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Abstract10

What controls the variability of daily precipitation averaged over the trop-11

ics? Are these the most numerous precipitation rates or the most intense12

ones? And do they relate to a specific cloud type? This work addresses13

these questions using precipitation from the one-year simulation of the14

global-coupled storm-resolving ICOsahedral Non-hydrostatic model run in15

its Sapphire configuration (ICON-Sapphire) and observations. Moreover,16

we develop a framework to analyze the precipitation variability based on17

the area covered by and the mean intensity of different groups of precipita-18

tion rates. Our framework shows that 60% of the precipitation variability19

is explained by precipitation rates between 20 and 70 mm d−1, but those20

precipitation rates only explain 46% of the mean precipitation in the trop-21

ics. The decomposition of the precipitation variability into the area fraction22

and mean intensity of a set of precipitation rates shows that this variability23

is explained by changes in the area fraction covered by precipitation rates24

between 20 and 70 mm d−1, not by changes in the mean intensity. These25

changes in the area fraction result from changes in the area covered by con-26

gestus clouds, not by cumulonimbus or shallow clouds, even though congesti27

and cumulonimbi contribute equally to the mean tropical precipitation.28

Overall, ICON-Sapphire reproduces the probability density function of pre-29

cipitation rates and the control of specific precipitation rates on the tropical30
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mean precipitation and variability compared to observations.31
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Keywords global-coupled storm-resolving models; tropical precipitation32

variability; area fraction of precipitating regions; tropical convective clouds33

1. Introduction34

According to satellite observations, only 12.5% of the climatological35

mean precipitation in the tropics comes from precipitation rates greater36

than 70 mm d−1 (Fig. 1b in Zhou et al., 2013). Likewise, only 12.5% comes37

from precipitation rates smaller than 5 mm d−1, referred to as light precip-38

itation in Sun et al. (2018). That is, neither the most intense nor the most39

frequent precipitation rates contribute the most to the tropical precipitation40

mean. On a particular day, the area covered by intense precipitating regions41

is small, and because the precipitation mean in the tropics depends more42

on the fractional area than on intensity (Doneaud et al., 1984; Lopez et al.,43

1989), this explains the minor role played by intense precipitation rates.44

Beyond which precipitation rates control the mean tropical precipitation,45

which precipitation rates control its day-to-day variability? It is logical to46

think that the precipitation rates explaining most of the precipitation mean47

also explain most of the day-to-day precipitation variability. However, it48

is possible to imagine that the amount of water that those precipitation49

rates bring is similar on a day-to-day basis, and in that case, the variability50

mostly results from the occurrence of heavy or light precipitation rates. The51
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day-to-day tropical precipitation variability has not been as much studied52

as the mean. Yet, daily changes in tropical precipitation are related to53

floods (see Fig. 1 in Berndtsson and Niemczynowicz, 1988) and changes54

in water reservoirs (see Fig. 1 in Cristiano et al., 2017) with consequences55

for agriculture (Rowhani et al., 2011; Cabas et al., 2010) and population56

health (Shively, 2017; Mukabutera et al., 2016). Moreover, the day-to-57

day variability is supposed to increase more than the mean with climate58

change (Pendergrass et al., 2017). Thus, understanding whether area or59

intensity and which precipitation rates control the day-to-day variability in60

precipitation is important.61

This understanding is also crucial for modeling the climate system.62

State-of-the-art climate models using convective parameterizations are known63

for simulating too frequent light precipitation rates (Dai, 2006). Even in64

models using horizontal grid spacing finer than 10 km, the problem persists65

as long as a convective parameterization is used (Judt and Rios-Berrios,66

2021; Ma et al., 2022). This leads to an overestimation of their contribution67

to the precipitation mean in the region comprised between 50◦N and 50◦S68

(Dai, 2006). Using a convective parameterization also leads to an overesti-69

mation in the persistence of the day-to-day tropical precipitation (Roehrig70

et al., 2013; Moon et al., 2019; Fiedler et al., 2020). Precipitation appears71

more frequent compared to observations in places where precipitation oc-72
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curred one day before. Just by avoiding the use of a convective parameteri-73

zation, regional and global atmosphere-only storm-resolving models can get74

rid of the light precipitation problem (Na et al., 2020; Judt and Rios-Berrios,75

