in radiation calculation.

Fig. 1

3. Radiative-convective equilibrium of the control ex periment

The radiative-convective equilibrium profile of the control experiment is shown in Fig. 2. There is a stable layer around $6 \times 10^5 - 2 \times 10^5$ Pa pressure levels similarly to the VIRA model. Below the layer down to the surface, the atmosphere is statically neutral unlike the VIRA model in which there is the stable layer below about 2×10^6 Pa pressure level. These characteristics are the same as those observed in the radiative-convective equilibrium profile under the same condition shown by Takahashi et al. (2024).

In order to diagnose the radiative effects of the clouds, the UV absorber, and each gas component on the stability in the lower atmosphere, we calculated the radiative temperature tendency spectra and its sensitivity to opacity changes for the radiative-convective equilibrium profile of the control experiment by the use of our line-by-line model (Takahashi et al. 2023). The radiative temperature tendency spectrum is expressed as follows:

$$Q_{rad}(p,\lambda;\tau_{ptcl},\tau_{gas}) = \frac{g}{C_p(p,T(p))} \frac{\partial F_{net}(p,\lambda;\tau_{ptcl},\tau_{gas})}{\partial p}, \qquad (1)$$

where $p, T, \lambda, g, C_p, F_{net}$ are pressure, temperature, wavelength, the gravitational acceleration, the specific heat at constant pressure, and the net radiative flux, respectively. Note that τ_{ptcl} and τ_{gas} are the optical depths of the clouds and the UV absorber, and the optical depth of gases, respec-

Fig. 2
Fig. 3
Fig. 4
Fig. 5

tively. These optical depths are actually given as functions of pressure andwavelength, but are expressed symbolically here.

The radiative temperature tendency spectrum in the lower atmosphere 219 is shown in Fig. 3, and that up to the top of the model is shown in Fig. 12 in 220 Appendix B for reference. Radiative temperature tendency in wavelengths 221 shorter than 1 μ m is positive over the whole altitudes, and that in wave-222 lengths from 1 to 2 μ m is negative just above the surface, and is positive 223 above there. The negative tendency region extends to about 3×10^6 , 7×10^5 224 and 2×10^5 Pa pressure levels around 2.4, 3–4 and 5–7 μ m, respectively. 225 The temperature as high as about 700 K in the lower atmosphere of Venus, 226 the surface temperature same as atmospheric temperature just above the 227 surface, and the vertical profile of optical depth cause the effective radiative 228 cooling near the surface in several near infrared wavelengths. 229

Figure 4 shows the changes in the radiative temperature tendency spectra when the optical depths of the clouds and the UV absorber are increased by 1 %, namely,

$$\Delta Q_{rad,ptcl}(p,\lambda) = Q_{rad}(p,\lambda;\tau_{ptcl}\times 1.01,\tau_{gas}) - Q_{rad}(p,\lambda;\tau_{ptcl},\tau_{gas}), (2)$$

²³³ and when the optical depth of gas absorption is increased by 1 %, namely,

$$\Delta Q_{rad,gas}(p,\lambda) = Q_{rad}(p,\lambda;\tau_{ptcl},\tau_{gas}\times 1.01) - Q_{rad}(p,\lambda;\tau_{ptcl},\tau_{gas}).(3)$$

²³⁴ Figure 4a shows that the vertical gradient of the change in the radiative

temperature tendency due to the increase in optical depths of the clouds 235 and the UV absorber is negative around 0.3–3 μ m. The vertical gradient 236 is caused by the fact that the solar heating is larger at high levels than 237 that at low levels. For wavelengths longer than 3 μ m, the radiative temper-238 ature tendency in the cloud layer above about 2×10^5 Pa pressure level is 239 increased at several wavelengths, but that is small below there. These imply 240 that the increase in the optical depths of the clouds and the UV absorber 241 tends to destabilize the atmosphere below about 2×10^5 Pa pressure level. 242 On the contrary, the increase in the optical depths of the clouds and the 243 UV absorber decreases the downward solar radiation flux integrated over 244 wavelength at the surface (not shown in the figure). This tends to stabilize 245 the atmosphere just above the surface. 246

Figure 4b shows that the effect of the increase in the optical depth of gas 247 absorption on the static stability of the atmosphere depends on wavelength 248 and pressure. The increase in the optical depth of gas which absorbs the 240 radiation around 1 μ m tends to stabilize the atmospheric layer between the 250 surface and the cloud base, since the vertical gradient of the change in the 251 radiative temperature tendency is positive. The increase in the optical depth 252 of gas which absorbs the radiation around 3–4 and 5–7 μm will stabilize 253 the atmospheric layer below the 2×10^6 Pa pressure level, since the vertical 254 gradient of the change in the radiative temperature tendency is positive. 255

Also, the increase in the optical depth of gas which absorbs the radiation around 1.6–2.4 μ m tends to destabilize the lower atmosphere due to the increased heating close to the surface and the increased cooling above about 5×10^{6} Pa pressure level. These imply that the increase in the mixing ratios of H₂O and SO₂ increases the stability, while the increase in the optical depth of CO decreases the stability, since absorption by SO₂, H₂O, and CO are dominant around 4 and 7, 5–7, and 2.4 μ m, respectively (Fig. 5).

²⁶³ 4. Sensitivity of the formation of the stable layer

We examined the sensitivity of the formation of the stable layer below about 2×10^6 Pa pressure level (~20 km altitude) to the mixing ratios of the clouds and the UV absorber, the mixing ratios of radiatively active gases, and the intensities of continuum absorption of gases. As shown in the previous section, the optical depths of the clouds and the UV absorber, and the optical depth of gas are able to affect the stability of the lower atmosphere of Venus.

Also, we evaluated whether an increase in the intensity of continuum absorption in 3–7 μ m contributed to the formation of the stable layer. For the climate studies of the Earth, the intensity of continuum absorption has usually been given by an empirical model, such as the MT_CKD model (Mlawer et al. 2012). However, the intensity of the continuum absorption

is very uncertain under the condition of the Venus lower atmosphere which 276 is very different from that of the Earth's atmosphere. Thus, the intensity of 277 continuum absorption is sometimes used as a tunable parameter to obtain 278 the radiative fields consistent with observations (e.g., Eymet et al. 2009). 279 In this study, we varied the absorption coefficient in the range of $3-7 \ \mu m$, 280 though the formation of the stable layer is probably affected by the opacity 281 of the spectral range of 1–7 μ m (Section 3). We did not modify the ab-282 sorption coefficient in the range of 1–2 μ m, since it is constrained by the 283 ground-based and the spacecraft observations of the thermal emission from 284 the Venus deep atmosphere (e.g., Allen and Crawford 1984; Titov et al. 285 2007). 286

It may be worth mentioning that there is the presence of hazes below the clouds down to about 30 km altitude (e.g., Esposito et al. 1983). However, it is unlikely that the haze has a significant effect on the thermal structure since its number density is small.

²⁹¹ 4.1 Sensitivity to cloud settings

Figure 6 shows the radiative-convective equilibrium profiles calculated with the mixing ratios decreased to 80 % and increased to 120 % for both of the clouds and the UV absorber from the control experiment. It is shown that the atmosphere is statically neutral below about 8×10^5 Pa pressure Fig. 6

level in both cases, though the thickness of the neutral layer is smaller in the latter case reflecting smaller downward solar radiation flux at the surface. It is worth mentioning that the stable layer does not form even in the cases with the further decreased and the further increased mixing ratios for both of the clouds and the UV absorber from the control experiment (figure is not shown).

