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Abstract 30 

 31 

Research on particle filters has been progressing with the aim of applying them to 32 

high-dimensional systems, but alleviation of problems with ensemble Kalman filters 33 

(EnKFs) in nonlinear or non-Gaussian data assimilation is also an important issue. It is 34 

known that the deterministic EnKF is less robust than the stochastic EnKF in strongly 35 

nonlinear regimes. We prove that if the observation operator is linear the analysis 36 

ensemble perturbations of the local ensemble transform Kalman filter (LETKF) are 37 

uniform contractions of the forecast ensemble perturbations in observation space in each 38 

direction of the eigenvectors of a forecast error covariance matrix. This property 39 

approximately holds for a weakly nonlinear observation operator. These results imply that 40 

if the forecast ensemble is strongly non-Gaussian the analysis ensemble of the LETKF is 41 

also strongly non-Gaussian, and that strong non-Gaussianity therefore tends to persist in 42 

high-frequency assimilation cycles, leading to the degradation of analysis accuracy in 43 

nonlinear data assimilation. A hybrid EnKF that combines the LETKF and the stochastic 44 

EnKF is proposed to mitigate non-Gaussianity in nonlinear data assimilation with small 45 

additional computational cost. The performance of the hybrid EnKF is investigated 46 

through data assimilation experiments using a 40-variable Lorenz-96 model. Results 47 

indicate that the hybrid EnKF significantly improves analysis accuracy in high-frequency 48 

data assimilation with a nonlinear observation operator. The positive impact of the hybrid 49 
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EnKF increases with the increase of the ensemble size. 50 

 51 

Keywords  hybrid ensemble Kalman filter; local ensemble transform Kalman filter; non-52 

Gaussianity; nonlinear data assimilation; stochastic ensemble Kalman filter 53 

54 
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1. Introduction 55 

   Data assimilation in high-dimensional nonlinear or non-Gaussian systems has been a 56 

challenge in meteorology and other geosciences (Bocquet et al. 2010). Although ensemble 57 

Kalman filters (EnKFs, Evensen 1994) have been widely used in data assimilation for 58 

numerical weather prediction and meteorological research, they are based on the Gaussian 59 

assumption, in which only the first- and second-order moments of a probability density 60 

function (PDF) are utilized, and may not work well in strongly non-Gaussian regimes. 61 

Research on particle filters (PFs, Gordon et al. 1993; Kitagawa 1996) that do not need the 62 

Gaussian assumption has been progressing with the aim of applying them to high-63 

dimensional systems. Although it had been considered that the problem of weight 64 

degeneracy prevents the use of PFs for high-dimensional data assimilation (Snyder et al. 65 

2008; van Leeuwen 2009), this limitation is currently disappearing owing to the recent efforts 66 

of a lot of investigators (van Leeuwen et al. 2019). Currently the localized PF (LPF) is 67 

attracting much attention (Penney and Miyoshi, 2016; Poterjoy, 2016; Poterjoy and 68 

Anderson 2016, Poterjoy et al. 2017; Farchi and Bocquet, 2018; Potthast et al., 2019; 69 

Kotsuki et al. 2022; Rojahn et al. 2023), and Kotsuki et al. (2022) presented a result that a 70 

Gaussian mixture extension of LPF (LPFGM) outperforms the local ensemble transform 71 

Kalman filter (LETKF, Hunt et al. 2007) in the accuracy of global analysis with an ensemble 72 

size of 40 and a realistic spatial distribution of radiosonde observations. Since a much larger 73 

ensemble would be needed to utilize some information on moments of a PDF higher than 74 
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the second order (e. g., Nakano et al. 2007), the reason for the higher accuracy of LPFGM 75 

is possibly not because of the use of information on higher-order moments, but because of 76 

a problem with the LETKF. 77 

Given the widespread use of EnKFs in meteorology, it is an important issue to alleviate 78 

problems with EnKFs in nonlinear or non-Gaussian data assimilation, especially because 79 

cumulus convection is strongly nonlinear. There are two methods for implementing 80 

ensemble Kalman filtering: the deterministic EnKF and the stochastic EnKF. The former 81 

EnKF generates an analysis ensemble by a linear transformation of a forecast ensemble 82 

(Anderson 2001; Bishop et al. 2001; Whitaker and Hamill 2002; Hunt et al. 2007), whereas 83 

the latter EnKF generates an analysis ensemble by assimilating perturbed observations 84 

(Burgers et al. 1998; Houtekamer and Mitchell 1998). In practice the deterministic EnKF is 85 

preferred over the stochastic EnKF, because the latter EnKF is less accurate due to sampling 86 

noise introduced by perturbed observations unless the ensemble size is sufficiently large (to 87 

name a few, Whitaker and Hamill 2002; Sakov and Oke 2008; Bowler et al. 2013). The 88 

LETKF belongs to the deterministic EnKF, and it is superior to the other EnKFs in 89 

computational efficiency because the analysis at each grid point can be independently 90 

computed in parallel. However, it is known that the deterministic EnKF is less robust to 91 

nonlinearity than the stochastic EnKF. Lawson and Hansen (2004) showed from geometric 92 

interpretation and ensemble diagnostics that the stochastic EnKF could better withstand 93 

regimes with nonlinear error growth. Lei et al. (2010) also derived a similar conclusion based 94 
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on the stability analysis of the two EnKF methods against the small violation of Gaussian 95 

assumption. Anderson (2010) and Amezcua et al. (2012) showed the clustering of ensemble 96 

members but one member in nonlinear data assimilation with low-dimensional models. 97 

Although such a clustering is not observed in a more complex system, several studies 98 

showed that if the ensemble size is sufficiently large the stochastic EnKF is more accurate 99 

than the deterministic EnKF in nonlinear data assimilation (e. g., Lei and Bickel 2011; Tödler 100 

and Ahrens 2015; Tsuyuki and Tamura 2022).  101 

The purpose of this study is twofold: to clarify the reason for less robustness of the 102 

LETKF to nonlinearity and to propose a hybrid EnKF that combines the LETKF and the 103 

stochastic EnKF for nonlinear data assimilation with small additional computational cost. We 104 

revisit the LETKF and the stochastic EnKF based on a decomposition of the ensemble 105 

transform matrix of the LETKF. We prove that if the observation operator is linear the 106 

analysis ensemble perturbations of the LETKF are uniform contractions of the forecast 107 

ensemble perturbations in observation space. This result implies that strong non-108 

Gaussianity tends to persist in high-frequency assimilation cycles, leading to the degradation 109 

of analysis accuracy in nonlinear data assimilation. To mitigate non-Gaussianity, we 110 

introduce the hybrid EnKF in which a weighting average of the analysis ensembles of the 111 

two EnKFs is used as the analysis ensemble, if necessary, with adjustment of analysis 112 

spread. We could expect that the hybrid EnKF is more robust to non-Gaussianity than the 113 

LETKF with less sampling noise than the stochastic EnKF. To investigate the performance 114 
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of the hybrid EnKF, we conduct data assimilation experiments using a 40-variable Lorenz-115 

96 model (Lorenz, 1996). The results of experiments demonstrate a significantly better 116 

analysis accuracy of the hybrid EnKF in high-frequency assimilation cycles with a nonlinear 117 

observation operator. 118 

The remainder of this paper is organized as follows. Section 2 is the revisit of the LETKF 119 

and the stochastic EnKF with a unifying framework, and Section 3 compares the 120 

performance of the two EnKFs with a nonlinear observation operator in a one-dimensional 121 

system. The hybrid EnKF is introduced in Section 4, and the design of data assimilation 122 

experiments is described in Section 5. The results of the experiments are presented in 123 

Section 6, and a summery and discussion are mentioned in Section 7. 124 

 125 

2. Revisit of LETKF and stochastic EnKF 126 

The derivation of ensemble Kalman filtering is usually based on the extended Kalman 127 

filter that adopts the tangent-linear approximation of an observation operator 𝐻(∙). However, 128 

it is customarily to use a nonlinear observation operator as it is in EnKFs (e.g., Houtekamer 129 

and Mitchell, 2001; Hunt et al., 2007). Therefore, we begin the revisit of the LETKF and the 130 

stochastic EnKF with an extension of the analysis equation of Kalman filtering for a nonlinear 131 

observation operator: 132 

𝒙𝒂 = 𝒙𝒇 + 𝑲(𝒚𝒐 − 𝒚𝒇),                                                                                                              (1) 133 

where 𝒙𝑎  and 𝒙𝑓  are the analysis and forecast of the 𝑛 -dimensional state variable 𝒙 , 134 
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respectively, 𝒚𝑜  is the observation of the 𝑚 -dimensional variable 𝒚 , 𝒚𝑓 ≔ 𝐻(𝒙𝑓)  is the 135 

forecast of 𝒚, and 𝑲 is an 𝑛 × 𝑚 weight matrix. If there are no correlations between the 136 

forecast error of state variable ∆𝒙𝑓  and the observation error ∆𝒚𝑜  and between the 137 

forecast error of observed variable ∆𝒚𝑓 and ∆𝒚𝑜, the optimal value of 𝑲 is given using the 138 

minimum mean square error criterion by 139 

𝑲 = ⟨∆𝒙𝑓(∆𝒚𝑓)T⟩(𝑹 + ⟨∆𝒚𝑓(∆𝒚𝑓)T⟩)
−1

,                                                                            (2) 140 

where a pair of brackets denotes the expectation operator, the superscript T indicates the 141 

transpose of a vector or a matrix, and 𝑹 ≔ ⟨∆𝒚𝑜(∆𝒚𝑜)T⟩ is the observation error covariance 142 

matrix. As Eq. (1) with the minimum mean square error criterion is not based on the Bayes’ 143 

theorem, it is suboptimal for nonlinear or non-Gaussian regimes. 144 

 145 

2.1.  LETKF 146 

Let 𝑁 be the ensemble size of ensemble Kalman filtering, and let us introduce an 𝑛 × 𝑁 147 

matrix of forecast ensemble perturbations of the state variable with respect to the mean, 𝑿𝑓, 148 

and an 𝑚 × 𝑁 matrix of forecast ensemble perturbations of the observed variable, 𝒀𝑓: 149 