2021). This suggests a more correct partitioning of the precipitation mean76

in its rates, although this hasn’t been formally shown yet. Likewise, the fac-77

tors controlling the day-to-day precipitation variability in storm-resolving78

models and the realism of these relationships haven’t been investigated yet.79

The study of the different precipitation rates in the tropics intrinsically80

links to the study of convective clouds that bring precipitation. There are81

three groups of convective clouds in this category: shallow, congestus, and82

cumulonimbus clouds (Johnson et al., 1999). Shallow clouds precipitate lit-83

tle or not at all. The high precipitation rates characteristic of cumulonim-84

bus makes them an important contributor to tropical precipitation (Cheng85

and Houze, 1979; Rickenbach and Rutledge, 1998; Johnson et al., 1999).86

Originally, cumulonimbus and shallow clouds were the two categories of87

tropical clouds, but this view changed after the results from the Global At-88

mospheric Research Program Atlantic Tropical Experiment - GATE (Houze89

and Cheng, 1977; Warner et al., 1980) and the Tropical Ocean Global Atmo-90

sphere Coupled Ocean-Atmosphere Response TOGA- COARE (Rickenbach91

and Rutledge, 1998; Johnson et al., 1999) field campaigns. Both campaigns92

noticed clouds populating the mid-troposphere with tops reaching the freez-93
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ing level, i.e., congestus clouds. While the precipitation rates of congestus94

are lower than those of cumulonimbus, congestus clouds contributed up to95

25% of the total precipitation from organized storms and up to 52% of the96

total precipitation from individual cells during TOGA-COARE (Johnson97

et al., 1999). Hence, cumulonimbus and congestus clouds are the main con-98

tributors to the tropical precipitation mean, yet it is still unknown whether99

the day-to-day variability of precipitation in the tropics is related to a cer-100

tain type of cloud.101

We aim to determine in this study whether certain precipitation rates102

control the day-to-day variation of the time series of precipitation averaged103

over the tropics. The identification of these particular precipitation rates104

allows us to formally isolate the contribution from changes in precipitating105

area fraction and in precipitation intensities, as well as to which type of106

convective clouds (shallow, congestus, or cumulonimbus) they belong. We107

also investigate whether the same precipitation rates can explain both the108

mean and its variability. To reach our goal, we take advantage of the global-109

coupled storm-resolving ICOsahedral Non-hydrostatic (ICON) model with110

a horizontal grid spacing of 5km and integrated with its Sapphire configu-111

ration (Hohenegger et al., 2023) as well as of observations. Our intention112

in using a model simulation and observations is to identify if the relation-113

ships between tropical precipitation and its probability density function of114
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precipitation rates are similar in model and observation despite the pres-115

ence of precipitation biases in ICON. Moreover, by analyzing the type of116

tropical cloud explaining the variability of precipitation, we also validate117

the representation of convective clouds in ICON, for the first time using a118

global-coupled storm-resolving model.119

The structure of this manuscript is as follows. Section 2 describes ICON120

with the configuration used in this study and the observational data set.121

We also describe the methodology used to classify tropical clouds in ICON.122

In Section 2, we also explain the framework developed to analyze the vari-123

ability of tropical precipitation in terms of intensity and area fraction of124

precipitating regions. We present in section 3 the probability distribution125

function of the precipitation rates in ICON and observations and their con-126

tribution to the tropical precipitation mean. In section 4, we identify the127

precipitation rates influencing the tropical precipitation variability, as well128

as the role of the area fraction and intensity. Section 5 addresses the distri-129

bution of tropical clouds and identifies the type of cloud accompanying the130

variability of tropical precipitation. The main conclusions of our study are131

provided in section 6.132
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2. Methods133

2.1 Model134

a. ICON135

We make use of the global-coupled storm-resolving model ICON inte-136

grated with the Sapphire configuration and with a horizontal grid spacing137

of 5km. ICON, with this configuration, targets to represent processes of the138

Climate System at kilometer scales, e.g., meso-beta scale processes in the139

atmosphere and mesoscale ocean eddies. We use the simulation G AO 5140

km, described in Hohenegger et al. (2023). It is referred to in this study141

as ICON-Sapphire. In this simulation, the atmosphere is discretized in 90142

vertical levels, the ocean in 128 vertical levels, and the land in five soil lay-143

ers. ICON-Sapphire is integrated for one year, from February 1, 2020, to144

January 31, 2021, and we analyze precipitation and clouds in the tropics145

(30◦S-30◦N) from this one-year simulation. We compute the daily average146

of the precipitation flux, with units kg m−2 s−1, from 30-minute mean out-147

put on the native grid of ICON. Then, the precipitation field is scaled to148

match the units of mm d−1 and horizontally interpolated using a conser-149

vative method to a regular lat-lon grid of 0.1◦ x 0.1◦. For the analysis of150

clouds, we use the 3D-variable cloud liquid water content (ql) on the na-151

tive grid, daily averaged from 6-hourly instantaneous output. We also use152

8

Page 9 of 54 For Peer Review



precipitation in the native grid of ICON to analyze the contribution of the153

tropical clouds to the mean and day-to-day variability of precipitation in154

the tropics.155

b. Classification of clouds in ICON-Sapphire156

We classify tropical clouds in ICON-Sapphire based on the cloud top and157

base height. Using daily means values of ql, we identify in each grid cell the158