In Fig. 6, the radiative-convective equilibrium profiles calculated with 302 the cloud model of Haus et al. (2015) are also shown to examine the de-303 pendence of stable layer formation on the formulation of cloud model. The 304 stable layer does not form in this case, neither. The cloud model of Haus et 305 al. (2015) is based on the remote sensing observations by the Venus Express 306 (see Appendix C for the details of the adopted cloud model), and is some-307 what different from the cloud model of our control experiment adopted from 308 Crisp (1986, 1989) based on the in situ and remote sensing observations by 309 the Pioneer Venus probes and orbiter. Our results suggest that, under the 310 atmospheric gas radiation properties of the control experiment, the stable 311 layer does not form independent of the details of the cloud model. 312

313 4.2 Sensitivity to gas distribution

314

315

	L
The upper and the lower limit of H_2O , CO , and SO_2 mixing ratios]
inferred from various observations (Bertaux et al. 1996; Bézard et al.	

1990; Bézard et al. 1993; Connes et al. 1968; de Bergh et al. 1995; Gel'man 316 et al. 1979; Hoffman et al. 1980b; Hoffman et al. 1980a; Hoffman et al. 317 1980a; Marcq et al. 2008; Marov et al. 1989; Moroz et al. 1979; Oyama 318 et al. 1980; Pollack et al. 1993; Taylor et al. 1997; Tsang et al. 2009; von 319 Zahn et al. 1983; Winick and Stewart 1980; Young 1972) compiled by John-320 son and de Oliveira (2019) (Fig. 7) are used to examine the sensitivity of 321 the formation of the stable layer. The stable layer below about 2×10^6 Pa 322 pressure level forms only in the case with the upper limit profiles of H_2O 323 and SO_2 and the lower limit profile of CO (Fig. 8). This is consistent with 324 the results shown in Section 3. However, the stability of the stable layer is 325 lower than that of the VIRA model. 326

³²⁷ When the H_2O mixing ratio in the lower atmosphere is increased to 70 ³²⁸ ppmv (Fig. 7a), the stability of the stable layer become comparable to that ³²⁹ of the VIRA model (Fig. 8). However, the volume mixing ratio in this ³³⁰ case is about double of the observed mean (30 ppmv) and is out of range ³³¹ of observed values. If one trusts the observed H_2O mixing ratio, then the ³³² stable layer cannot be formed by the radiative forcing of H_2O .

333 4.3 Sensitivity to intensity of continuum absorption

Figure 9 shows the radiative-convective equilibrium profiles calculated with the coefficients of CO_2 and H_2O continuum absorption increased by Fig. 9

factors of 10, 30, and 50. In these calculations, the continuum absorption 336 coefficient in the range of 3–10 μm (1000–3500 cm⁻¹) was increased by 337 multiplying constant factors independent of the temperature and pressure. 338 The range of factors from 10 to 50 is chosen since the dependence of the 339 stability around $8 \times 10^6 - 3 \times 10^6$ Pa pressure levels on the factor can be ob-340 served clearly. In addition, the range encompasses the factor of 30 which 341 will be determined for the coefficient of CO_2 continuum absorption by a 342 least squares method to fit the equilibrium temperature to the temperature 343 of the VIRA model in Section 5. 344

³⁴⁵ When the coefficient for CO₂ or H₂O continuum absorption is increased ³⁴⁶ by a factor of more than 30, the stable layer forms around $8 \times 10^{6} - 3 \times 10^{6}$ ³⁴⁷ Pa pressure levels. The larger the absorption coefficient is, the more stable ³⁴⁸ the layer is. On the one hand, when the absorption coefficient is increased, ³⁴⁹ the surface temperature is higher than observed one, e.g., 735 K observed ³⁵⁰ by Venera 12 (Avduevskiy et al. 1983), due to the increased optical depth.

351 5. Discussion

It has been shown that the stable layer forms below about 2×10^6 Pa pressure level when the coefficient for CO₂ continuum absorption or H₂O continuum absorption is increased. However, in both cases, the surface temperature is higher than observed one. The surface temperature should decrease when the mixing ratios of the clouds and the UV absorber were increased (Fig. 6).

Actually, we found some pairs of the continuum absorption coefficient 358 and the mixing ratios of the clouds and the UV absorber which led to the 359 equilibrium temperature profile in which surface temperature as well as the 360 stability of the stable layer close to those of the VIRA model by the use of a 361 least squares method. Figure 10 shows the radiative-convective equilibrium 362 profiles calculated with the CO_2 continuum absorption coefficient increased 363 by a factor of 30, and the H_2O continuum absorption coefficient increased 364 by a factor of 153 both along with the mixing ratios increased to 130 %365 for both of the clouds and the UV absorber from the control experiment. 366 In the case with the increased CO_2 continuum absorption coefficient, the 367 mean static stability between 4×10^6 Pa and 7×10^6 Pa pressure levels is 368 0.50 K km^{-1} , and the surface temperature is 735 K. In the case with the 369 increased $\rm H_2O$ continuum absorption coefficient, those are 0.51 K $\rm km^{-1}$ and 370 733 K, respectively. Those values are compared well with 0.50 K km^{-1} and 371 735 K, respectively, of the low latitude temperature profile of the VIRA 372 model. Since a latitudinal variation of about 30 % in cloud optical depth 373 has been deduced (Haus et al. 2013; Haus et al. 2014), the single scattering 374 albedo dependent on the composition and the size distribution of particles 375 has not been revealed fully, and the cloud optical depth appropriate for 376

Fig. 10

the global mean equilibrium calculation is not clear, a multiplication factor on mixing ratios of the clouds and the UV absorber was used as another tunable parameter, here. The temperature profile of the VIRA model might be explained by stronger continuum absorption and the variation in the optical depths of the clouds and the UV absorber.

Fig. 11

When the coefficients for CO_2 and H_2O continuum absorption are in-382 creased by factors of 30 and 153, respectively, CO_2 or H_2O continuum ab-383 sorption are the dominant opacity source in the spectral range of 3–9 μ m, 384 and the optical depth at 5×10^6 Pa pressure level reaches 10^4 – 10^5 (Fig. 11). 385 The method used to increase the coefficients for continuum absorption in 386 this study may be too simple. However, this study suggests that the deter-387 mination of the coefficient of continuum absorption in the condition of the 388 Venus lower atmosphere is one of keys to understand the thermal structure 389 there. 390

³⁹¹ 6. Conclusions

³⁹² The formation of the stable layer below about 2×10^6 Pa pressure level ³⁹³ (~20 km altitude) in the atmosphere of Venus has been investigated by ³⁹⁴ the use of the radiative-convective equilibrium model. Calculated radiative ³⁹⁵ temperature tendency spectra indicate that the optical depths of the clouds ³⁹⁶ and the UV absorber at wavelengths of 0.3–3 μ m and that of gas at wave $_{397}$ lengths of 1–7 $\mu \rm{m}$ play an important role in the formation of the stable $_{398}$ layer.