𝑿𝑓 ≔ (∆𝒙𝑓(1),  ⋯ , ∆𝒙𝑓(𝑁)),           𝒀𝑓 ≔ (∆𝒚𝑓(1),  ⋯ , ∆𝒚𝑓(𝑁)),                                        (3) 150 

where {∆𝒙𝑓(𝑖)}
𝑖=1

𝑖=𝑁
 and {∆𝒚𝑓(𝑖)}

𝑖=1

𝑖=𝑁
 are the ensemble members of forecast perturbations. 151 

We can approximate Eq. (2) by 152 

𝑲 =
𝑿𝑓(𝒀𝑓)T

𝑁 − 1
[𝑹 +

𝒀𝑓(𝒀𝑓)T

𝑁 − 1
]

−1

.                                                                                            (4) 153 

This matrix can be put in the following form using a variant of the Sherman‒Morrison‒154 
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Woodbury formula (Golub and Van Loan, 2013): 155 

𝑲 =
𝑿𝑓

𝑁 − 1
[𝑰𝑁 +

(𝒀𝑓)T𝑹−1𝒀𝑓

𝑁 − 1
]

−1

(𝒀𝑓)T𝑹−1,                                                                     (5) 156 

where 𝑰𝑁 is the 𝑁-dimensional identity matrix. This representation of Kalman gain for a  157 

nonlinear observation operator was derived by Hunt et al. (2007), who adopted the 158 

minimization of a cost function with a linear approximation to obtain Eq. (5). Equation (1) 159 

with the minimum mean square error criterion does not need such an approximation, and it 160 

is straightforward as compared to the joint state-observation space method (Anderson, 161 

2001). The mean of the analysis ensemble is given by Eq. (1) with 𝒙𝑓 and 𝒚𝑓 replaced 162 

with the corresponding ensemble means.  163 

In the deterministic EnKF, an 𝑛 × 𝑁 matrix of analysis ensemble perturbations of the 164 

state variables, 𝑿𝑎 , is computed through ensemble transformation of 𝑿𝑓 . The LETKF 165 

adopts the following transformation using right multiplication: 166 

𝑿𝑎 = 𝑿𝑓𝑻,                                                                                                                                   (6) 167 

where 𝑻 is called the ensemble transform matrix and given by 168 

𝑻 ≔ [𝑰𝑁 +
(𝒀𝑓)T𝑹−1𝒀𝑓

𝑁 − 1
]

−1 2⁄

,                                                                                              (7) 169 

where [∙]−1 2⁄   denotes the inverse of the symmetric positive-definite square root of a 170 

positive-definite matrix (Golub and Van Loan, 2013). The matrix 𝑻  has 𝟏𝑁  as an 171 

eigenvector, where 𝟏𝑁 is the 𝑁-dimensional vector of which components are all 1s, such 172 

that the sum of analysis ensemble perturbations of each state variable vanishes. Sakov and 173 

Oke (2008) mentioned that a general form of the ensemble transform matrix is given by 174 



 9 

multiplying 𝑻 by a mean-preserving rotation matrix, which also has 𝟏𝑁 as an eigenvector, 175 

from right. More generally, space inversion can also be applied to 𝑻. We will return to this 176 

issue in Subsection 2.3. 177 

 178 

2.2.  Stochastic EnKF 179 

The analysis ensemble of the stochastic EnKF is constructed in the following way: 180 

𝒙𝑎(𝑖) = 𝒙𝑓(𝑖) + 𝑲(𝒚𝑜 + 𝜺𝑜(𝑖) − 𝒚𝑓(𝑖)),             (𝑖 = 1,  ⋯ ,  𝑁),                                       (8) 181 

where {𝒙𝑓(𝑖)}
𝑖=1

𝑖=𝑁
  and {𝒚𝑓(𝑖)}

𝑖=1

𝑖=𝑁
  are the forecast ensembles of state and observed 182 

variables, respectively. The perturbations to observations {𝜺𝑜(𝑖)}
𝑖=1

𝑖=𝑁
 are given by 183 

𝜺𝑜(𝑖) ≔ 𝜺𝑜(𝑖)∗ −
1

𝑁
∑ 𝜺𝑜(𝑗)∗

𝑁

𝑗=1

,           𝜺𝑜(𝑖)∗~𝑁(𝟎, 𝑹),                                                         (9) 184 

where 𝑁(𝟎, 𝑹) denotes the Gaussian distribution with mean 𝟎 and covariance 𝑹. We can 185 

elaborate Eq. (9) by removing the correlation between {𝜺𝑜(𝑖)}
𝑖=1

𝑖=𝑁
 and {𝒚𝑓(𝑖)}

𝑖=1

𝑖=𝑁
 for each 186 

observed variable and adjusting the resulting perturbations such that its variance is equal to 187 

the original value. This procedure is adopted in the data assimilation experiments in this 188 

study. Note that the numbering of ensemble members used in Eq. (8) is the same as in Eq. 189 

(3), and that the analysis ensemble mean of Eq. (8) is equal to that of the LETKF.  190 

The analysis ensemble perturbations of the stochastic EnKF can be written as 191 

𝑿𝑎 = 𝑿𝑓 − 𝑲𝒀𝑓 + 𝑲𝑬𝑜 ,                                                                                                     (10) 192 

where 𝑬𝑜  represents the ensemble members of observation error perturbations and 193 

defined by 194 

𝑬𝑜 ≔ (𝜺𝒐(1),  ⋯ , 𝜺𝒐(𝑁)).                                                                                                     (11) 195 
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Substitution of Eq. (5) into Eq. (10) yields 196 

𝑿𝑎 = 𝑿𝑓 [𝑰𝑁 +
(𝒀𝑓)T𝑹−𝟏𝒀𝑓

𝑁 − 1
]

−1

+ 𝑲𝑬𝑜 .                                                                       (12) 197 

The first and second terms on the righthand side are hereafter referred to as the 198 

deterministic part and the stochastic part of stochastic EnKF, respectively. Comparison with 199 

Eqs. (6)‒(7) reveals that the deterministic part is obtained by transforming 𝑿𝑓  with the 200 

matrix 𝑻2. The addition of the stochastic part makes the expectation value of the analysis 201 

error covariance matrix equal to that of the LETKF. If the deterministic part is not Gaussian, 202 

this part makes the analysis ensemble more Gaussian. This property of the stochastic EnKF 203 

may be desirable for a better performance of EnKFs, which are based on the Gaussian 204 

assumption. However, the stochastic part introduces sampling noise to the stochastic EnKF. 205 

 206 

2.3.  Decomposition of matrix 𝑻 207 

The above discussion indicates that the ensemble transform matrix 𝑻 plays a crucial 208 

role not only in the LETKF but also in the stochastic EnKF. In the following, we decompose 209 

this matrix using a complete orthonormal system in ensemble space to clarify a problem of 210 

the LETKF in nonlinear data assimilation. This decomposition is based on the property that 211 

for any real matrix 𝐴 the set of positive eigenvalues of 𝐴T𝐴 is the same as that of 𝐴𝐴T. 212 

Let us apply the eigenvalue decomposition to a dimensionless forecast error covariance 213 

matrix in observation space: 214 

𝑷𝑌
𝑓

≔
�̂�𝑓(�̂�𝑓)

T

𝑁 − 1
= 𝑼𝜦𝑼T,                                                                                                     (13) 215 
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where �̂�𝑓 ≔ 𝑹−1 2⁄ 𝒀𝑓 ,  𝑼  is an orthogonal matrix consisting of eigenvectors, and 𝜦  is a 216 

diagonal matrix of eigenvalues given by 217 

𝜦 = {
 diag [𝜆1,  ⋯ , 𝜆𝑁−1,  0,  ⋯ ,  0],                       (𝑁 ≤ 𝑚)

 diag [𝜆1,  ⋯ , 𝜆𝑚],                             (𝑁 ≥ 𝑚 + 1)
,                                        (14) 218 

where {𝜆𝑖}𝑖=1
𝑖=𝑟  ( 𝑟 ≔ min (𝑁 − 1, 𝑚 )) are assumed to be positive. These eigenvalues 219 

represent the ratio of the variance of forecast error to that of observation error. We transform 220 

�̂�𝑓 to 𝒁𝑓 such that 𝒁𝑓(𝒁𝑓)T is a diagonal matrix: 221 

𝒁𝑓 ≔ 𝑼T𝑹−𝟏 𝟐⁄ 𝒀𝑓 = (
(∆𝒛1

𝑓
)

T

⋮

(∆𝒛𝑚
𝑓

)
T

),                                                                                      (15) 222 

where  {∆𝒛𝑖
𝑓

}
𝑖=1

𝑖=𝑚
  are the column vectors of the forecast ensemble of each transformed 223 

variable. Equations (13)‒(15) imply 224 

(∆𝒛𝑖
𝑓

)
T

∆𝒛𝑗
𝑓

= (𝑁 − 1)𝜆𝑖𝛿𝑖𝑗 ,        (𝑖, 𝑗 = 1,  ⋯ ,  𝑟),                                                         (16) 225 

∆𝒛𝑖
𝑓

= 𝟎,                                     (𝑖 = 𝑟 + 1,  ⋯ ,  𝑚),                                                         (17) 226 

where 𝛿𝑖𝑗  is the Kronecker delta, and we obtain the following orthonormal system in 227 

ensemble space: 228 

{𝒗1,  ⋯ , 𝒗𝑟} ≔ {  
∆𝒛1

𝑓

√(𝑁 − 1)𝜆1

,  ⋯ ,
∆𝒛𝑟

𝑓

√(𝑁 − 1)𝜆𝑟

 }.                                                   (18) 229 

A complete orthonormal system {𝒗𝑖}𝑖=1
𝑖=𝑁 can be constructed from this orthonormal system 230 

using the Gram‒Schmidt orthogonalization. Then 𝑻 can be decomposed by using {𝒗𝑖}𝑖=1
𝑖=𝑁 231 

as 232 

𝑻 = [𝑰𝑁 +
(𝒁𝑓)T𝒁𝑓

𝑁 − 1
]

−
1
2

= [∑(1 + 𝜆𝑖)𝒗𝑖𝒗𝑖
T

𝑟

𝑖=1

+ ∑ 𝒗𝑖𝒗𝑖
T

𝑁

𝒊=𝑟+1

]