maximum altitude where the value of 0.01 g kg−1 is located. This altitude is159

considered as being the cloud top height (CTH). We also calculate the cloud160

base height (CBH) by identifying the minimum altitude where ql is greater161

than 0.01 g kg−1. Over land, the altitude of the terrain is subtracted from162

CBH and CTH. Then, we select only clouds with a CBH of less than 3 km.163

Next, we categorize clouds into three groups depending on CTH: low-level164

clouds, for CTH below 4 km, congestus for clouds with a CTH between 4165

and 8 km, and cumulonimbus for clouds with a CTH between 8 and 15 km.166

In our analysis, we compute the area that each type of cloud covers167

for the tropics. For this, we count the number of grid points in which a168

cloud type is identified in the entire tropics and throughout the 366 days169

of analysis. This number is divided by the total number of data, which is170

the total number of grid points in the tropics times 366 days. This means171

that for the area covered, we refer to the relative frequency in time and172

9
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space. The space could be the entire tropics, as explained before, or could173

be restricted to an area where grid points precipitate in a certain range. The174

contribution to the total amount of precipitation in the tropics for each type175

of cloud is also calculated. In this case, the precipitation for each grid point176

identified with a type of cloud is added across the tropics and the 366 days177

of analysis. Then, this number is divided by the total amount of water178

falling in the tropics during the 366 days of analysis.179

2.2 Satellite precipitation180

Together with ICON-Sapphire, we also use the Integrated Multi-SatellitE181

Retrievals for GPM (IMERG) version 06 (Huffman et al., 2019) to analyze182

tropical precipitation on a daily time step. The period of the analysis is183

similar to ICON-Sapphire, from February 1, 2020, to January 31, 2021.184

The horizontal resolution of IMERG is 0.1◦ x 0.1◦.185

2.3 Derivation of day-to-day precipitation variability186

To analyze the day-to-day variability of tropical precipitation (also re-187

ferred to hereafter as tropical precipitation variability), we follow the frame-188

work introduced by Atlas et al. (1990). We start by calculating the yearly189

mean and tropically averaged precipitation from individual daily precipita-190

tion rates [P ]
τ+δτ

τ191
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[P ]
τ+δτ

τ =

∫ t=366
t=1 ⟨P (λ, ϕ, t)Aτ+δτ

τ (λ, ϕ, t)⟩ dt
⟨Aτ=∞

τ=0 (λ, ϕ)⟩
∫ t=366
t=1 dt

(1)

The term on the left-hand side indicates the yearly mean tropical precip-192

itation of precipitation rates between τ and τ + δτ (e.g., between 0.1 and 1193

mm d−1). The summing of [P ]
τ+δτ

τ using all the precipitation rates gives the194

yearly tropical mean precipitation [P ]. The operator [ ] and indicate the195

average in space and time t, respectively. The time discretization is daily.196

On the righ-hand side, the operator ⟨⟩ indicates tropical summation defined197

by: ⟨ ⟩ =
∫ 180
−180

∫ 30
−30 .. cosϕ dϕ dλ. λ and ϕ are longitude and latitude, re-198

spectively. P is the grid-point precipitation rate, and Aτ+δτ
τ is a mask that199

takes the values of one (1) for grid points where τ ≤ P (λ, ϕ, t) ≤ τ + δτ200

and zero (0) otherwise. In this study, we integrate in time Equation 1 from201

February 2020 to January 2021.202

Using Equation 1, the daily precipitation mean averaged over the tropics203

from precipitation rates between a certain threshold τ and a precipitation204

rate close to infinity [P (t)]∞τ is:205

[P (t)]∞τ =
⟨P (λ, ϕ, t)A∞

τ (λ, ϕ, t)⟩
⟨A∞

0 (λ, ϕ, t)⟩
(2)

or206

[P (t)]∞τ =
⟨A∞

τ (λ, ϕ, t)⟩
⟨A∞

0 (λ, ϕ, t)⟩
⟨P (λ, ϕ, t)A∞

τ (λ, ϕ, t)⟩
⟨A∞

τ (λ, ϕ, t)⟩
(3)
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where ⟨A∞
τ (λ,ϕ,t)⟩

⟨A∞
0 (λ,ϕ,t)⟩ is the area fraction covered by precipitation rates greater207

than τ , denoted by α∞
τ (t). The term ⟨P (λ,ϕ,t)A∞

τ (λ,ϕ,t)⟩
⟨A∞

τ (λ,ϕ,t)⟩ is the mean intensity of208

precipitation rates greater than τ and denoted by I∞τ (t). If τ is equal to zero,209

Equation 3 gives the daily precipitation averaged over the tropics[P (t)],210

which can be computed also as:211

[P (t)] = ατ
0(t)I

τ
0 (t) + α∞

τ (t)I∞τ (t) (4)