Sensitivity experiments have demonstrated that the change in the mixing 399 ratios of the clouds and the UV absorber will not lead to the formation 400 of the stable layer. It has also been indicated that increase in H_2O and 401 SO_2 mixing ratios and the decrease in CO mixing ratio form the stable 402 layer. However, within the observed range of H_2O , SO_2 , and CO mixing 403 ratios, the stability of the formed stable layer is lower than that of the 404 VIRA model. On the other hand, it has been shown that the stable layer 405 forms in the case with the increased coefficient for CO_2 or H_2O continuum 406 absorption in 3–10 μ m. Although the increase in the optical depth of CO₂ 407 or H_2O continuum absorption raises the surface temperature, the increase in 408 surface temperature can be compensated by an increase in the mixing ratios 400 of the clouds and the UV absorber. When the CO_2 continuum absorption 410 coefficient is increased by a factor of 30 or the H_2O continuum absorption 411 coefficient is increased by a factor of 153, and the mixing ratios of the clouds 412 and the UV absorber are increased by 30 %, the temperature profile of the 413 radiative-convective equilibrium is close to that of the VIRA model. 414

Further observations of radiatively active gas in the Venus lower atmosphere and further experimental studies on optical parameters in the condition of the Venus lower atmosphere are desired to confirm the formation

mechanism of the stable layer and to verify the idea on increase in coeffi-418 cients of continuum absorption performed in this study. On the other hand, 419 this study suggests a practical method to form the stable layer in dynamical 420 models, such as GCMs, of the Venus atmosphere. The studies by the use 421 of the GCMs, which consider spatial variation, are also required to under-422 stand both the formation of the stable layer in the lower atmosphere and 423 the observed surface temperature. Further, it would, in turn, provide un-424 derstanding on the transport and the mixing of the minor constituents and 425 the angular momentum and, as a result, the formation of the superrotation 426 of the Venus atmosphere. 427

428

Data availability

The data generated and analyzed in this study will be available at the JMSJ's J-STAGE Data site, except for those already published elsewhere. Software developed and used in this study and its newest versions will be available from the web page of GFD Dennou Club, https: //www.gfd-dennou.org/.

434

Acknowledgments

The authors would like to thank Rainer Haus for providing data of op-435 tical properties for his cloud model. We are also grateful to two anonymous 436 reviewers for their constructive comments on this article. Visualization soft-437 ware developed by GFD Dennou Club, Dennou Club Library (DCL) and 438 GPhys, are used to make figures shown in this study. A supercomputer 439 of the Education Center on Computational Science and Engineering, Kobe 440 University is used to perform several calculations shown in this study. This 441 study was funded by Grant-in-Aid for Scientific Research on Innovative Ar-442 eas (JSPS KAKENHI Grant Numbers 17H06457, 19H05605, and 21K03644) 443 from Japan Society for the Promotion of Science. 444

445 Appendix A. Update of the k-distribution table for 446 Venus

⁴⁴⁷ A new k-distribution table is generated to take into account variable ⁴⁴⁸ H_2O , CO, and SO_2 . The structure of the new k-distribution table is the same ⁴⁴⁹ as those generated for Venus atmosphere by Takahashi et al. (2023), but ⁴⁵⁰ we added axes of volume mixing ratios of the variable species. In addition, ⁴⁵¹ the number of bands and the number of integration points in a band are ⁴⁵² changed in order to improve the accuracy of the radiative fields in a cloud ⁴⁵³ free condition which was out of scope of Takahashi et al. (2023). Further, the temperature axis of the table is changed to decrease the amount of computation to generate k-distribution tables.

The number of bands, the number of integration points, and the intervals 456 of values in volume mixing ratio axes of the k-distribution table are selected 457 to meet accuracy criterion for the calculated radiative fields. The accuracy 458 criterion is set to 2×10^{-4} W m⁻³ for flux convergence following Takahashi 459 et al. (2023). In this study, the criterion is set for solar radiation as well 460 as planetary radiation, though it was set only for planetary radiation by 461 Takahashi et al. (2023). This ensures that radiative fields are calculated 462 with required accuracy in both planetary radiation and solar radiation. To 463 achieve the accuracy criterion, we increased the number of bands to 27. The 464 wavenumber boundaries and number of integration points for the resultant 465 table are shown in Table 1. 466

The ranges of the volume mixing ratio axes in the table are determined 467 to cover the volume mixing ratios set in this study (Fig. 7). The resultant 468 k-distribution table has axes of volume mixing ratios as follows: the volume 469 mixing ratio of H₂O, $r_{\rm H_2O}$, ranges from 10^{-7} to 10^{-2} with a grid interval 470 of $\Delta \log_{10} r_{\rm H_2O} = 0.5$, that of CO, $r_{\rm CO}$, ranges from 10^{-6} to 10^{-4} with 471 $\Delta \log_{10} r_{\rm CO} = 1$, and that of SO₂, $r_{\rm SO_2}$, ranges from 10^{-9} to 10^{-3} with 472 $\Delta \log_{10} r_{\rm SO_2} = 0.5$. Volume mixing ratios of species other than H₂O, CO, 473 and SO_2 are assumed to be fixed based on the profile B of Takahashi et al. 474

 $_{475}$ (2023), which are based on Pollack et al. (1993).

The temperature axis in the new k-distribution table has the pressuredependent temperature of $T_{\text{VIRA}}(p_i)$ -50, $T_{\text{VIRA}}(p_i)$, $T_{\text{VIRA}}(p_i)$ +50 K, where p_i is the *i*th pressure value, and $T_{\text{VIRA}}(p_i)$ is the temperature at p_i of the low latitude temperature profile of the VIRA model. This axis is based on that implemented by Ikeda (2011). By adopting this temperature axis, the amount of computation to generate the k-distribution table becomes 3/17of that for the table presented by Takahashi et al. (2023).

Root mean square errors (RMSEs) of k-distribution calculations in up-483 ward (Up) and downward (Dn) fluxes, flux convergences (FlxCnv), and 484 temperature tendencies (Tend) for planetary radiation (PR) and solar ra-485 diation (SR) were evaluated by comparing with those by the line-by-line 486 calculations for the low latitude temperature profile of the VIRA model 487 and the radiative-convective equilibrium of the control experiment (Table 488 2). It is found that the accuracy criterion is met for both profiles in both 489 cloudy and cloud free conditions. 490

Table 1

Table 2 $\,$

⁴⁹¹ Appendix B. Radiative temperature tendency spec ⁴⁹² trum

The radiative temperature tendency spectrum, Equation (1), for the radiative-convective equilibrium of the control experiment from the surface up to the top of the model is shown in Fig. 12.

⁴⁹⁶ Appendix C. The cloud model by Haus et al. (2015)

⁴⁹⁷ The number density profiles, N(z), for the clouds and the UV absorber ⁴⁹⁸ in the cloud model by Haus et al. (2015) are as follows,

$$N(z) = \begin{cases} N_0 \exp\left\{-\frac{z - (z_b + z_c)}{H_{up}}\right\} & (z > z_b + z_c), \\ N_0 & (z_b + z_c \ge z \ge z_b), \\ N_0 \exp\left\{-\frac{z_b + z}{H_{lo}}\right\} & (z < z_b), \end{cases}$$
(4)

where $z, z_b, z_c, H_{up}, H_{lo}$, and N_0 are altitude, the lower base of peak altitude, the layer thickness of constant peak particle number density, the upper scale height, the lower scale height, and the peak number density, respectively. The parameters used for the experiment in Section 4.1 is shown in Table 3. Refractive index data for a H₂SO₄ solution of 75 % by weight described by Haus et al. (2015) are used to calculate extinction efficiency factor, single scattering albedo, and asymmetry factor of the cloud particles.