−
1
2

  233 
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= ∑
1

√1 + 𝜆𝑖

𝒗𝑖𝒗𝑖
T

𝑟

𝑖=1

+ ∑ 𝒗𝒊𝒗𝑖
T

𝑁

𝑖=𝑟+1

= 𝑰𝑁 − ∑ (1 −
1

√1 + 𝜆𝑖

) 𝒗𝑖𝒗𝑖
T

𝑟

𝑖=1

,                   (19)           234 

where the completeness condition ∑ 𝒗𝑖𝒗𝑖
T𝑁

𝑖=1 = 𝑰𝑁  is used. It is obvious from this 235 

decomposition that 𝑻 has 𝟏𝑁 as an eigenvector, because (∆𝒛𝑖
𝑓

)
T

𝟏𝑁 = 0 for 𝑖 = 1, ⋯ , 𝑟. 236 

Equation (19) implies that if the ensemble size 𝑁 is larger than the number of observational 237 

data 𝑚, we can construct the ensemble transform matrix 𝑻 by solving a smaller eigenvalue 238 

problem of 𝑷𝑌
𝑓
  defined by Eq. (13). As mentioned in Subsection 2.2, the ensemble 239 

transform matrix of the deterministic part of stochastic EnKF is given by 𝑻𝟐 , the 240 

decomposition of which can be obtained by replacing √1 + 𝜆𝑖 with 1 + 𝜆𝑖 in Eqs. (19). 241 

To derive the analysis ensemble perturbations of each state variable, let us write the 242 

transposes of 𝑿𝒂 and 𝑿𝑓 as 243 

(𝑿𝑓)T = (∆𝒙1
𝑓

,  ⋯ , ∆𝒙𝑛
𝑓

),           (𝑿𝑎)T = (∆𝒙1
𝑎,  ⋯ , ∆𝒙𝑛

𝑎),                                        (20) 244 

where the subscript indicates the index of state variables. {∆𝒙𝑗
𝑓

}
𝑗=1

𝑗=𝑛
 and  {∆𝒙𝑗

𝑎}
𝑗=1

𝑗=𝑛
 are the 245 

forecast and analysis ensemble perturbations, respectively, of each state variable. 246 

Substitution of Eqs. (18) ‒ (20) into the transpose of Eq. (6) yields 247 

∆𝒙𝑗
𝑎 = ∆𝒙𝑗

𝑓
− ∑

1

𝜆𝑖
(1 −

1

√1 + 𝜆𝑖

)
(∆𝒛𝑖

𝑓
)

T
∆𝒙𝑗

𝑓

𝑁 − 1

𝑟

𝑖=1

∆𝒛𝑖
𝑓

,    (𝑗 = 1,  ⋯ ,  𝑛).                 (21) 248 

In this equation, {𝜆𝑖}𝑖=1
𝑖=𝑟  are the non-zero eigenvalues of the covariance matrix 𝑷𝑌

𝑓
 , and 249 

(∆𝒛𝑖
𝑓

)
T

∆𝒙𝑗
𝑓 (𝑁 − 1)⁄  is the covariance between ∆𝒛𝑖

𝑓
 and ∆𝒙𝑗

𝑓
. Therefore, if the ensemble 250 

size 𝑁 goes to infinity, the factor of ∆𝒛𝑖
𝑓
 in Eq. (21) becomes constant. It is well known that 251 

a linear combination of Gaussian random variables is Gaussian distributed. It follows that if 252 
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the forecast ensemble is Gaussian and the observation operator is linear then the analysis 253 

ensemble generated by the ensemble transform matrix 𝑻  is also Gaussian. Since this 254 

property holds under any mean-preserving rotation and space inversion, it is difficult to 255 

uniquely determine an appropriate ensemble transform matrix for data assimilation in linear 256 

Gaussian systems. Hunt et al. (2007) adopted the matrix 𝑻  defined by Eq. (7) as the 257 

ensemble transform matrix of the LETKF on the basis that it makes the analysis ensemble 258 

perturbations as close as possible to the forecast ensemble perturbations (Wang et al. 2004; 259 

Ott et al. 2004; see Appendix). We can make the same choice by requiring that if there is no 260 

observation, in other words, if observation error variance goes to infinity, the analysis 261 

ensemble is the same as the forecast ensemble. Note that the stochastic EnKF satisfies this 262 

requirement. Equation (21) also implies that if the observation operator is nonlinear the 263 

analysis ensemble of state variables becomes non-Gaussian even if the forecast ensemble 264 

is Gaussian. 265 

If the observation operator is linear, we can derive simple formulas for the relationship 266 

between the analysis ensemble perturbations and the forecast ensemble perturbations in 267 

observation space. Let us introduce the following transformed analysis ensemble 268 

perturbations: 269 

𝒁𝑎 ≔ 𝑼𝑇𝑹−1 2⁄ 𝒀𝑎 = (
(∆𝒛1

𝑎)T

⋮
(∆𝒛𝑚

𝑎 )T
),                                                                                      (22) 270 

where 𝒀𝑎 is the analysis ensemble perturbations in observation space. Then we obtain 271 
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𝒁𝑓 = 𝑼T𝑹−1 2⁄ 𝑯𝑿𝑓 ,           𝒁𝑎 = 𝑼T𝑹−1 2⁄ 𝑯𝑿𝑎,                                                              (23) 272 

where 𝑯 is a linear observation operator. 273 

For the LETKF, Eq. (6) can be put in the following form 274 

𝒁𝑎 = 𝒁𝑓𝑻.                                                                                                                                (24) 275 

Substitution of Eqs. (15), (17), (19), and (22) into the transpose of Eq. (24) yields 276 

(∆𝒛1
𝑎,  ⋯ , ∆𝒛𝑚

𝑎 ) = (∑
1

√1 + 𝜆𝑖

𝒗𝑖𝒗𝑖
T

𝑟

𝑖=1

+ ∑ 𝒗𝑖𝒗𝑖
T

𝑁

𝑖=𝑟+1

) (∆𝒛1
𝑓

,  ⋯ , ∆𝒛𝑟
𝑓

,  𝟎,  ⋯ ,  𝟎).  277 

        (25) 278 

By using Eq. (18) and the orthogonality of {𝒗𝑖}𝑖=1
𝑖=𝑁, we finally obtain 279 

∆𝒛𝑖
𝑎 = {

1

√1 + 𝜆𝑖

∆𝒛𝑖
𝑓

               (𝑖 = 1,  ⋯ ,  𝑟)

 𝟎                           (𝑖 = 𝑟 + 1,  ⋯ ,  𝑚)

.                                                               (26) 280 

This result indicates that the analysis ensemble perturbations are uniform contractions of 281 

the forecast ensemble perturbations in observation space in each direction of the 282 

eigenvectors of 𝑷𝑌
𝑓
.  283 

If the observation operator is weakly nonlinear, the following approximate equations hold: 284 

𝒁𝑓 ≈ 𝑼T𝑹−1 2⁄
𝜕𝐻

𝜕𝒙
|

𝒙𝑓
𝑿𝑓 ,           𝒁𝑎 ≈ 𝑼T𝑹−1 2⁄

𝜕𝐻

𝜕𝒙
|

𝒙𝑎
𝑿𝑎                                             (27) 285 

Using Eq. (6), we obtain 286 

𝒁𝑎 ≈ 𝒁𝑓𝑻 + 𝑼T𝑹−1 2⁄ (
𝜕𝐻

𝜕𝒙
|

𝒙𝑎
−

𝜕𝐻

𝜕𝒙
|

𝒙𝑓
) 𝑿𝑓𝑻,                                                                (28) 287 

By the assumption of weak nonlinearity, the second term on the righthand side of this 288 

equation is sufficiently small compared to the first term. Then Eq. (24) approximately holds, 289 

and therefore Eq. (26) also approximately holds.  290 

For the stochastic EnKF, we introduce a transformed matrix of observation error 291 
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perturbations: 292 

𝑭𝑜 ≔ 𝑼T𝑹−1 2⁄ 𝑬𝑜 = (
(𝒇1

𝑜)T

⋮
(𝒇𝑚

𝑜 )T
),                                                                                          (29) 293 

where  294 

〈(𝒇𝑗
𝑜)

T
𝒇𝑖

𝑜〉 ≔ (𝑁 − 1) 𝛿𝑖𝑗.                                                                                                     (30) 295 

If the observation operator is linear, we can derive the following equation using Eqs. (5), (7),  296 

(12), and (29) in addition to Eqs. (15), (17) ‒ (19), (22), and (23): 297 

∆𝒛𝑖
𝑎 = {

1

1 + 𝜆𝑖
∆𝒛𝑖

𝑓
+

𝜆𝑖

1 + 𝜆𝑖
𝒇𝑖

𝑜              (𝑖 = 1,  ⋯ ,  𝑟)

 𝟎                                            (𝑖 = 𝑟 + 1,  ⋯ ,  𝑚)

.                                                  (31) 298 

This result indicates that the deterministic part of stochastic EnKF is twice contracted as 299 

compared to the LETKF. This twice contraction of forecast ensemble perturbations allows 300 

the addition of Gaussian perturbations to make the analysis ensemble perturbations more 301 

Gaussian. It is also found from Eqs. (16), (30), and (31) that as 𝜆𝑖 increases the stochastic 302 

part becomes more dominant. If the observation operator is weakly nonlinear, Eq. (31) 303 

approximately holds like Eq. (26) for the LETKF.  304 

 305 

2.4.  Example of LETKF analysis 306 

Figure 1 presents an example of Eq. (26) for a system of two state variables, 𝒙 =307 

(𝑥1, 𝑥2)T, with an ensemble size of 10. The prior PDF is bimodal and given by 308 

𝑝(𝑥1, 𝑥2) =
1

4𝜋
{exp [−

(𝑥1 + 2)2

2
] + exp [−

(𝑥1 − 2)2

2
]} exp [−

𝑥2
2

2
].                    (32) 309 

The two modes are located at (±2, 0)T, and the mean is (0, 0)T. This PDF is plotted with 310 

Fig. 1 
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green contours in Fig. 1a. The forecast ensemble members are generated by independent 311 

random draws from the above PDF. Those members are plotted with green dots in the same 312 

panel and numbered from 0 to 9. These numbers are referred to in Fig. 1c. The forecast 313 

ensemble mean is (−0.144, 0.121)T . The state variables are assumed to be directly 314 

observed with a standard deviation of observation error of 0.5. The observations are 𝒚𝑜 =  315 