Moreover,212

ατ
0(t) + α∞

τ (t) = 1 (5)

I∞τ (t)− Iτ0 (t) = ∆I(t) (6)

Introducing Equations 5 and 6 in Equation 4, we obtain:213

[P (t)] = Iτ0 (t) + α∞
τ (t)∆I(t) (7)

Decomposing the terms in Equation 7 in their day-to-day variation (′)214

and their mean state or time mean ( ), we can get the following expression215

for the tropical precipitation variability [P (t)]′:216

[P (t)]′ = Iτ0 (t)
′ + α∞

τ (t)′∆I +∆I(t)′α∞
τ + α∞

τ (t)′∆I(t)′ − α∞
τ (t)′∆I(t)′ (8)
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All the terms in the right-hand side of Equation 8 are time series depend-217

ing on τ . According to this equation, the tropical precipitation variability218

[P (t)]′ is explained by terms having a time-dependent component, which219

are four (Iτ0 (t)
′, α∞

τ (t)′∆I, ∆I(t)′α∞
τ and α∞

τ (t)′∆I(t)′). The last term,220

α∞
τ (t)′∆I(t)′ is a constant for a given time series. Thus, Equation 8 indi-221

cates that an increase in the tropically averaged precipitation on a given day222

can be explained by the strengthening of the mean intensity in the less rainy223

region (Iτ0 (t)
′ > 0), or the expansion of the more rainy region (α∞

τ (t)′ > 0),224

or the intensification in the difference in the mean intensity between the225

two regions (∆I(t)′ > 0) or if an expansion or shrinking of the region with226

precipitation rates greater than τ implies an intensification or weakening in227

the difference of the mean intensity between the two regions, respectively228

(α∞
τ (t)′∆I(t)′ > 0).229

To evaluate Equation 8 we need to discretize precipitation in its rate,230

and this is computed as follows. The first bin contains precipitation rates231

below 0.1 mm d−1 and the second bin from 0.1 to 1 mm d−1. The range of232

the bin (δτ) is 1,5,10 and 25 mm d−1 for precipitation rates from 1 to 5 mm233

d−1, from 5 to 50 mm d−1, from 50 to 100 mm d−1, and from 100 to 300 mm234

d−1, respectively. This bin distribution is also used to evaluate Equation235

1. Changing the bin size does not change our result regarding the precip-236

itation variability and the similarity between ICON-Sapphire and IMERG237
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in the precipitation frequency. The shape of the distribution regarding the238

contribution from individual precipitation rates to the tropically averaged239

precipitation is similar between ICON-Sapphire and IMERG, even if this240

shape changes with the discretization of precipitation rates (not shown).241

3. Mean tropical precipitation242

The distribution of precipitation rates in the tropics from ICON-Sapphire243

and IMERG is displayed in Fig. 1a. ICON-Sapphire matches adequately the244

distribution of light precipitation rates (<5 mm d−1) with no overestimation245

visible, confirming the results of global atmospheric-only storm-resolving246

simulations (Na et al., 2020; Judt and Rios-Berrios, 2021). However, pre-247

cipitation rates greater than 110 mm d−1 occur less frequently in ICON-248

Sapphire than in IMERG. While at first, it could suggest a bias in the249

simulation, IMERG also has problems in measuring extreme precipitation250

events over land (Da Silva et al., 2021; Fang et al., 2019; Zhang et al., 2019)251

and ocean (Wen et al., 2018).252 Fig. 1

Now, let’s focus on the yearly and tropically averaged precipitation from253

individual precipitation rates [P ]
τ+δτ

τ displayed in Fig. 1b and calculated us-254

ing Equation 1. ICON-Sapphire and IMERG show a similar partitioning of255

the precipitation mean in its precipitation rates (Fig. 1b). Both data sets in-256
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dicate low values of mean precipitation from precipitation rates greater than257

100 mm d−1. Indeed, the contribution of precipitation rates greater than258

100 mm d −1 to the overall mean precipitation is small (12.5%; Fig. 1c). This259

minders the effect of their underestimation in ICON-Sapphire compared to260

observations on the tropical mean. Besides, 70% of the precipitation mean261

comes from precipitation rates between 5 and 70 mm d−1 in both ICON-262

Sapphire and IMERG, indicating again the low contribution of very intense263

precipitation rates. Thus, the partitioning of tropical precipitation in its264

different precipitation rates is reproduced in ICON-Sapphire, giving us the265

confidence to tackle the next question: which precipitation rates contribute266

the most to the day-to-day precipitation variability?267

4. Daily tropical precipitation variability268

The day-to-day precipitation variability is investigated using Equation269

8. The term α∞
τ (t)′∆I(t)′ in Equation 8 is constant in time, and therefore,270

cannot explain the tropical precipitation variability, leaving the other four271

terms as the main contributors. To address the question of whether there is272

only one term or several terms explaining the tropical precipitation variabil-273

ity, we conduct a correlation analysis between the time series of [P (t)]′ and274

of the four terms for different precipitation thresholds τ , the latter ranging275

between 0.1 and 300 mm d−1.276
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Fig. 2 displays this correlation analysis for ICON-Sapphire (Fig. 2a) and277