Table 3

Fig. 12

References

507	Allen, D. A., and	l J. W.	Crawford,	1984:	Cloud	structure	on	the	dark	side
508	of Venus.	Nature	, 307 , 222-	-224.						

509	Avduevskiy, V. S., M. Y. Marov, Y. N. Kulikov, V. P. Shari, A. Y. Gor-
510	bachevskiy, G. R. Uspenskiy, and Z. P. Cheremukhina, 1983: Struc-
511	ture and parameters of the Venus atmosphere according to Venera
512	probe data. Venus, D. M. Hunten, L. Colin, T. M. Donahue and
513	V. I. Moroz, Eds., The University of Arizona Press, Tucson, Arizona
514	chapter 12, 280–298.

- ⁵¹⁵ Baker, R. D., G. Schubert, and P. W. Jones, 2000a: Convectively generated
 ⁵¹⁶ internal gravity waves in the lower atmosphere of Venus. Part I: No
 ⁵¹⁷ wind shear. J. Atmos. Sci., 57, 184–199.
- ⁵¹⁸ Baker, R. D., G. Schubert, and P. W. Jones, 2000b: Convectively generated
 ⁵¹⁹ internal gravity waves in the lower atmosphere of Venus. Part II:
 ⁵²⁰ Mean wind shear and wave-mean flow interaction. J. Atmos. Sci.,
 ⁵²¹ 57, 200–215.
- de Bergh, C., B. Bézard, D. Crisp, J.-P. Maillard, T. Owen, J. Pollack, and
 D. Grinspoon, 1995: Water in the deep atmosphere of Venus from
 high resolution spectra of the nightside. Adv. Space Res., 15, 79–88.

525	Bertaux, JL., T. Widemann, A. Hauchecorne, V. I. Moroz, and A. P.
526	Ekonomov, 1996: VEGA 1 and VEGA 2 entry probes: An inves-
527	tigation of local UV absorption (220–400 nm) in the atmosphere
528	of Venus (SO ₂ , aerosols, cloud structure). J. Geophys. Res., 101 ,
529	12709 - 12746.
530	Bézard, B., C. de Bergh, D. Crisp, and JP. Maillard, 1990: The deep
531	atmosphere of Venus revealed by high-resolution nightside spectra.
532	<i>Nature</i> , 345 , 508–511.
533	Bézard, B., C. de Bergh, B. Fegley, JP. Maillard, D. Crisp, T. Owen, J. B.
534	Pollack, and D. Grinspoon, 1993: The abundance of sulfur dioxide
535	below the clouds of Venus. <i>Geophys. Res. Lett.</i> , 20 , 1587–1590.
536	Connes, P., J. Connes, L. D. Kaplan, and W. S. Benedict, 1968: Carbon
537	monoxide in the Venus atmosphere. Astrophys. J., 152, 731–743.
538	Crisp, D., 1986: Radiative forcing of the Venus mesosphere I. Solar fluxes
539	and heating rates. <i>Icarus</i> , 67 , 484–514.
540	Crisp, D., 1989: Radiative forcing of the Venus mesosphere II. Thermal
541	fluxes, cooling rates, and radiative equilibrium temperatures. <i>Icarus</i> ,
542	77 , 391–413.
543	Esposito, L. W., R. G. Knollenberg, M. Y. Marov, O. B. Toon, and R. P.

544	Turco, 1983: The clouds and hazes of Venus. Venus, D. M. Hunten,
545	L. Colin, T. M. Donahue and V. I. Moroz, Eds., The University of
546	Arizona Press, Tucson, Arizona chapter 16, 484–564.
547	Eymet, V., R. Fournier, JL. Dufresne, S. Lebonnois, F. Hourdin, and
548	M. A. Bullock, 2009: Net exchange parameterization of thermal in-
549	frared radiative transfer in Venus' atmosphere. J. Geophys. Res.,
550	114 , E11008.
551	Gel'man, B. G., V. G. Zolotukhin, N. I. Lamonov, B. V. Levchuk, L. M.
552	Mukhin, D. F. Nenarokov, B. P. Okhotnikov, V. A. Rotin, and A. N.
553	Lipatov, 1979: , An analysis of the chemical composition of the
554	atmosphere of Venus on an AMS of the Venera 12 using a gas
555	chromatograph. (Translated from the Russian: "Analiz Khimich-
556	eskogo Sostava Atmosfery Venery na AMS Venera 12 Gazovym
557	Khromatografom" (Moscow). Technical Memorandum NASA/TM
558	75476, NASA.
559	Gernert, J., and R. Span, 2016: EOS-CG: A Helmholtz energy mixture
560	model for humid gases and CCS mixtures. The Journal of Chemical
561	Thermodynamics, 93 , 274–293.
562	Hashimoto, G. L., M. Roos-Serote, S. Sugita, M. S. Gilmore, L. W. Kamp,
563	R. W. Carlson, and K. H. Baines, 2008: Felsic highland crust on

564	Venus suggested by Galileo Near-Infrared Mapping Spectrometer
565	data. J. Geophys. Res., 113, E00B24.

566	Haus, R., D. Kappel, and G. Arnold, 2013: Self-consistent retrieval of tem-
567	perature profiles and cloud structure in the northern hemisphere of
568	Venus using VIRTIS/VEX and PMV/VENERA-15 radiation mea-
569	surements. Planet. Space Sci., 89, 77–101.

Haus, R., D. Kappel, and G. Arnold, 2014: Atmospheric thermal structure
and cloud features in the southern hemisphere of Venus as retrieved
from VIRTIS/VEX radiation measurements. *Icarus*, 232, 232–248.

Haus, R., D. Kappel, and G. Arnold, 2015: Radiative heating and cooling
in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations. *Planet. Space Sci.*,
117, 262–294.

- ⁵⁷⁷ Hoffman, J. H., R. R. Hodges, T. M. Donahue, and M. B. McElroy, 1980a:
 ⁵⁷⁸ Composition of the Venus lower atmosphere from the Pioneer Venus
 ⁵⁷⁹ mass spectrometer. J. Geophys. Res., 85, 7882–7890.
- ⁵⁸⁰ Hoffman, J. H., R. R. Hodges, W. W. Wright, V. A. B. K. D. Duerksen,
 ⁵⁸¹ and L. D. Brooks, 1980b: Pioneer Venus sounder probe neutral gas
- mass spectrometer. *IEEE Transactions on Geoscience and Remote Sensing*, 18, 80–84.

584	Ikeda, K., 2011: , Development of radiative transfer model for Venus at-
585	mosphere and simulation of superrotation using a general circulation
586	model. PhD thesis, The University of Tokyo.

- Johnson, N. M., and M. R. R. de Oliveira, 2019: Venus atmospheric composition in situ data: A compilation. *Earth and Space Science*, **6**, 1299–1318.
- Lebonnois, S., V. Eymet, C. Lee, and J. V. d'Ollone, 2015: Analysis of the
 radiative budget of the Venusian atmosphere based on infrared Net
 Exchange Rate formalism. J. Geophys. Res., 120, 1186–1200.
- Lebonnois, S., and G. Schubert, 2017: The deep atmosphere of Venus and the possible role of density-driven separation of CO_2 and N_2 . *Nature Geoscience*, **10**, 473–477.
- Lebonnois, S., G. Schubert, F. Forget, and A. Spiga, 2018: Planetary boundary layer and slope winds on Venus. *Icarus*, **314**, 149–158.
- Lebonnois, S., N. Sugimoto, , and G. Gilli, 2016: Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM. *Icarus*, **278**, 38–51.
- Lee, C., and M. I. Richardson, 2011: A discrete ordinate, multiple scatter-

602	ing, radiative transfer model of the Venus atmosphere from 0.1 to
603	260 μm. J. Atmos. Sci., 68 , 1323–1339.