(1, 1)T and the likelihood function (red contours) is given by 316 

𝑝(1, 1|𝑥1, 𝑥2) =
1

2𝜋(0.5)2
exp [−

(𝑥1 − 1)2

2(0.5)2
−

(𝑥2 − 1)2

2(0.5)2
].                                           (33) 317 

The posterior PDF calculated from Bayes’ theorem is plotted with blue contours in Fig. 1b. 318 

This PDF is unimodal with mean (1.193, 0.800)T. The analysis ensemble members obtained 319 

by using Eqs. (1) and (5)‒(7) are plotted with blue dots.  320 

It is found that the distribution pattern of analysis ensemble members around the 321 

ensemble mean is very similar to that of forecast ensemble members with a significant 322 

reduction in spread. The analysis ensemble mean is (0.928, 0.754)T. It is shifted roughly by 323 

0.3 in the direction of the forecast ensemble mean from the mean of the posterior PDF. The 324 

tilted coordinate axes plotted in Figs. 1a and 1b represent the directions of eigenvectors of 325 

𝑷𝑌
𝑓
  with the origins set at each ensemble mean. Figure 1c plots the ratios between the 326 

analysis and forecast perturbations in each direction of the eigenvectors for each ensemble 327 

member. Those ratios are found to be constant in each direction, being consistent with Eq. 328 

(26). An example in which the observation operator is strongly nonlinear is presented in 329 

Section 3 for the LETKF and the stochastic EnKF. 330 
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 331 

2.5. Problem with LETKF 332 

Lawson and Hansen (2004) presented histograms of analysis ensembles generated by 333 

the deterministic and stochastic EnKFs for a one-dimensional system with an ensemble size 334 

of 5 000. The state variable is assumed to be directly observed. Although they use the 335 

deterministic EnKF based on left multiplication, their analysis ensembles are the same as 336 

those generated by Eqs. (6)‒(7). According to their Figs. 2 and 3, when the prior PDF is 337 

Gaussian, both EnKFs yield correct analysis ensembles. However, when the prior PDF is 338 

bimodal, this is not the case; the ensemble mean is inaccurate and the analysis spread 339 

tends to be overestimated. The reason for the latter result is probably because the minimum 340 

mean square error estimate is obtained under the specific assumption on analysis given by 341 

Eq. (1).  342 

Their histograms for the deterministic EnKF are consistent with Eq. (26); the analysis 343 

ensemble perturbations are a uniform contraction of the forecast ensemble perturbations 344 

irrespective whether the prior PDF is Gaussian or bimodal. If the forecast ensemble at a 345 

certain analysis time is strongly non-Gaussian, the analysis ensemble at the same analysis 346 

time is also strongly non-Gaussian. In high-frequency assimilation cycles with a nonlinear 347 

numerical model, the error growth between the adjacent analysis times may be close to 348 

linear. Therefore, the forecast ensemble at the next analysis time will also be strongly non-349 

Gaussian. By repeating these processes, strong non-Gaussianity tends to persist in high-350 
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frequency assimilation cycles. On the other hand, in low-frequency assimilation cycles, 351 

strong non-Gaussianity of the forecast ensemble is not likely to persist due to nonlinear error 352 

growth. Such persistent strong non-Gaussianity is unlikely to occur in the stochastic EnKF 353 

because of the addition of Gaussian perturbations. 354 

In linear Gaussian or weakly nonlinear systems, when the ensemble size is small, the 355 

forecast ensemble could become strongly non-Gaussian due to sampling errors. However, 356 

the LETKF can yield an analysis with high accuracy using only the first- and second-order 357 

moments of the forecast ensemble with covariance inflation and localization. Therefore, the 358 

persistence of strong non-Gaussianity in high-frequency assimilation cycles may not cause 359 

a serious problem. 360 

This is not the case in strongly nonlinear systems, in which information of moments of 361 

the forecast ensemble higher than the second-order is necessary for accurate analysis. 362 

EnKFs yield inaccurate analysis ensembles and tend to overestimate analysis spread even 363 

if the ensemble size is sufficiently large. In high-frequency assimilation cycles of the LETKF,  364 

those problems become worse because of the persistent strong non-Gaussianity, and its 365 

analysis may be less accurate than the stochastic EnKF. This would not occur in low-366 

frequency assimilation cycles. The nonlinearity in data assimilation arises not only from the 367 

nonlinearity of a numerical model but also from the nonlinearity of an observation operator. 368 

When a region of sparse observations is present, the former nonlinearity becomes strong 369 

because the constraints by observations are weak in such a region. 370 
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 371 

3. EnKF analyses with a nonlinear observation operator 372 

In this section, we examine the performance of the LETKF and the stochastic EnKF with 373 

a nonlinear observation operator 𝐻(𝒙) = max(𝒙, 𝟎), where the maximum operator shall be 374 

applied to each pair of components of the two argument vectors. The observations are 375 

generated by 𝒚𝑜 = max(𝒙𝑡 + 𝜺𝑜 ,  𝟎), where 𝒙𝑡 is the true value and 𝜺𝒐 is observation error, 376 

which is independent random draws from a Gaussian distribution with mean 0 and variance 377 

1. Note that the observation error is added inside the maximum operator so that the 378 

observations are always non-negative like precipitation data. Those observational data 379 

therefore cannot be properly handled by EnKFs, because in the theory of Kalman filtering 380 

an observed value is assumed to be the sum of the true value and Gaussian random error.  381 

The above observation operator is strongly nonlinear around 𝑥 =0. Its likelihood function 382 

in a one-dimensional system is calculated as 383 

𝑝(𝑦𝑜|𝑥) =
𝜃(𝑦𝑜)

√2𝜋
exp [−

(𝑦𝑜 − 𝑥)2

2
] +

𝛿(𝑦𝑜)

2
[1 − erf (

𝑥

√2
)],                                      (34) 384 

where 𝜃(∙)  is the unit step function, 𝛿(∙)  is the delta function, and erf(∙)  is the error 385 

function. The first term is the likelihood function for 𝑦𝑜 >  0. The coefficient of the delta 386 

function can be determined from the condition that the integration of 𝑝(𝑦𝑜|𝑥) from ‒ ∞ to 387 

∞ with respect to 𝑦𝑜 is unity. The likelihood function for 𝑦𝑜 = 0 is shown with the orange 388 

line in Fig. 2a. Since what matters in a likelihood function is a relative value, the coefficient 389 

of the delta function is plotted. This figure indicates that when 𝑦𝑜 = 0 the state variable is 390 
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likely to be negative. 391 

We apply the LETKF and the stochastic EnKF with an ensemble size of 10 000 to the 392 

above one-dimensional system for the case of 𝑦𝑜 = 0. The prior PDF is assumed to be 393 

Gaussian with mean 0 and variance 1, and the forecast ensemble is generated by 394 

independent random draws from the prior PDF. This PDF and the histogram of the forecast 395 

ensemble are shown in Fig. 2a. The analysis ensembles of the LETKF and the stochastic 396 

EnKF are presented in Fig. 2b and Fig. 2c, respectively, along with the posterior PDF 397 

calculated from Bayes’ theorem. Surprisingly, the posterior PDF is very close to Gaussian; 398 

the skewness and kurtosis of the posterior PDF is much smaller than unity (Table 1). The 399 

analysis ensemble means of the two EnKFs are closer to the forecast ensemble mean than 400 

the mean of the posterior PDF. Their analysis spreads are slightly overestimated as 401 

compared to the posterior PDF. 402 

Table 1 also reveals that the analysis ensembles are more skewed than the posterior 403 

PDF, and that the analysis ensemble of the stochastic EnKF is slightly more non-Gaussian 404 

than the LETKF. The latter result may be an unexpected one, since the stochastic EnKF is 405 

expected to yield a more Gaussian analysis ensemble through the addition of Gaussian 406 

perturbations. This result may be explained by considering the deterministic part of 407 

stochastic EnKF. If a forecast member is negative in state space, the corresponding analysis 408 

member remains the same as the forecast member, because the forecast member in 409 

observation space is equal to the observation 𝑦𝑜 =  0. On the other hand, if a forecast 410 

Fig. 2 

Table 1 
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member is positive, the corresponding analysis member is shifted toward the origin as in 411 

Kalman filtering of linear Gaussian systems. As a result, a discontinuity arises at 𝑥 = 0 in 412 

the histogram of the analysis ensemble calculated from the deterministic part only. Although 413 

the addition of Gaussian perturbations wipes out this discontinuity, the analysis ensemble 414 

could become more non-Gaussian than the LETKF. If a nonlinear observation operator other 415 

than 𝐻(𝒙) = max(𝒙, 𝟎) is used, the analysis ensemble generated by the deterministic part of 416 

the stochastic EnKF may not be so strongly non-Gaussian, and the stochastic EnKF could 417 

yield a more Gaussian analysis ensemble than the LETKF. 418 

 419 

4. Method of hybrid EnKF 420 

The hybrid EnKF is based on a weighting average of the analysis ensembles of the 421 

LETKF and the stochastic EnKF. Note that the analysis ensemble mean of the stochastic 422 

EnKF is equal to that of the LETKF as mentioned in Subsection 2.2. Let 𝑿𝐿
𝑎 and 𝑿𝑆

𝑎 be the 423 

analysis ensemble perturbations of the LETKF and stochastic EnKF, respectively, in a local 424 

domain. The first step is the computation of a provisional value of the analysis ensemble 425 

perturbations as 426 

𝑿∗
𝑎 = (1 − 𝑤)𝑿𝐿

𝑎 + 𝑤𝑿𝑆
𝑎                (0 ≤ 𝑤 ≤ 1),                                                                    (35) 427 

where 𝑤 is the weight of the stochastic EnKF. The analysis error covariance matrix of 𝑿𝑎∗ 428 

is calculated as 429 

𝑷∗
𝑎 = (1 − 𝑤)

𝑿𝐿
𝑎(𝑿𝐿

𝑎)T

𝑁 − 1
+ 𝑤

𝑿𝑆
𝑎(𝑿𝑆

𝑎)T

𝑁 − 1
 −

𝑤(1 − 𝑤)