IMERG (Fig. 2b). An important feature to highlight in Fig. 2 is the high278

correlation between [P (t)]′ and changes in the area of grid points precipi-279

tating more than 20 mm d−1 evidenced by the term α∞
20(t)

′∆I. The high280

correlation (r=0.9) is explained by the time-dependent variable α∞
20(t)

′ be-281

cause the bar-term ∆I is constant in time. Using the same threshold, the282

mean intensity of grid points precipitating less than 20 mm d−1, I200 (t)′, or283

the difference in intensity between the two regions, ∆I(t)′α∞
20, show a small284

correlation coefficient with [P (t)]′ in ICON-Sapphire and IMERG. This is285

also the case for the combined variability of the area fraction of grid points286

and the difference in intensities between the two regions, α∞
20(t)

′∆I(t)′.287 Fig. 2

Approaching τ towards infinity has similar influences on the terms ex-288

plaining [P (t)]′ in ICON-Sapphire and IMERG. There is a decrease in the289

correlation with α∞
τ (t)′∆I, while the opposite occurs for the mean intensity290

of precipitation rates less than τ , Iτ0 (t)
′. However, it is necessary to surpass291

the threshold of 100 mm d−1 to obtain a correlation value similar to the one292

of α∞
20(t)

′∆I. This high correlation value purely results from the fact that293

α100
0 ≈ 1 leading to I(t)1000 ≈ [P (t)] according to Equation 7, and this does294

not give additional information regarding the variability.295

Looking at Fig. 2, the correlation between [P (t)]′ and α∞
0.1(t)

′ shows296

discrepancies between ICON-Sapphire (r=0.58) and IMERG (r=0.2). Con-297
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sidering that α∞
0.1(t)

′ = −α0.1
0 (t)′, the following reasoning can explain the298

difference between ICON-Sapphire and IMERG. An increase in I0.10 (t)′ is299

correlated with a decrease in the number of grid points in the region pre-300

cipitating less than 0.1 mm d−1 (α0.1
0 (t)′) in both, ICON-Sapphire (r=-0.6)301

and IMERG (r=-0.7). Now in ICON-Sapphire, α0.1
0 (t)′ tends to be anti-302

correlated (r=-0.45) with α∞
20(t)

′, whereas this is not the case in IMERG303

(r=-0.16). Given the high correlation between [P (t)]′ and α∞
20(t)

′, α∞
0.1(t)

′
304

and I0.10 (t)′ end up highly correlated to [P (t)]′ in ICON-Sapphire as well.305

But is there an exchange of grid points between the region precipitating306

more than 20 mm d−1 and less than 0.1 mm d−1 in ICON-Sapphire? In307

ICON-Sapphire, new grid points precipitating more than 20 mm d−1 tend308

to come from grid points that were not precipitating before, while they could309

come from non-precipitating grid points or grid points precipitating more310

than 0.1 mm d−1 in IMERG. The transfers from non-precipitating grid311

points to strongly precipitating points is confirmed in ICON-Sapphire by312

summing the positive changes in
∂α∞

20(t)
′

∂t
(0.19) for one year and comparing313

it with the total changes in
∂α0.1

0 (t)′

∂t
(-0.34) and

∂α20
0.1(t)

′

∂t
(0.15). These last314

two are also computed only when
∂α∞

20(t)
′

∂t
is positive. This transfer of grid315

points between non-precipitating and more strongly precipitating regions316

could be explained by the known spotty nature of precipitation in ICON-317

Sapphire, explaining why IMERG does not present this relationship. But318
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also the smoothness of the spatial precipitation pattern in IMERG due319

to the algorithm employed to merge different sources of satellite data (Tan320

et al., 2016) could prevent IMERG from capturing this relationship. Despite321

this discrepancy between ICON-Sapphire and IMERG, our results show322

that the increase or decrease in the number of grid points precipitating323

more than 20 mm d−1, α∞
20(t)

′∆I, and not the intensity of those grid points,324

explains the variability of the tropical precipitation mean in both data sets.325

This result is not dependent on the year selected in IMERG nor on the326

observational data set (Fig. S1).327 Fig. 3

To confirm that not only the time series of α∞
20(t)

′∆I correlates with328

[P (t)]′, but also matches its variations, we show in (Fig. 3) the time series329

of the term [P (t)]′, α∞
20(t)