604	Marcq, E., B. Bézard, P. Drossart, G. P. J. M. Reess, and F. Henry, 2008:
605	A latitudinal survey of CO, OCS, H_2O , and SO_2 in the lower atmo-
606	sphere of Venus: Spectroscopic studies using VIRTIS H. J. Geophys.
607	<i>Res.</i> , 113 , E00B07.

- Marov, M. Y., V. P. Volkov, Y. A. Surkov, and M. L. Ryvkin, 1989: The
 lower atmosphere. *The planet Venus: Atmosphere, surface, inte- rior structure, In Russian*, V. L. Barsukov and V. P. Volkov, Eds.,
 Moscow, USSR: Nauka., 25–67.
- ⁶¹² Matsuda, Y., and T. Matsuno, 1978: Radiative-convective equilibrium of ⁶¹³ the Venusian atmosphere. J. Meteor. Soc. Japan, **56**, 1–18.
- Meador, W. E., and W. R. Weaver, 1980: Two-stream approximations to
 radiative transfer in planetary atmospheres: A unified description
 of existing methods and a new improvement. J. Atmos. Sci., 37,
 630–643.
- Mendonça, J. M., P. L. Read, C. F. Wilson, and C. Lee, 2015: A new, fast
 and flexible radiative transfer method for Venus general circulation
 models. *Planet. Space Sci.*, **105**, 80–93.

621	Mlawer, E. J., V. H. Payne, JL. Moncet, J. S. Delamere, M. J. Alvarado,
622	and D. C. Tobin, 2012: Development and recent evaluation of the
623	MT_CKD model of continuum absorption. Philos. Trans. Roy. Soc.
624	London, Ser. A, 370 , 2520–2556.
625	Moroz, V. I., N. A. Parfent'ev, and N. F. Sanko, 1979: Spectrophotometric
626	experiment on the Venera 11 and Venera 12 descent modules. 2.
627	Analysis of Venera 11 spectra data by the layer-addition method.
628	Cosmic Research, 17, 601–614.
629	Oyama, K. I., G. C. Carle, J. B. Woeller, J. B. Pollack, R. T. Reynolds, and
630	R. A. Craig, 1980: Pioneer Venus gas chromatography of the lower
631	atmosphere of Venus. J. Geophys. Res., 85, 7891–7902.
632	Pollack, J. B., J. B. Dalton, D. Grinspoon, R. B. Wattson, R. Freedman,
633	D. Crisp, D. A. Allen, B. Bézard, C. DeBergh, L. P. Giver, Q. Ma,
634	and R. Tipping, 1993: Near-infrared light from Venus nightside: A
635	spectroscopic analysis. <i>Icarus</i> , 103 , 1–42.
636	Pollack, J. B., and R. Young, 1975: Calculations of the radiative and dynam-
637	ical state of the Venus atmosphere. J. Atmos. Sci., 32 , 1025–1037.
638	Ragent, B., L. W. Esposito, M. G. Tomasko, M. Y. Marov, V. P. Shari, and
639	V. N. Lebedev, 1985: Particulate matter in the Venus atmosphere.
640	Adv. Space Res., 5, 85–115.

642	D. M. Hunten, L. Colin, T. M. Donahue and V. I. Moroz, Eds., The
643	University of Arizona Press, Tucson, Arizona chapter 11, 215–279.
644	Seiff, A., D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G. M.
645	Kelly, and S. C. Sommer, 1980: Measurements of thermal structure
646	and thermal contrasts in the atmosphere of Venus and related dy-
647	namical observations: Results from the four Pioneer Venus probes.
648	J. Geophys. Res., 85, 7903–7933.
649	Seiff, A., J. T. Schofield, A. J. Kliore, F. W. Taylor, S. S. Limaye, H. E.
650	Revercomb, L. A. Sromovsky, V. V. Kerzhanovich, V. I. Moroz, and
651	M. Y. Marov, 1985: Models of the structure of the atmosphere of
652	Venus from the surface to 100 kilometers altitude. Adv. Space Res.,
653	5 , 3–58.
654	Seiff, A., and the VEGA Balloon Science Team, 1987: Further information
655	on structure of the atmosphere of Venus derived from the VEGA
656	Venus balloon and lander mission. Adv. Space Res., 7, 323–328.
657	Sugimoto, N., M. Takagi, and Y. Matsuda, 2019: Fully developed superro-
658	tation driven by the mean meridional circulation in a Venus GCM.

Seiff, A., 1983: Thermal structure of the atmosphere of Venus. Venus,

659

641

J. Geophys. Res., 46, 1776–1784.

660	Takagi, M., K. Suzuki, H. Sagawa, P. Baron, J. Mendrok, Y. Kasai, and
661	Y. Matsuda, 2010: Influence of CO_2 line profiles on radiative and ra-
662	diative convective equilibrium states of the Venus lower atmosphere.
663	J. Geophys. Res., 115 , E06014.

Takahashi, Y. O., Y.-Y. Hayashi, G. L. Hashimoto, K. Kuramoto, and
M. Ishiwatari, 2023: Development of a line-by-line and a correlated kdistribution radiation models for planetary atmospheres. J. Meteor.
Soc. Japan, 101, 2023–003.

- Takahashi, Y. O., Y.-Y. Hayashi, G. L. Hashimoto, K. Kuramoto, M. Ishiwatari, and H. Kashimura, 2024: Dependence of the radiativeconvective equilibrium structure of the lower atmosphere of Venus
 on the thermodynamic model. J. Meteor. Soc. Japan, 102, 2024–
 001.
- Taylor, F. W., D. Crisp, and B. Bézard, 1997: Near-infrared sounding of the
 lower atmosphere of Venus. *Venus II*, S. W. Bougher, D. M. Hunten
 and R. Phillips, Eds., The University of Arizona Press, Tucson, Arizona, 325–351.
- Titov, D. V., M. A. Bullock, D. Crisp, N. O. Renno, F. W. Taylor, and L. V.
 Zasova, 2007: *Radiation in the Atmosphere of Venus*, Volume 176 of
 - 34

679	AGU Geophysical Monograph, chapter Radiation in the Atmosphere
680	of Venus, 121–138.

681	Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam, 1989: Rapid
682	calculation of radiative heating rates and photodissociation rates in
683	inhomogeneous multiple scattering atmospheres. J. Geophys. Res.,
684	94, 16287 - 16301.