𝑁 − 1
(𝑿𝐿

𝑎 − 𝑿𝑆
𝑎)(𝑿𝐿

𝑎 − 𝑿𝑆
𝑎)T                (36) 430 
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Since 〈𝑿𝑆
𝑎(𝑿𝑆

𝑎)T〉 is equal to 𝑿𝐿
𝑎(𝑿𝐿

𝑎)T, taking the expected value of Eq. (36) yields 431 

〈𝑷∗
𝑎〉 =

𝑿𝐿
𝑎(𝑿𝐿

𝑎)𝑇

𝑁 − 1
−

𝑤(1 − 𝑤)

𝑁 − 1
〈(𝑿𝐿

𝑎 − 𝑿𝑆
𝑎)(𝑿𝐿

𝑎 − 𝑿𝑆
𝑎)T〉                                                     (37) 432 

This equation indicates that analysis spread is underestimated unless 𝑤 =  0 or 𝑤 =  1, 433 

because the matrix 〈(𝑿𝐿
𝑎 − 𝑿𝑆

𝑎)(𝑿𝐿
𝑎 − 𝑿𝑆

𝑎)T〉 is positive-semidefinite.  434 

In weakly nonlinear regimes, it is desirable to adjust the spread of 𝑿∗
𝑎 to be equal to that 435 

of 𝑿𝐿
𝑎, because the LETKF may be more accurate than the stochastic EnKF. In strongly 436 

nonlinear regimes, however, the analysis spread of the LETKF in high-frequency 437 

assimilation cycles may be overestimated due to persistent strong non-Gaussianity as 438 

mentioned in Subsection 2.5. In this case, 𝑿∗
𝑎  can be used as the analysis ensemble 439 

perturbations of the hybrid EnKF, 𝑿𝑎. Therefore, we introduce the following procedure to 440 

adjust the analysis spread. Consider the case where there is only one state variable at a 441 

grid point. The analysis ensemble perturbations at each grid point, ∆𝒙𝑎, are computed by 442 

∆𝒙𝑎 = [(1 − 𝛼) + 𝛼
𝜎𝐿

𝑎

𝜎∗
𝑎

] ∆𝒙∗
𝑎              (0 ≤ 𝛼 ≤ 1),                                                        (38) 443 

where ∆𝒙∗
𝑎 are the corresponding ensemble perturbations of the provisional analysis, and 444 

𝜎𝐿
𝑎 and 𝜎∗

𝑎 are the ensemble standard deviations of the LETKF and provisional analysis, 445 

respectively. If the parameter 𝛼 is set to 0, analysis spread remains the same as that of the 446 

provisional ensemble. If 𝛼 is set to 1, the spread becomes equal to that of the LETKF. When 447 

there are two or more state variables at a grid point, the ratio of standard deviations in Eq. 448 

(38) are to be replaced with that of a representative state variable, such as temperature or 449 

wind velocity in meteorology, so as not to destroy the dynamical balance represented in the 450 
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provisional analysis ensemble. The above procedure is hereafter referred to as the analysis 451 

spread adjustment. The hybrid EnKF with 𝑤 = 0 is the same as the LETKF, and the hybrid 452 

EnKF with 𝑤 = 1 and 𝛼 = 0 is the same as the stochastic EnKF. Note that Eq. (38) has 453 

some resemblance to the relaxation-to-prior spread (RTPS) for covariance inflation 454 

(Whitaker and Hamill 2012). The RTPS relaxes the ensemble spread back to the forecast 455 

spread via 456 

∆𝒙𝑎  ←  [(1 − 𝛼) + 𝛼
𝜎𝑓

𝜎𝑎
] ∆𝒙𝑎              (0 < 𝛼 < 1),                                                        (39) 457 

at each grid point, where 𝜎𝑓  and 𝜎𝑎  are the forecast and analysis ensemble standard 458 

deviation at each grid point. On the other hand, Eq. (38) relaxes the analysis spread of the 459 

hybrid EnKF back to that of the LETKF to correct the underestimation of the analysis spread. 460 

Figure 3 shows the workflow of the hybrid EnKF. Same as in the LETKF, the analysis can 461 

be independently performed for each grid point, and observational data in a local domain 462 

centered on this grid point are assimilated using the R-localization (Greybush et al., 2011). 463 

The white boxes in the figure are common with the LETKF, and the colored three boxes are 464 

added to generate the stochastic analysis ensemble and to take a weighting average of the 465 

two analysis ensembles. Since the Kalman gain and the forecast ensemble in observation 466 

space are already computed in the LETKF, additional computational cost is small. Note that 467 

a discontinuity issue is crucial for the hybrid EnKF; if different perturbed observations are 468 

assimilated in neighboring local domains, the resulting analysis ensemble will become 469 

discontinuous between adjacent grid points. The same perturbations should be used for the 470 

Fig. 3 
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same observations in neighboring local domains. One of the methods for this is to assign a 471 

different initialization parameter for random number generation to each observation.  472 

 473 

5. Experimental design 474 

5.1 Model 475 

The governing equation of the Lorenz-96 model is 476 

𝑑𝑋𝑘

𝑑𝑡
= −𝑋𝑘−1(𝑋𝑘−2 − 𝑋𝑘+1) − 𝑋𝑘 + 𝐹,                                                                               (40)                                                                                 477 

for 𝑘 = 1, ⋯ , 𝐾 , satisfying periodic boundary conditions: 𝑋−1 = 𝑋𝐾−1 , 𝑋0 = 𝑋𝐾 , and 𝑋1 =478 

𝑋𝐾+1 . The number of variables 𝐾  and the forcing parameter 𝐹  are set to 40 and 8, 479 

respectively. According to Lorenz and Emanuel (1998), the number of positive Lyapunov 480 

exponents of the model is 13, and the fractional dimension of the attractor, as estimated 481 

from the formula of Kaplan and Yorke (1979), is about 27.1. The leading Lyapunov exponent 482 

corresponds to a doubling time of 0.42. 483 

Time integration of the model provides the truth that is used for the verification of analysis 484 

and the generation of observational data. The fourth-order Runge-Kutta scheme is used for 485 

time integration with a time step 0.01. The initial condition at each grid point is 𝐹 plus an 486 

independent random number drawn from a Gaussian distribution with mean 0 and variance 487 

4. The model is integrated from 𝑡 = 0 to 𝑡 = 5 050. 488 

 489 

5.2 Observations 490 
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The data assimilation experiments are conducted using the above model in two cases: 491 

Case 1 where the state variables are directly observed and Case 2 where the nonlinear 492 

observation operator introduced in Section 3 is used. In Case 1, all the state variables 𝒙 =493 

(𝑋1, ⋯ , 𝑋40 ) are directly observed, and the observation operator is given by 𝐻(𝒙) = 𝒙. 494 

The observations 𝒚𝑜 are generated by adding random errors 𝜺𝑜 to the truth 𝒙𝑡: 𝒚𝒐 = 𝒙𝑡 +495 

𝜺𝑜 , where 𝜺𝑜 are independent random draws from a Gaussian distribution with mean 0 and 496 

variance 1. In Case 2, the observation operator is given by 𝐻(𝒙) = max(𝒙, 𝟎) , and 497 

observations are generated by 𝒚𝑜 = max(𝒙𝑡 + 𝜺𝑜 ,  𝟎).  The observation error covariance 498 

matrix 𝑹 used in the experiments is set to 𝑰40 in both cases.  499 

All experiments are conducted for two values of the time interval between observations 500 

∆𝑡: 0.05 and 0.50. Since the doubling time of the leading Lyapunov exponent of the Lorenz-501 

96 model is 0.42, the case of ∆𝑡 = 0.05 is weakly nonlinear, whereas that of ∆𝑡 = 0.50 is 502 

strongly nonlinear. In addition, the former case corresponds to high-frequency assimilation 503 

cycles and the latter case corresponds to low-frequency assimilation cycles. Table 2 504 

presents the characterization of each experiment.  505 

The observational data are prepared from 𝑡 = 0 to 𝑡 = 1 050 for ∆𝑡 = 0.05 and from 506 

𝑡 = 0 to 𝑡 = 5 050 for ∆𝑡 = 0.50. This is because for the case of ∆𝑡 = 0.50 the analysis 507 

accuracy intermittently becomes very poor (Penny and Miyoshi, 2016) and, therefore, a 508 

much longer data assimilation period is required to obtain statistically stable results. All 509 

observations are prepared such that observations at the same analysis time are the same 510 

Table 2 
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regardless of the value of ∆𝑡. 511 

 512 

5.3 Data assimilation settings 513 

We perform the data assimilation experiments with 10, 20, and 40 ensemble members. 514 

The ensemble size of 10 is not very small as compared with the number of positive Lyapunov 515 

exponents of the Lorenz-96 model, and an ensemble size of 40 is the same as the degrees 516 

of freedom of the model. The period of data assimilation is 1 050 for ∆𝑡 = 0.05 and 5 050 517 

for ∆𝑡 = 0.50 for the reason mentioned above. The analyses from 𝑡 = 0 to 𝑡 = 50 are not 518 

used for verification to avoid adverse effects of spin up. The analyses at a time interval of 1 519 

are used for verification to prepare almost independent samples. Therefore, the sample size 520 

is the same between the experiments with ∆𝑡 = 0.05 and those with ∆𝑡 = 0.50. Analysis 521 

accuracy is estimated by the root mean square error (RMSE) that is the square root of the 522 

squared error averaged over the grid points and the period of experiments. All experiments 523 

are conducted with the following five sets of tuning parameters of the hybrid EnKF: (𝑤, 𝛼) = 524 

(0, 0), (0.5, 0), (0.5, 1), (1, 0), and (1, 1). Note that 𝛼 = 0 and 𝛼 = 1 indicate the experiment 525 

without and with the analysis spread adjustment, respectively. The hybrid EnKF with  526 

(𝑤, 𝛼) = (1, 1) is different from the stochastic EnKF, because its analysis spread is adjusted 527 

to be equal to that of the LETKF. This adjustment suppresses sampling noise contained in 528 

the analysis error covariance matrix of the stochastic EnKF, and it is expected to result in 529 

better analysis accuracy in weakly nonlinear regimes. For some experiments, we change 530 
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the value of 𝑤 from 0 to 1 at a step of 0.1. 531 