′∆I, I200 (t)′, ∆I(t)′α∞
20 from Eq. 8. The terms330

α20
0 (t)′∆I(t)′ and α20

0 (t)′∆I(t)′ are small enough and are not plotted, but331

the time series of the six terms can be found in Fig. S2. Visual comparison332

of the time series (Fig. 3) confirms that the variability in the area fraction of333

region precipitating more than 20 mm d−1 correlates with the precipitation334

variability, not only on a seasonal time scale but also in the day-to-day335

variability. Removing the variability larger than 60 days by subtracting the336

running mean with a 60-day window in α∞
20(t)′ and [P (t)]′, and recomputing337

the correlation analysis gives a correlation value of 0.9 in ICON-Sapphire338

and IMERG (Table 1).339
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Are intense precipitation rates important?340

With thresholds greater than 20 mm d−1, the correlation between α∞
τ (t)′341

and [P (t)]′ decreases in both data sets (Fig. 2). Therefore, as a next step,342

we identify the range of precipitation rates for which the number of grid343

points explains at least 50% of the tropical precipitation variability. To do344

so, we calculate the correlation between the time series of [P (t)]′ and of the345

area fraction of grid points precipitating between 20 mm d−1 and a certain346

threshold (e.g., 20-25 mm d−1, 20-30 mm d−1, 20-35 mm d−1). According to347

this analysis, 60% of the tropical precipitation variability in ICON-Sapphire348

(r=0.75) and IMERG (r=0.76) is explained by the changes in the number349

of grid points precipitating between 20 and 70 mm d−1, α70
20(t)

′ (Table 1).350

Moreover, the variations in the area fraction of grid points precipitating351

between 20 and 70 mm d−1 match the variations of [P (t)]′ in both data sets352

(Fig. 4). In contrast, the grid points precipitating more than 70 mm d−1
353

have a minor role, even if the correlation with [P (t)]′ is high in IMERG354

(Table 1).355

Whereas high precipitation rates do not impact the day-to-day variabil-356

ity in the tropics, one could argue that grid points precipitating less than357

20 mm d−1 also explain the tropical precipitation variability according to358

Equation 8. But in this case, the relationship is negative. An increase in359

the number of points precipitating more than 20 mm d−1 means a decrease360
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in the same amount of the number of points precipitating less than 20 mm361

d−1 and an increase in P (t)′. The correlation is -0.92 in ICON-Sapphire and362

-0.92 in IMERG. However, when only including precipitation rates between363

0.1 and 20 mm d−1, the correlations between α20
0.1(t)

′ and [P (t)]′ is 0.45 in364

ICON-Sapphire and 0.02 in IMERG, showing that grid points precipitating365

between 1 and 20 mm d−1 do not explain [P (t)]′.366 Fig. 4

Table 1Similarly, using other bottom limits than 0.1 mm d−1 to approach toward367

20 mm d−1 (e.g., 1-20 mm d−1, 2-20 mm d−1, ..., 15-20 mm d−1) does368

not improve the correlation in ICON-Sapphire, which is around 0.3 for all369

thresholds. But in IMERG, the correlation goes from 0.1 at 1-20 mm d−1
370

to 0.36 at 15-20 mm d−1. Still, the values are much lower than using grid371

points precipitating between 20 and 70 mm d−1. Therefore, we conclude372

that the variability in the number of grid points precipitating between 20373

and 70 mm d−1 strongly influences the tropical precipitation variability374

(60% of the variability). An hourly precipitation analysis shows that grid375

points precipitating between 20 and 70 mm d−1 tend to precipitate for 5376

h in ICON and 7 h in IMERG (Fig. S3). Moreover, those precipitation377

rates represent 46% and 40% of the mean precipitation in the tropics in378

ICON-Sapphire and IMERG, respectively (Fig. 1c). Thus, the group of379

precipitation rates controlling the tropical precipitation variability (20-70380

mm d−1) does not have the predominance regarding their contribution to381
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the mean precipitation.382

Because precipitation and clouds are intrinsically related, we focus in383

the next section on identifying the group of clouds accompanying α70
20(t)

′ in384

ICON-Sapphire.385

5. Clouds and the tropical precipitation variability386

Distribution of tropical clouds387

The distribution of clouds identified according to the method described388

in section 2 in ICON-Sapphire reveals the expected three peaks related to389

the three modus of tropical clouds (Fig. 5a). A peak around 2.5 km reflects390

the predominance of boundary layer cumuli or shallow clouds. The marine391

stratus clouds located over the eastern side of the Pacific and Atlantic oceans392

also contribute to the 2.5 km peak. The second peak at 5 km indicates the393

altitude of the freezing level and the altitude populated by congestus clouds.394