- Tsang, C. C. C., F. W. Taylor, C. F. Wilson, S. J. Liddell, P. G. J. Irwin,
 G. P. P. Drossart, and S. B. Calcutt, 2009: Variability of CO concentrations in the Venus troposphere from Venus Express/VIRTIS
 using a Band Ratio Technique. *Icarus*, 201, 432–443.
- Winick, J. R., and A. I. F. Stewart, 1980: Photochemistry of SO₂ in Venus'
 upper cloud layers. J. Geophys. Res., 85, 7849–7860.
- Young, L. D. G., 1972: High-resolution spectra of Venus: A review. *Icarus*,
 17, 632–658.
- von Zahn, U., S. Kumar, H. Niemann, and R. Prinn, 1983: Composition
 of the Venus atmosphere. *Venus*, D. M. Hunten, L. Colin, T. M.
 Donahue and V. I. Moroz, Eds., The University of Arizona Press,
 Tucson, Arizona chapter 13, 299–430.
 - 35

697 List of Figures

698	1	Vertical profiles of volume mixing ratios of gases and mass	
699		mixing ratios of clouds and UV absorber used in the con-	
700		trol experiment: profiles of (a) gases and (b) clouds and UV	
701		absorber.	39
702	2	Radiative-convective equilibrium profiles of (a) temperature,	
703		(b) temperature difference from the low latitude profile of	
704		the VIRA model, and (c) static stability for the control ex-	
705		periment (red). The black lines are those of the low latitude	
706		profiles of the VIRA model.	40
707	3	Radiative temperature tendency spectrum (Equation (1)) for	
708		the radiative-convective equilibrium of the control experi-	
709		ment below 1×10^5 Pa pressure level. Plotted are the running	
710		averaged values with the interval of 15 cm^{-1} .	41
711	4	Changes in radiative temperature tendency spectra from that	
712		of the control experiment: (a) the change when the optical	
713		depths due to the clouds and the UV absorber are increased	
714		by 1% (Equation (2)) and (b) that when the optical depth of	
715		gas absorption are increased by 1% (Equation (3)). Plotted	
716		are the running averaged values with the interval of 15 cm^{-1} .	42
717	5	Spectra of optical depth at 5×10^6 Pa pressure level for the	
718		low latitude temperature profile of the VIRA model. The	
719		black, red, green and blue lines show optical depths of the	
720		total extinction, H_2O , CO , and SO_2 absorption, respectively.	43
721	6	Radiative-convective equilibrium profiles of (a) temperature	
722		difference from the low latitude profile of the VIRA model,	
723		and (b) static stability. The green and blue lines show the	
724		profiles calculated with the mixing ratios decreased to 80 $\%$	
725		and increased to 120 $\%$ for both of the clouds and the UV	
726		absorber from the control experiment, respectively. The ma-	
727		genta lines show those calculated with the cloud model by	
728		Haus et al. (2015) . The red and black lines are those of the	
729		control experiment and the low latitude profile of the VIRA	
730		model, respectively.	44

	-	$W_{\rm c}$ is a set is a set is a star of (a) $W_{\rm c}$ (b) $C_{\rm c}$ and (c) $C_{\rm c}$ used	
731	7	Volume mixing ratios of (a) H_2O , (b) CO, and (c) SO_2 used for the sensitivity experiment to the distribution of radia-	
732		v i	
733		tively active gas. The red lines show the profiles for the	
734		control experiment. The green and blue lines show those	
735		adopted in the experiment as the upper and the lower limits	
736		of the observational variability and ambiguity, respectively.	
737		Also shown in panel (a) is the H_2O profile with the maximum	
738		volume mixing ratio of 70 ppmv in the lower atmosphere (ma-	
739		genta). In each panel, the observations compiled by Johnson	
740		and de Oliveira (2019), excluding potentially uncertain data,	
741		are plotted for the sake of comparison; marks, leftward ar-	
742		rows, and downward arrows indicate means, upper limits and	
743		uppermost heights of observational mixing ratios obtained by	
744		each instrument, respectively. Note that the tails of arrows	
745		represent the values of mixing ratio and height. The horizon-	
746		tal gray bars and gray tones indicate ranges of the reported	_
747	0	observational errors	5
748	8	Same as Fig. 6, but for the sensitivity experiment to the	
749		distribution of radiatively active gas. The cyan lines show	
750		the profiles calculated with the upper limit profiles of H_2O	
751		and SO_2 and the lower limit profile of CO shown in Fig. 7.	
752		The magenta lines show those calculated with the upper limit	
753		profile of SO_2 , the lower limit profile of CO, and the profile	
754		of H_2O with the maximum mixing ratio of 70 ppmv in the	
755		lower atmosphere	6
756	9	Same as Fig. 6, but for the sensitivity experiments to the	
757		intensities of the CO_2 and H_2O continuum absorption coeffi-	
758		cients in 3–10 μ m. The green solid, dashed, and dotted lines	
759		show profiles calculated with the CO_2 absorption coefficient	
760		increased by factors of 10, 30, and 50, respectively. Those	
761		blue lines are the same as green lines, but for the increased	
762		H_2O absorption coefficient. $\dots \dots \dots$	7

763	10	Same as Fig. 6, but for the cases calculated with tuned coeffi-	
764		cients of CO_2 or H_2O continuum absorption in 3–10 μ m and	
765		with the mixing ratios increased to 130 $\%$ for both of the	
766		clouds and the UV absorber from the control experiment.	
767		The green and blue lines show profiles calculated with $\rm CO_2$	
768		and H_2O continuum absorption coefficients increased by fac-	
769		tors of 30 and 153, respectively. \ldots	48
770	11	Spectra of optical depth at 5×10^6 Pa pressure level for the	
771		low latitude temperature profile of the VIRA model. Solid	
772		black, green and blue lines show optical depths of the total	
773		extinction, the CO_2 continuum absorption, and the H_2O con-	
774		tinuum absorption, respectively. Dashed green and blue lines	
775		show spectra of the CO_2 and the H_2O continuum absorption	
776		with its coefficients increased by factors of 30 and 153 in $3-10$	
777		μ m, respectively	49
778	12	Same as Fig. 3, but up to the top of the model. It should be	
779		noted that the color bar is different from that in Fig. 3. \therefore	50

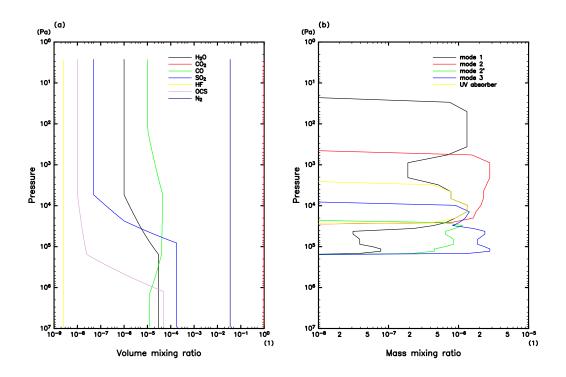


Fig. 1. Vertical profiles of volume mixing ratios of gases and mass mixing ratios of clouds and UV absorber used in the control experiment: profiles of (a) gases and (b) clouds and UV absorber.

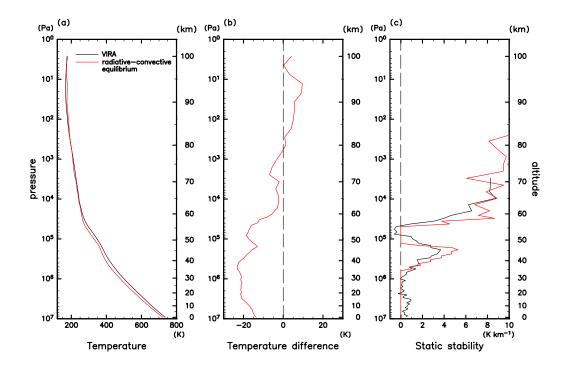


Fig. 2. Radiative-convective equilibrium profiles of (a) temperature, (b) temperature difference from the low latitude profile of the VIRA model, and (c) static stability for the control experiment (red). The black lines are those of the low latitude profiles of the VIRA model.