Unless the ensemble size is sufficiently large, ensemble Kalman filtering needs 532 

covariance localization and covariance inflation to optimize its performance. The correlation 533 

function defined by Eq. (4.10) of Gaspari and Cohn (1999) is taken for covariance 534 

localization. The parameter 𝑐 in this equation is regarded as the localization radius 𝑟𝐿 (unit: 535 

grid interval) in this study, at which radius the correlation coefficient decreases to 5/24. The 536 

radius of the local domain is set equal to 𝑟𝐿. The value of 𝑟𝐿 is changed from 0 to 19 grid 537 

intervals in a step of 1 to obtain the most accurate analysis.  538 

The adaptive inflation method proposed by Li et al. (2009) is applied to each local domain. 539 

This method is based on the innovation statistics by Desroziers et al. (2005). Li et al. (2009) 540 

imposed lower and upper limits in the “observed” inflation factor ∆̃𝑜  before applying a 541 

smoothing procedure: 0.9 ≤ ∆̃𝑜≤ 1.2. Since we conduct the data assimilation experiments 542 

over a much wider range of the time interval between observations, we optimize the upper 543 

limit of ∆̃𝑜 leaving the lower limit at 0.9 to obtain the most accurate analysis. The candidates 544 

of the upper limit are 1.2, 1.5, 2.0, 3.0, 5.0, and infinity. In addition, although Li et al. (2009) 545 

set the error growth parameter 𝜅 to 1.03, we adopt a larger value 𝜅 = 1.1, because we 546 

found that the latter value led to a better analysis accuracy. In the adaptive inflation for Case 547 

2, the observation operator of Case 1 is used instead of that of Case 2. This procedure is 548 

not correct when a predicted state variable is negative, but no serious difficulty arises 549 

because the range of ∆̃𝑜 is limited. When we used the observation operator of Case 2, we 550 
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found that analysis accuracy was considerably deteriorated. This was primarily because the 551 

constant observation error variance was used even if the observed value was zero. 552 

 553 

6. Results 554 

In the following, the localization radius 𝑟𝐿 and the upper limit of ∆̃𝑜 are optimized for 555 

each combination of ensemble size, ∆𝑡, 𝑤, and 𝛼, unless otherwise stated. 556 

 557 

6.1 Case 1 558 

We first compare the analysis ensembles of the LETKF and the stochastic EnKF before 559 

taking a weighting average in the hybrid EnKF. Figure 4 displays examples for the hybrid 560 

EnKF with (𝑤, 𝛼) = (0.5, 1) at 𝑡 = 100 for ∆𝑡 = 0.05 and 0.50. The ensemble size is 10. 561 

Perturbations in 𝑥1  and 𝑥2  with respect to each ensemble mean are plotted. The two 562 

analysis members in the same color are generated from the same forecast member in this 563 

color. The correspondence between the LETKF analysis member and the forecast member 564 

is based on the uniform contraction property of the LETKF, and the correspondence for the 565 

stochastic EnKF is based on Eq. (8). Since the spreads of ensembles are very different 566 

between ∆𝑡 = 0.05 and ∆𝑡 = 0.50, different scales of axes are used in the two panels. It 567 

is found that the LETKF and stochastic EnKF analysis members that correspond to the same 568 

forecast member tend to be close to each other with some exceptions. This result indicates  569 

that the weighting average does not much change the analysis error covariance matrix.  570 

Fig. 4 
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The analysis RMSEs of the LETKF, hybrid EnKFs, and stochastic EnKF for ∆𝑡 = 0.05 571 

and 0.50 are plotted in Fig. 5 against the ensemble size. For ∆𝑡 = 0.05, the LETKF (red 572 

line) generates the most accurate analysis when the ensemble size is 10 and 20, and the 573 

stochastic EnKF (green line) is the least accurate for all ensemble sizes. As for the hybrid 574 

EnKFs, the RMSE increases with the increase of the weight. The analysis spread adjustment 575 

improves the accuracy of hybrid EnKFs for an ensemble size of 10, but no benefits are seen 576 

for an ensemble size of 40. Generally, hybrid EnKFs with 𝑤 =0.5 are more accurate than 577 

hybrid EnKFs with 𝑤 = 1, and hybrid EnKFs with 𝛼 = 1 are more accurate than hybrid 578 

EnKFs with 𝛼 = 0. Those results can be explained by the suppression of sampling noise of 579 

the stochastic EnKF. Since the sampling noise decreases with the increase of ensemble 580 

size, the differences in analysis accuracy among the EnKFs decrease as the ensemble size 581 

increases. For ∆𝑡 = 0.50, the hybrid EnKF with (𝑤, 𝛼) = (0.5, 1) (cyan line) yields the most 582 

accurate analysis for all ensemble sizes. This hybrid EnKF has less sampling noise 583 

compared to the other hybrid EnKFs. In addition, as will be shown later, the forecast 584 

ensembles of hybrid and stochastic EnKFs are more Gaussian than that of the LETKF. 585 

Those two factors are considered to contribute to the above result. However, the positive 586 

impact on analysis accuracy is rather small; its RMSE is at most only 3% smaller than that 587 

of the LETKF. It is also found that the hybrid EnKF with (𝑤, 𝛼) = (0.5, 0) (blue line) is less 588 

accurate than the other hybrid EnKFs. This result indicates that the analysis spread 589 

adjustment is necessary for the hybrid EnKF with 𝑤 =0.5. 590 

Fig. 5 
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Since ensemble Kalman filtering is based on the Gaussian assumption, it may be of 591 

interest to compare the non-Gaussianity of forecast ensembles. The Kullback-Leibler (KL) 592 

divergence (Kullback and Leibler, 1951) is used in this study to measure the difference of a 593 

forecast ensemble from a Gaussian distribution with the same mean and variance as the 594 

forecast ensemble. Since ensemble sizes are not very large in this study, a histogram of the 595 

forecast ensemble to compute the KL divergence is created using five equiprobable bins of 596 

the Gaussian distribution, and the KL divergence with respect to the Gaussian distribution 597 

is computed using the following equation:  598 

𝐷(𝑝‖𝑝𝑁) = ∑ 𝑝𝑖 log

5

𝑖=1

𝑝𝑖

(𝑝𝑁)𝑖
= ∑ 𝑝𝑖 log

5

𝑖=1

𝑝𝑖

1 5⁄
 ,                                                       (41) 599 

where 𝑝𝑖 and (𝑝𝑁)𝑖 are the probabilities of the 𝑖th bin of the forecast ensemble and the 600 

Gaussian distribution, respectively. If we adopt 𝐷(𝑝𝑁||𝑝) instead of 𝐷(𝑝‖𝑝𝑁), the value of 601 

KL divergence becomes infinite when 𝑝𝑖 = 0 for a certain bin.  602 

The forecast KL divergences averaged over the grid points and the verification period 603 

are compared in Fig. 6 for an ensemble size of 40. This figure only shows general features, 604 

because the standard deviation of KL divergence is as large as the mean value. It is found 605 

that the KL divergences for ∆𝑡 = 0.50 are larger than those for ∆𝑡 = 0.05, and that the KL 606 

divergence of the hybrid and stochastic EnKFs are smaller than that of the LETKF. The latter 607 

result suggests that the forecast ensembles of the hybrid and stochastic EnKFs are more 608 

Gaussian than the LETKF. This result partly explains why the hybrid EnKF with (𝑤, 𝛼) = 609 

Fig. 6 
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(0.5, 1) yields the most accurate analysis for ∆𝑡 = 0.50, as mentioned previously. 610 

In the above results, the weight of the hybrid EnKF is set to 0, 0.5 and 1.0. and the 611 

localization radius is optimized. Figure 7 plots the differences in analysis RMSE for ∆𝑡 = 612 

0.50 between the LETKF with the optimal localization radius, which is shown by an open 613 

rectangle, and the hybrid EnKF with 𝛼 = 1 against the localization radius and the weight. 614 

Note that the hybrid EnKF with 𝑤 = 0 is the LETKF, but the hybrid EnKF with 𝑤 = 1 is 615 

different from the stochastic EnKF, because its analysis spread is adjusted to be equal to 616 

that of the LETKF. Warmer colors indicate that the hybrid EnKF is more accurate than the 617 

LETKF with the optimal localization radius. It is found that the optimal localization radius 618 

increases with larger ensemble sizes, and that if the localization radius and the weight are 619 

optimized the hybrid EnKF is more accurate than the LETKF as the ensemble size increases. 620 

The optimal weight of the hybrid EnKF tends to increase with the increase of ensemble size. 621 

In summary, when the observation operator is linear, the LETKF tends to yields the most 622 

accurate analysis in high-frequency assimilation cycles, whereas the hybrid EnKF with the 623 

analysis spread adjustment yields the most accurate analysis in low-assimilation cycles. 624 

However, its positive impact on analysis accuracy is rather small. 625 

 626 

6.2 Case 2 627 

The analysis RMSEs of the LETKF, hybrid EnKFs, and stochastic EnKF for ∆𝑡 = 0.05 628 

and ∆𝑡 = 0.50 are plotted in Fig. 8 against the ensemble size. For ∆𝑡 = 0.05, the RMSEs 629 

Fig. 7 

Fig. 8 
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of the LETKF (red line) and the hybrid EnKF with (𝑤, 𝛼) = (0.5, 1) (cyan line) increase with 630 

the increase of ensemble size. Similar problems for the deterministic EnKF in nonlinear 631 

systems were also documented in Mitchell and Houtekamer (2009), Anderson (2010), Lei 632 

and Bickel (2011), Tödler and Ahrens (2015), and Tsuyuki and Tamura (2022). If many 633 

observations of which observation operators are linear or weakly nonlinear are additionally 634 

assimilated, this problem would not occur. As the ensemble size increases, non-Gaussianity 635 

becomes more statistically significant, and it could exacerbate the adverse effect of 636 

persistent strong non-Gaussianity in high-frequency assimilation cycles. The stochastic 637 