Finally, a small peak in the distribution of clouds is observed around 10 km395

due to cumulonimbus. While the distribution of tropical clouds in ICON-396

Sapphire resembles the distribution using satellite data, the peak related to397

cumulonimbus clouds is smaller and at a lower altitude compared to satellite398

estimates (see Fig. 2 in Dessler et al., 2006). A possible explanation for this399

disparity is the fact of excluding cloud ice in the computation of the cloud400
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height in this study.401 Fig. 5

ICON-Sapphire shows differences in the cloud distribution between ocean402

(Fig. 5b) and land (Fig. 5c), and this agrees with observational campaigns403

over ocean (Rickenbach and Rutledge, 1998; Johnson et al., 1999) and the404

Amazon (Eissner et al., 2021) which have focused on convective clouds. The405

distribution of clouds over ocean is similar to the whole tropics due to the406

large area covered by oceans. But over land, the peak related to boundary407

layer cumuli increases in altitude by 1 km, maybe related to the more vigor-408

ous convection and deeper boundary layer over land. Also, low-level clouds409

are much less frequent than over ocean, leading to a similar frequency as410

congestus. The peak related to cumulonimbus is more evident over land411

than over ocean, meaning that cumulonimbus clouds are relatively more412

frequent over continents, a feature also observed in satellite data (Liu et al.,413

2008). Our results indicate an adequate partitioning of the tropical cloud414

distribution in ICON-Sapphire, but this is not the case for its spatial dis-415

tribution. ICON-Sapphire shows an overproduction of clouds with CTH416

less than 2.5 km, in particular over the equatorial region of the Indo-Pacific417

(not shown). This feature is related to a dry bias present in this region and418

part of the double ITCZ bias in ICON-Sapphire, as shown in Segura et al.419

(2022).420 Table 2

In terms of tropical precipitation, the three types of clouds explain 99.4%421
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of the total amount of precipitation in the tropics, meaning that omitting422

ice to classify clouds does not impact our results. Table 2 shows the de-423

tailed contribution to the total amount of precipitation and the percentage424

of the tropical area covered by low-levels clouds, congesti, and cumulonimbi.425

Low-level clouds cover 60% of the tropics in ICON-Sapphire, but their con-426

tribution to the total amount of precipitation is only 8%. In contrast, con-427

gesti and cumulonimbi cover 22% and 5%, respectively, of the tropics but428

contribute 45% and 46%, respectively, to the total precipitation amount.429

We observe that congesti and cumulonimbi precipitating less than 20 mm430

d−1 equals the contribution of precipitation of congesti and cumulonimbi431

precipitating more than 70 mm d−1 (∼ 24%, Table 2). The fact that tropi-432

cal clouds with different intensities show a similar precipitation contribution433

is due to the area they cover from the tropics. Congesti and cumulonimbi434

precipitating less than 20 mm d−1 cover 22.5% of the tropical region while435

their counterparts precipitating more than 70 mm d−1 only 0.8% (Table 2).436

Regarding the precipitation rates explaining the precipitation variabil-437

ity (20-70 mm d−1), congesti and cumulonimbi cover a similar area of the438

tropics (∼ 2%) and have a similar precipitation contribution to the tropi-439

cal precipitation mean (∼ 20%). Restricting the area to consider only the440

number of points precipitating between 20 and 70 mm d−1, congesti and cu-441

mulonimbi explain 96% of the total amount of precipitation and cover 96%442
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of the area. Low-level clouds or another type of cloud explains the other443

4% of the total amount of precipitation. Thus, congesti or cumolonimbi or444

both should explain the variation in the number of grid points precipitating445

between 20 and 70 mm d−1 and hence the tropical precipitation variability.446

Congesti or cumulonimbi for the precipitation variability?447

We quantify for each day the area fraction (with respect to the full448

tropics) of congestus precipitating between 20 and 70 mm d−1. The area449

fraction of cumulonimbus precipitating within these precipitation rates is450

also calculated and displayed in Fig. 6.451 Fig. 6

A high agreement exists between the time series of the area fraction of452

congestus precipitating between 20 and 70 mm d−1 and α70
20(t)

′ (Fig. 6),453

with a correlation value of 0.68 (Table 3). This relationship remains af-454

ter subtracting the seasonal cycle using a running mean of a 60-day time455

window. The corresponding correlation is then 0.76. Fig. 6 also shows a456

mismatch of these two times series during boreal spring (March-May). The457

decrease in the area fraction of congesti precipitating between 20 and 70458

mm d−1 is stronger than α70
20(t)

′. After excluding the February-May season,459

the correlation increases from 0.68 to 0.85 (Table 3).460

In contrast, the area fraction of cumulonimbi precipitating between 20461

and 70 mm d−1 weakly correlates with α70
20(t)

′ (r=0.34, Table 3). The462

correlation does not improve much when using only the period between463
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June 2020 and January 2021 (r=0.51). The correlation increases when the464

seasonal cycle is removed (r=0.65), but the value is still lower compared465

to the one for the congestus clouds. Thus, ICON-Sapphire shows a strong466

relationship between the area fraction of grid points precipitating between467

20 and 70 mm day−1 and congestus clouds on seasonal and daily time scales.468 Table 3