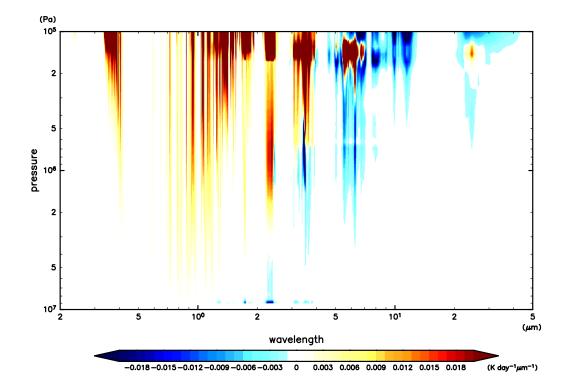


Fig. 3. Radiative temperature tendency spectrum (Equation (1)) for the radiative-convective equilibrium of the control experiment below 1×10^5 Pa pressure level. Plotted are the running averaged values with the interval of 15 cm⁻¹.

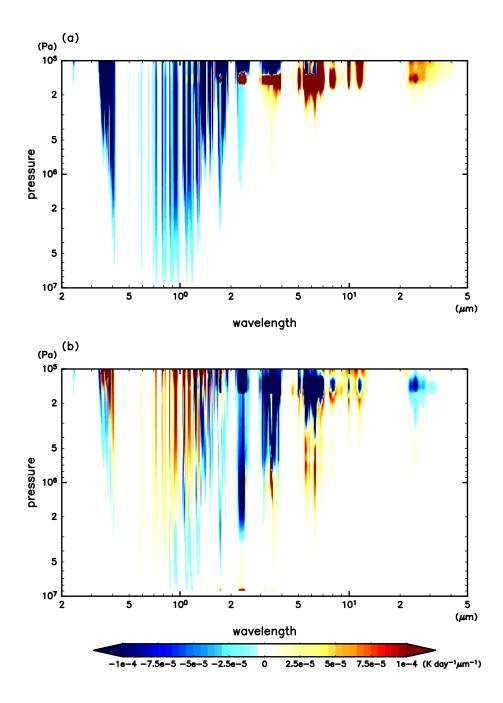


Fig. 4. Changes in radiative temperature tendency spectra from that of the control experiment: (a) the change when the optical depths due to the clouds and the UV absorber are increased by 1 % (Equation (2)) and (b) that when the optical depth of gas absorption are increased by 1 % (Equation (3)). Plotted are⁴ the running averaged values with the interval of 15 cm⁻¹.

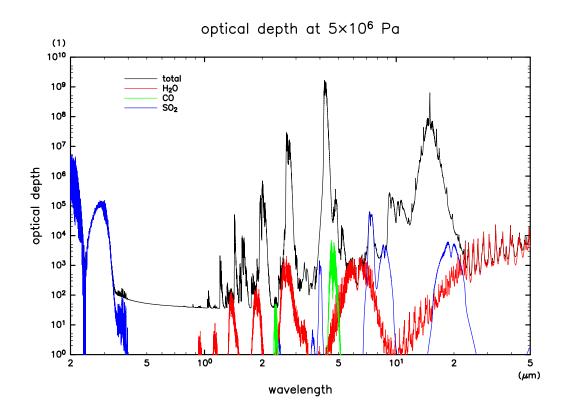


Fig. 5. Spectra of optical depth at 5×10^6 Pa pressure level for the low latitude temperature profile of the VIRA model. The black, red, green and blue lines show optical depths of the total extinction, H₂O, CO, and SO₂ absorption, respectively.

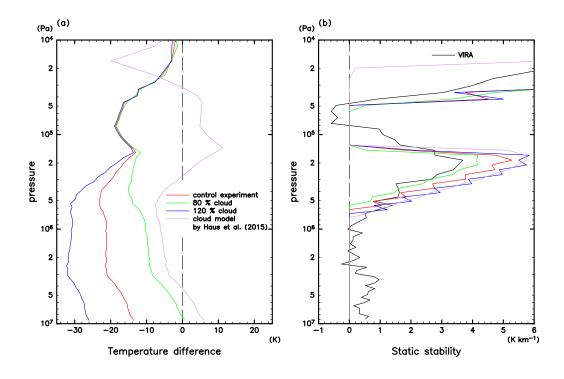
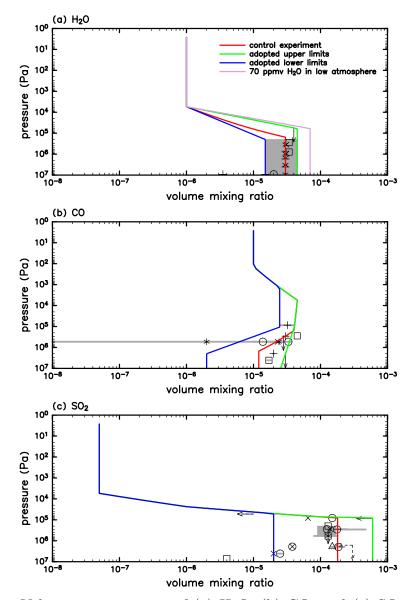



Fig. 6. Radiative-convective equilibrium profiles of (a) temperature difference from the low latitude profile of the VIRA model, and (b) static stability. The green and blue lines show the profiles calculated with the mixing ratios decreased to 80 % and increased to 120 % for both of the clouds and the UV absorber from the control experiment, respectively. The magenta lines show those calculated with the cloud model by Haus et al. (2015). The red and black lines are those of the control experiment and the low latitude profile of the VIRA model, respectively.

Volume mixing ratios of (a) H_2O , (b) CO, and (c) SO_2 used for Fig. 7. the sensitivity experiment to the distribution of radiatively active gas. The red lines show the profiles for the control experiment. The green and blue lines show those adopted in the experiment as the upper and the lower limits of the observational variability and ambiguity, respectively. Also shown in panel (a) is the H_2O profile with the maximum volume mixing ratio of 70 ppmv in the lower atmosphere (magenta). In each panel, the observations compiled by Johnson and de Oliveira (2019), excluding potentially uncertain data, are plotted for the sake of comparison; marks, leftward 45 rows, and downward arrows indicate means, upper limits and uppermost heights of observational mixing ratios obtained by each instrument, respectively. Note that the tails of arrows represent the values of mixing ratio and height. The horizontal gray bars and gray tones indicate ranges of the reported observational errors.



Fig. 8. Same as Fig. 6, but for the sensitivity experiment to the distribution of radiatively active gas. The cyan lines show the profiles calculated with the upper limit profiles of H_2O and SO_2 and the lower limit profile of CO shown in Fig. 7. The magenta lines show those calculated with the upper limit profile of SO_2 , the lower limit profile of CO, and the profile of H_2O with the maximum mixing ratio of 70 ppmv in the lower atmosphere.

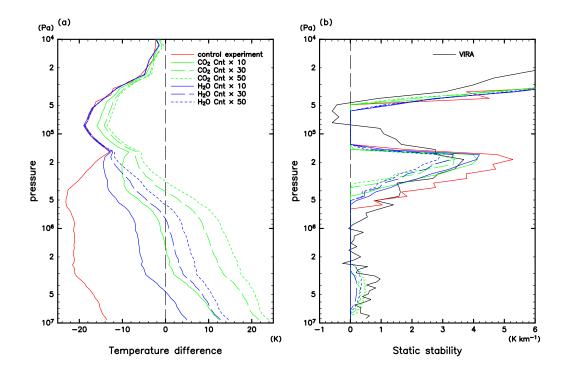


Fig. 9. Same as Fig. 6, but for the sensitivity experiments to the intensities of the CO_2 and H_2O continuum absorption coefficients in 3–10 μ m. The green solid, dashed, and dotted lines show profiles calculated with the CO_2 absorption coefficient increased by factors of 10, 30, and 50, respectively. Those blue lines are the same as green lines, but for the increased H_2O absorption coefficient.