EnKF (green line) and the hybrid EnKF with (𝑤, 𝛼) =(1, 1) (light green line) do not exhibit 638 

such a tendency, but their RMSEs do not change much when the ensemble size is increased 639 

from 20 to 40. This might be a sign of saturation of accuracy like what is seen in the RMSE 640 

of the LETKF in Fig. 5a. The hybrid EnKF with (𝑤, 𝛼) =(0.5, 0) (blue line) yields the most 641 

accurate analysis for all ensemble sizes. This result can be explained by the suppression of 642 

overestimation of analysis spread in the LETKF, the suppression of sampling noise in the 643 

stochastic EnKF, and its less non-Gaussianity than the LETKF. Those three factors are 644 

brought about by a weighting average without the analysis spread adjustment. For ∆𝑡 = 645 

0.50, the RMSEs are much larger than those of Case 1. The differences in analysis accuracy 646 

among the EnKFs are not very different from Case 1, although the positive impact of the 647 

hybrid EnKF on analysis accuracy is slightly larger. 648 

The forecast KL divergences averaged over the grid points and the verification period 649 



 33 

are compared in Fig. 9 for an ensemble size of 40. It is found that the forecast ensembles 650 

of the hybrid and stochastic EnKFs are more Gaussian than those of the LETKF. However, 651 

the KL divergence of the LETKF with ∆𝑡 =  0.05 is smaller than that in Case 1. This is 652 

probably because the observation operator in Case 2 is strongly nonlinear around 𝑥 =0 and, 653 

therefore, the uniform contraction property of the LETKF does not hold very well. For ∆𝑡 = 654 

0.50, the KL divergence of the LETKF remains almost the same as that of Case 1, whereas 655 

the KL divergences of the hybrid and stochastic EnKFs are larger than those in Case 1. 656 

Figure 10 plots the differences in analysis RMSE for ∆𝑡 = 0.05 between the LETKF with 657 

the optimal localization radius and the hybrid EnKF with 𝛼 =  0 against the localization 658 

radius and the weight. The hybrid EnKF with 𝑤 = 1 is the same as the stochastic EnKF. 659 

Although the optimal localization radius of the LETKF with an ensemble size of 40 is 7 grid 660 

intervals, the analysis RMSE of the LETKF is almost constant for localization radii from 6 to 661 

19 gird intervals. When the localization radius and the weight are optimized, the hybrid EnKF 662 

is more accurate than the LETKF with the optimal localization radius as the ensemble size 663 

increases. The positive impact of the hybrid EnKF is much significant compared to that 664 

shown in Fig. 7. Figure 11 plots the differences in analysis RMSE for ∆𝑡 = 0.50. The optimal 665 

localization radii are smaller than those of Case 1, and the positive impact of the hybrid 666 

EnKF is slightly larger than that of Case 1 when the ensemble size is 20 and 40. It is also 667 

found from Figs. 10 and 11 that the optimal weight of the hybrid EnKF tends to increase with 668 

the increase of ensemble size, similarly to Case 1. 669 

Fig. 10 

Fig. 9 

Fig. 11 
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In summary, when the observation operator is nonlinear, the hybrid EnKF without the 670 

analysis spread adjustment yields the most accurate analysis in high-frequency assimilation 671 

cycles with significant improvement over the LETKF. In low-assimilation cycles, the hybrid 672 

EnKF with the analysis spread adjustment yields the most accurate analysis with rather 673 

small improvement.  674 

 675 

7. Summary and discussion 676 

We first revisited the LETKF and the stochastic EnKF using a decomposition of the 677 

ensemble transform matrix. We proved that if the observation operator is linear the analysis 678 

ensemble perturbations of the LETKF are uniform contractions of the forecast ensemble 679 

perturbations in observation space in each direction of the eigenvectors of a forecast error 680 

covariance matrix. If the observation operator is weakly nonlinear, this property 681 

approximately holds. These results imply that if the forecast ensemble is strongly non-682 

Gaussian the analysis ensemble is also strongly non-Gaussian, and that strong non-683 

Gaussianity therefore tends to persist in high-frequency assimilation cycles, leading to the 684 

degradation of analysis accuracy in nonlinear data assimilation. 685 

We next proposed the hybrid EnKF that combines the LETKF and the stochastic EnKF 686 

with small additional computational cost. The idea was that the hybrid EnKF could be more 687 

robust to nonlinearity than the LETKF and it has less sampling noise than the stochastic 688 

EnKF. We investigated the performance of the hybrid EnKF through data assimilation 689 
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experiments using a 40-variable Lorenz-96 model with linear (Case 1) and nonlinear (Case 690 

2) observation operators. In Case 1, the LETKF tends to yield the most accurate analysis in 691 

high-frequency assimilation cycles, whereas the hybrid EnKF with the analysis spread 692 

adjustment yields the most accurate analysis in low-assimilation cycles. However, its 693 

positive impact on analysis accuracy is rather small. In Case 2, the hybrid EnKF without the 694 

analysis spread adjustment yields the most accurate analysis in high-frequency assimilation 695 

cycles with significant improvement over the LETKF. In low-assimilation cycles, the hybrid 696 

EnKF with the analysis spread adjustment yields the most accurate analysis with rather 697 

small improvement. The positive impact of the hybrid EnKF increases with the increase of 698 

the ensemble size, and the optimal weight of the hybrid EnKF tends to increase with the 699 

increase of ensemble size.  700 

Since ensemble Kalman filtering is based on the Gaussian assumption, the accuracy of 701 

EnKFs is expected to be improved by making forecast ensembles more Gaussian. However, 702 

we found from the experimental results for low-frequency assimilation cycles that its positive 703 

impact is rather small. Significant improvement is obtained from the hybrid EnKF without the 704 

analysis spread adjustment in Case 2 in high-frequency assimilation cycles. Strictly 705 

speaking, this hybrid EnKF cannot be called an EnKF, because the expected value of its 706 

analysis spread is different from the theoretical analysis spread of ensemble Kalman filtering. 707 

Relaxation of the Gaussian assumption in EnKFs may be one of the promising strategies 708 

for nonlinear or non-Gaussian data assimilation in high-dimensional systems. 709 
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The hybrid EnKF has two tuning parameters: the weight of the stochastic EnKF, 𝑤, and 710 

the degree of analysis spread adjustment, 𝛼. We could adaptively adjust those parameters 711 

according to the strength of nonlinearity. Since the hybrid EnKF is much beneficial in high-712 

frequency assimilation cycles with strong nonlinearity, we may adopt it only in such a 713 

situation, where we can set 𝛼 to zero and need to tune the value of 𝑤 only. 714 

It may be of some interest to compare the hybrid EnKF with the LETKF using the 715 

relaxation-to-prior perturbations (RTPP) for covariance inflation (Zhang et al. 2004). The 716 

RTPP relaxes the analysis perturbations back toward the forecast perturbations via 717 

𝑿𝑎  ←  (1 − 𝛼)𝑿𝑎 + 𝛼𝑿𝑓               (0 < 𝛼 < 1).                                                      (42) 718 

As the central limit theorem suggests, the PDF of a random variable generated by adding 719 

two non-Gaussian random variables of which PDFs are similar with different standard 720 

deviations tends to be less non-Gaussian. Therefore, the RTPP can partially mitigate non-721 

Gaussianity in nonlinear data assimilation, but it does not work in a region of sparse 722 

observations, where 𝑿𝑎 is close to 𝑿𝑓. The hybrid EnKF adds Gaussian perturbations to a 723 

linear combination of the LETKF analysis and the analysis generated by the deterministic 724 

part of stochastic EnKF, and therefore can mitigate non-Gaussianity much more efficiently.  725 

 726 

Data Availability Statement 727 

The Python programs of the hybrid EnKF used in this study are available in J-STAGE 728 

Data. https://doi.org/10.34474/data.jmsj.xxxxxxx. 729 
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 737 

Appendix 738 

We prove using Eq. (19) that the matrix 𝑻  defined by Eq. (7) makes the analysis 739 

ensemble perturbations of the LETKF as close as possible to the forecast ensemble 740 

perturbations. Let Eq. (19) be put in the following form: 741 

𝑻 = 𝑰𝑁 − ∑ 𝛼𝑖𝒗𝑖𝒗𝑖
T

𝑟

𝑖=1

,                                                                                                        (A1) 742 

where 0 < 𝛼𝑖 < 1 , and let 𝑶𝑁  denote an arbitrary orthogonal matrix in 𝑁 -dimensional 743 

space. We express the difference between 𝑿𝑎 =  𝑿𝑓𝑻𝑶𝑁 and 𝑿𝑓 by the Frobenius norm. 744 

The following inequality holds from a property of the norm. 745 

‖𝑿𝑎 − 𝑿𝑓‖ ≤ ‖𝑻𝑶𝑁 − 𝑰𝑁‖ ∙ ‖𝑿𝑓‖,                                                                              (A𝟐) 746 

where 747 

‖𝑻𝑶𝑁 − 𝑰𝑁‖𝟐 = tr[(𝑻𝑶𝑁 − 𝑰𝑁)T(𝑻𝑶𝑁 − 𝑰𝑁)] = tr[𝑻𝟐] + 𝑁 − 2 tr[𝑻𝑶𝑁].    (A3) 748 
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Substitution of Eq. (A1) into the last term of Eq. (A3) yields 749 

tr[𝑻𝑶𝑁] = tr[𝑶𝑁] − ∑ 𝛼𝑖 tr[𝒗𝑖𝒗𝑖
T𝑶𝑁]

𝑟

𝑖=1

= tr[𝑶𝑁] − ∑ 𝛼𝑖𝒗𝑖
T𝑶𝑁𝒗𝑖

𝑟

𝑖=1

                  (A4) 750 

The trace of a matrix is invariant under orthogonal transformation. Then we can write tr[𝑶𝑁] 751 

as ∑ 𝒗𝑖
T𝑶𝑁𝒗𝑖

𝑁
𝑖=1  and obtain 752 

tr[𝑻𝑶𝑁] = ∑(1 − 𝛼𝑖)𝒗𝑖
T𝑶𝑁𝒗𝑖

𝑟

𝑖=1

+ ∑ 𝒗𝑖
T𝑶𝑁𝒗𝑖

𝑁

𝑖=𝑟+1

,                                                   (A5) 753 

Since 1 − 𝛼𝑖 > 0 and −1 ≤ 𝒗𝑖
T𝑶𝑁𝒗𝑖 ≤ 1, tr[𝑻𝑶𝑁] is maximum when 𝒗𝑖

T𝑶𝑁𝒗𝑖 = 1 for 𝑖 =754 

1,  ⋯ ,  𝑁. This implies that ‖𝑻𝑶𝑁 − 𝑰𝑁‖ is minimum when 𝑶𝑁 = 𝑰𝑁. 755 
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List of Figures 868 