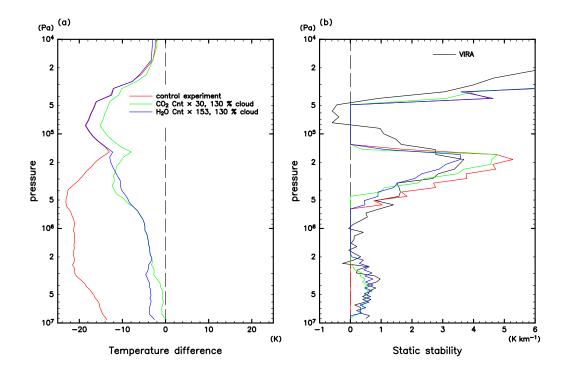


Fig. 10. Same as Fig. 6, but for the cases calculated with tuned coefficients of CO_2 or H_2O continuum absorption in 3–10 μ m and with the mixing ratios increased to 130 % for both of the clouds and the UV absorber from the control experiment. The green and blue lines show profiles calculated with CO_2 and H_2O continuum absorption coefficients increased by factors of 30 and 153, respectively.

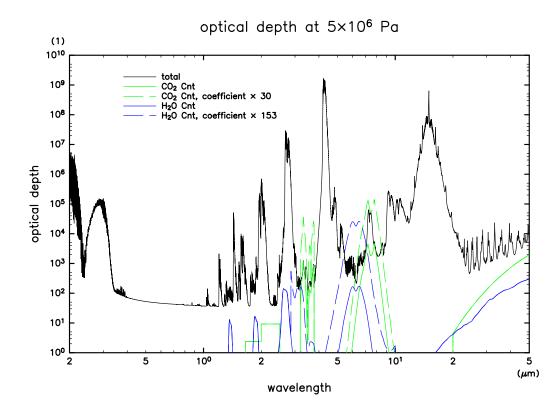


Fig. 11. Spectra of optical depth at 5×10^6 Pa pressure level for the low latitude temperature profile of the VIRA model. Solid black, green and blue lines show optical depths of the total extinction, the CO₂ continuum absorption, and the H₂O continuum absorption, respectively. Dashed green and blue lines show spectra of the CO₂ and the H₂O continuum absorption with its coefficients increased by factors of 30 and 153 in 3–10 μ m, respectively.

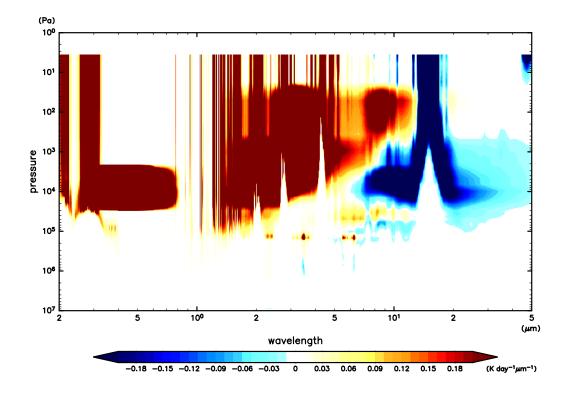


Fig. 12. Same as Fig. 3, but up to the top of the model. It should be noted that the color bar is different from that in Fig. 3.

780 List of Tables

781	1	The setting for the k -distribution table generated in this	
782		study. IP stands for integration point.	52
783	2	RMSEs of radiation fluxes (W m^{-2}), their convergences (W	
784		m^{-3}), and temperature tendencies (K s ⁻¹) calculated from	
785		the differences between the corresponding data obtained by	
786		the correlated k -distribution and the line-by-line models at	
787		each pressure level for the low latitude temperature profile of	
788		the VIRA model and the radiative-convective equilibrium of	
789		the control experiment. Up, Dn, PR, SR, FlxCnv, and Tend	
790		denote upward flux, downward flux, planetary radiation, so-	
791		lar radiation, flux convergence, and temperature tendency,	
792		respectively.	53
793	3	Values of the parameters used in the number density for-	
794		mulation given by Equation (4) for the clouds and the UV	
795		absorber.	54

band	wavenumber range	number of IPs	number of IPs
number	(cm^{-1})	in 0–0.98	in $0.98-1$
1	10-255	6	1
2	255 - 500	6	1
3	500-600	6	1
4	600-700	6	1
5	700 - 840	6	1
6	840 - 980	4	1
7	980-1185	6	1
8	1185 - 1390	4	1
9	$1390-\ 1595$	4	1
10	1595 - 1800	4	1
11	$1800-\ 2025$	4	1
12	2025-2250	4	1
13	2250-2750	6	1
14	2750 - 3250	6	1
15	3250-4200	6	4
16	4200-5150	6	4
17	5150-6425	6	4
18	6425 - 7700	6	4
19	7700 - 10275	6	4
20	10275 - 12850	6	4
21	12850 - 17750	4	1
22	17750 - 22650	4	1
23	22650 - 25825	4	1
24	25825 - 29000	4	1
25	29000 - 32000	4	1
26	32000 - 39500	1	1
27	39500-50000	1	1

Table 1. The setting for the k-distribution table generated in this study. IP stands for integration point.

Table 2. RMSEs of radiation fluxes (W m⁻²), their convergences (W m⁻³), and temperature tendencies (K s⁻¹) calculated from the differences between the corresponding data obtained by the correlated k-distribution and the line-by-line models at each pressure level for the low latitude temperature profile of the VIRA model and the radiative-convective equilibrium of the control experiment. Up, Dn, PR, SR, FlxCnv, and Tend denote upward flux, downward flux, planetary radiation, solar radiation, flux convergence, and temperature tendency, respectively.

	VIRA		radiative-convective	
			equilibrium	
	cloudy	cloud free	cloudy	cloud free
UpPR	2.72×10^{-1}	8.05×10^{-1}	2.20×10^{-1}	8.05×10^{-1}
DnPR	2.48×10^{-1}	4.74×10^{-1}	2.12×10^{-1}	4.37×10^{-1}
FlxCnvPR	6.29×10^{-5}	1.55×10^{-4}	5.60×10^{-5}	1.67×10^{-4}
TendPR	1.63×10^{-5}	1.63×10^{-5}	1.91×10^{-5}	1.87×10^{-5}
UpSR	2.22×10^{-1}	9.19×10^{-1}	2.33×10^{-1}	9.15×10^{-1}
DnSR	3.50×10^{-1}	$1.98{ imes}10^0$	3.29×10^{-1}	$1.97{ imes}10^{0}$
FlxCnvSR	5.33×10^{-5}	1.06×10^{-4}	5.23×10^{-5}	1.09×10^{-4}
TendSR	$1.68{\times}10^{-5}$	$1.68{\times}10^{-5}$	$1.69{\times}10^{-5}$	1.69×10^{-5}

Table 3. Values of the parameters used in the number density formulation given by Equation (4) for the clouds and the UV absorber.

	$z_b \ (\mathrm{km})$	$z_c \ (\mathrm{km})$	H_{up} (km)	H_{lo} (km)	$N_0 ({\rm cm}^{-3})$
mode 1	49.0	16.0	3.5	1.0	96.75
mode 2	62.0	1.0	1.0	3.0	50.00
mode 2'	49.0	11.0	1.0	0.1	100.00
mode 3	49.0	8.0	1.0	0.5	28.00
UV absorber	58.0	12.0	1.0	1.0	10.00