 869 

Fig. 1.   Example of LETKF analysis based on Eqs. (6)‒(7) in a two-dimensional system 870 

with an ensemble size of 10. (a) Prior PDF (green contours), likelihood (red contours), 871 

forecast ensemble members (green dots), and their ensemble mean (green cross). The 872 

ensemble members are numbered from 0 to 9. (b) Posterior PDF (blue contours), analysis 873 

ensemble members (blue dots), and their ensemble mean (blue cross). (c) Ratios of each 874 

pair of analysis and forecast members. The horizontal axis is the member’s number 875 

indicated in (a). The tilted axes plotted in (a) and (b) indicate the directions of eigenvectors 876 

of 𝑷𝑌
𝑓
 with the origins set at each ensemble mean. The contour intervals are set to relative 877 

to the maximum value of each PDF. 878 

 879 

Fig. 2.   Forecast and analysis ensembles with a nonlinear observation operator in a one-880 

dimensional system with an ensemble size of 10 000 when the observation is 0. (a) Prior 881 

PDF (light green line), likelihood function (orange line), and forecast ensemble (green 882 

bars). (b) Posterior PDF (cyan line) and analysis ensemble of LETKF (blue bars). (c) 883 

Posterior PDF and analysis ensemble of stochastic EnKF. 884 

 885 

Fig. 3.   Workflow of the hybrid EnKF. See text for details. 886 

 887 
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Fig. 4.   Ensemble members of forecasts (crosses), LETKF analysis (dots) and stochastic 888 

EnKF analysis (triangles) before taking a weighting average in Case 1 at 𝑡 = 100 for (a) 889 

∆𝑡 = 0.05 and (b) ∆𝑡 = 0.50. The ensemble size is 10 and the values of parameters are 890 

𝑤 = 0.5 and 𝛼 = 1. Perturbations in 𝑥1 and 𝑥2 with respect to each ensemble mean 891 

are plotted. The analysis members in the same color correspond to the forecast member 892 

in this color. The upper limit of ∆̃𝑜  and localization radius are optimized for each 893 

experiment. 894 

 895 

Fig. 5.   Analysis RMSEs of LETKF (red), hybrid EnKF with 𝑤 = 0.5 and 𝛼 = 1 (cyan), 896 

hybrid EnKF with 𝑤 = 0.5 and 𝛼 = 0 (blue), hybrid EnKF with 𝑤 = 1 and 𝛼 = 1 (light 897 

green), and stochastic EnKF (green) in Case 1 for (a) ∆𝑡 = 0.05 and (b) ∆𝑡 = 0.50. They 898 

are plotted against ensemble size. The upper limit of ∆̃𝑜  and localization radius are 899 

optimized for each experiment. 900 

 901 

Fig. 6.   Forecast KL divergences with respect to the Gaussian distribution of LETKF (red), 902 

hybrid EnKF with 𝑤 =  0.5 and 𝛼 =  1 (cyan), hybrid EnKF with 𝑤 =  0.5 and 𝛼 =  0 903 

(blue), hybrid EnKF with 𝑤 = 1 and 𝛼 = 1 (light green), and stochastic EnKF (green) in 904 

Case 1 with ensemble size 40. The upper limit of ∆̃𝑜 and localization radius are optimized 905 

for each experiment. 906 

 907 
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Fig. 7.   Differences in analysis RMSE for ∆𝑡 =  0.50 between LETKF with the optimal 908 

localization radius, which is shown by an open rectangle on the abscissa, and hybrid EnKF 909 

with 𝛼 = 1 in Case 1. The ensemble size is (a) 10, (b) 20, and (c) 40. They are plotted 910 

against localization radius and weight, and warmer colors indicate that hybrid EnKF is 911 

more accurate than the LETKF with the optimal localization radius. The upper limit of ∆̃𝑜 912 

is set to infinity as the optimal value. 913 

 914 

Fig. 8.   Same as Fig. 5 except for Case 2.  915 

 916 

Fig. 9.   Same as Fig. 6 except for Case 2. 917 

 918 

Fig. 10.   Same as Fig. 7 except for Case 2, ∆𝑡 = 0.05, and hybrid EnKF with 𝛼 = 0. The 919 

upper limit of ∆̃𝑜 is set to 1.2 as the optimal value. Analysis RMSE of LETKF is almost 920 

constant for localization radii from 6 to 19. 921 

 922 

Fig. 11.   Same as Fig. 7 except for Case 2. The upper limit of ∆̃𝑜 is set to 5.0 in (a) and 923 

(c), and to infinity in (b) as the optimal value. 924 
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Fig. 1.   Example of LETKF analysis based on Eqs. (6)‒(7) in a two-dimensional system 943 

with an ensemble size of 10. (a) Prior PDF (green contours), likelihood (red contours), 944 

forecast ensemble members (green dots), and their ensemble mean (green cross). The 945 

ensemble members are numbered from 0 to 9. (b) Posterior PDF (blue contours), analysis 946 

ensemble members (blue dots), and their ensemble mean (blue cross). (c) Ratios of each 947 

pair of analysis and forecast members. The horizontal axis is the member’s number 948 

indicated in (a). The tilted axes plotted in (a) and (b) indicate the directions of eigenvectors 949 

of 𝑷𝑌
𝑓
 with the origins set at each ensemble mean. The contour intervals are set to relative 950 

to the maximum value of each PDF. 951 
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 966 

Fig. 2.   Forecast and analysis ensembles with a nonlinear observation operator in a one-967 

dimensional system with an ensemble size of 10 000 when the observation is 0. (a) Prior 968 

PDF (light green line), likelihood function (orange line), and forecast ensemble (green 969 

bars). (b) Posterior PDF (cyan line) and analysis ensemble of LETKF (blue bars). (c) 970 

Posterior PDF and analysis ensemble of stochastic EnKF. 971 
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Fig. 3.   Workflow of the hybrid EnKF. See text for details. 980 
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Fig. 4.   Ensemble members of forecasts (crosses), LETKF analysis (dots) and stochastic 1011 

EnKF analysis (triangles) before taking a weighting average in Case 1 at 𝑡 = 100 for (a) 1012 

∆𝑡 = 0.05 and (b) ∆𝑡 = 0.50. The ensemble size is 10 and the values of parameters are 1013 

𝑤 = 0.5 and 𝛼 = 1. Perturbations in 𝑥1 and 𝑥2 with respect to each ensemble mean 1014 

are plotted. The analysis members in the same color correspond to the forecast member 1015 

in this color. The upper limit of ∆̃𝑜  and localization radius are optimized for each 1016 

experiment. 1017 

1018 
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(a)                                    (b) 1019 
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 1025 

 1026 

 1027 

Fig. 5.   Analysis RMSEs of LETKF (red), hybrid EnKF with 𝑤 = 0.5 and 𝛼 = 1 (cyan), 1028 

hybrid EnKF with 𝑤 = 0.5 and 𝛼 = 0 (blue), hybrid EnKF with 𝑤 = 1 and 𝛼 = 1 (light 1029 

green), and stochastic EnKF (green) in Case 1 for (a) ∆𝑡 = 0.05 and (b) ∆𝑡 = 0.50. They 1030 

are plotted against ensemble size. The upper limit of ∆̃𝑜  and localization radius are 1031 

optimized for each experiment. 1032 
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 1034 
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 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

Fig. 6.   Forecast KL divergences with respect to the Gaussian distribution of LETKF (red), 1042 

hybrid EnKF with 𝑤 =  0.5 and 𝛼 =  1 (cyan), hybrid EnKF with 𝑤 =  0.5 and 𝛼 =  0 1043 

(blue), hybrid EnKF with 𝑤 = 1 and 𝛼 = 1 (light green), and stochastic EnKF (green) in 1044 

Case 1 with ensemble size 40. The upper limit of ∆̃𝑜 and localization radius are optimized 1045 

for each experiment. 1046 
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 1068 

Fig. 7.   Differences in analysis RMSE for ∆𝑡 =  0.50 between LETKF with the optimal 1069 

localization radius, which is shown by an open rectangle on the abscissa, and hybrid EnKF 1070 

with 𝛼 = 1 in Case 1. The ensemble size is (a) 10, (b) 20, and (c) 40. They are plotted 1071 

against localization radius and weight, and warmer colors indicate that hybrid EnKF is 1072 

more accurate than the LETKF with the optimal localization radius, The upper limit of ∆̃𝑜 1073 

is set to infinity as the optimal value. 1074 
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Fig. 8.   Same as Fig. 5 except for Case 2.  1085 
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Fig. 9.   Same as Fig. 6 except for Case 2. 1095 
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Fig. 10.   Same as Fig. 7 except for Case 2, ∆𝑡 = 0.05, and hybrid EnKF with 𝛼 = 0. The 1119 

upper limit of ∆̃𝑜 is set to 1.2 as the optimal value. Analysis RMSE of LETKF is almost 1120 

constant for localization radii from 6 to 19. 1121 

1122 
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Fig. 11.   Same as Fig. 7 except for Case 2. The upper limit of ∆̃𝑜 is set to 5.0 in (a) and 1155 

(c), and to infinity in (b) as the optimal value. 1156 
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Table 1.   Statistics of the posterior PDF and the analysis ensembles of the LETKF and the 1165 

stochastic EnKF shown in Fig. 2.  1166 

 1167 

Posterior PDF    LETKF    Stochastic EnKF 1168 

 1169 

Mean  ‒0.564  ‒0.134  ‒0.134 1170 

Std. Dev.  0.826  0.898  0.898 1171 

Skewness  ‒0.137  ‒0.305  ‒0.445 1172 

Kurtosis  0.062  0.037  0.214 1173 

 1174 

 1175 

 1176 

 1177 

 1178 

Table 2.   Characterization of each experiment. 1179 

 1180 

∆𝑡 = 0.05                ∆𝑡 = 0.50 1181 

 1182 

Case 1        High frequency            Low frequency 1183 

              Weakly nonlinear          Strongly nonlinear   1184 

 1185 

Case 2        High frequency            Low frequency 1186 

              Strongly nonlinear         Strongly nonlinear 1187 

 1188 

 1189 