6. Conclusion469

This study started with the question of what controls the daily precip-470

itation variability in the tropics. The approach taken was to analyze the471

tropics as a single entity for which a single time series of daily values of472

precipitation is calculated. Our purpose in analyzing the daily variations473

in this time series is to get new insights into how the tropics precipitate474

on a day-to-day basis and what leads to daily precipitation increase or de-475

crease. Are those light (< 5 mm d−1) or intense (>70 mm d−1) precipitation476

rates? Or is the change homogeneous throughout precipitation rates? Is the477

change due to variations in area or intensity? From what type of clouds?478

And can a global-coupled storm-resolving model reproduce these relation-479

ships? To address these questions, we developed a framework to formally480

derive the contribution from intensity, area, and precipitation rates to the481

precipitation variability (see Eq. 8). This framework is applied to a one-482

year simulation of the global-coupled storm-resolving model ICON run with483
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the Sapphire configuration (ICON-Sapphire; Hohenegger et al., 2023) and484

to observations.485

ICON-Sapphire can reproduce important characteristics of the probabil-486

ity density function of precipitation rates. In the simulation and in observa-487

tions, around 70% of the mean precipitation comes from precipitation rates488

between 5 and 70 mm d−1. Thus, neither the more frequent precipitation489

rates (<5 mm d−1) nor the most intense (>70 mm d−1) ones play an im-490

portant role for the mean precipitation. This already shows the advantage491

of not using a convective parameterization, in which case the contribution492

of light precipitation increases to 40-50% of the precipitation mean for the493

region 50◦S-50◦N (Dai, 2006).494

Concerning the variability of tropical precipitation, we could identify495

that the daily variations in the number of grid points precipitating between496

20 and 70 mm d−1 explain 60% of the tropical precipitation variability both497

in model and observations. Moreover, this relationship does not change if498

another year in IMERG or another observational data set is selected. Re-499

moving the seasonal cycle confirms that the variability in the area covered500

by precipitation rates between 20 and 70 mm d−1 explains 60% of the trop-501

ical precipitation variability. Our results also highlight that the group of502

precipitation rates controlling the precipitation variability in the tropics is503

not the same one as controlling the mean. Precipitation rates between 20504
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and 70 mm d−1 only contribute to 46% of the tropical precipitation mean505

in ICON-Sapphire and 40% in IMERG.506

The identification of the precipitation rates explaining the day-to-day507

variations in tropical precipitation allowed us to answer the question of508

which type of convective clouds (low-level, congestus, or cumulonimbus)509

are responsible for those precipitation rates in ICON-Sapphire. Congestus510

and cumulonimbus are equally important for tropical precipitation in ICON-511

Sapphire, around 45% of the total tropical precipitation comes from each512

one. This is also the case when reducing the domain to regions precipitating513

between 20 and 70 mm d−1. Differently, the daily variation in the number of514

grid points precipitating between 20 and 70 mm d−1 is related to congestus515

clouds (r=0.68). This relationship gets stronger when avoiding the boreal516

spring (February 2020 - May 2020). In contrast, the number of grid points517

with cumulonimbus clouds has a weak influence. The correlation is 0.3518

considering the whole period (February 2020 to January 2021) and 0.4 when519

avoiding the boreal spring season.520
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Fig. 1. Tropical precipitation distribution for ICON-Sapphire (blue) and
IMERG (grey) using daily values between February 2020 and January
2021. a) Normalized distribution of precipitation rates. b) Precipita-
tion mean of individual bins (Equation 1). c) Cumulative precipitation
obtained from b). The tropics are considered from 30◦S and 30◦N
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Fig. 2. Correlation values (r) between the time series of tropical precipita-
tion variability ([P (t)]′) and the time series of the terms in Equation 8
with time-dependent components. The evaluation is done for different
precipitation thresholds τ (x-axis). a) for ICON-Sapphire and b) for
IMERG.
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Fig. 3. Time series of the terms with time-dependent component in Equa-
tion 8 when using a precipitation threshold of 20 mm d−1.
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Fig. 4. Similar to Fig. 3, but showing the temporal variation in the area
fraction of precipitation rates between 20 and 70 mm d−1 (α70

20(t)
′, blue

line) and greater than 70 mm d−1 (α∞
70(t)

′, orange line). ∆I is the
difference between ∆I20∞ and ∆I200 .
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Fig. 5. Normalized distribution of cloud top height in ICON-Sapphire. a)
All the tropics, b) tropical ocean and c) tropical land. The method of
calculation is explained in section 2.
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Fig. 6. Time variation in the area fraction of precipitation rates between 20
and 70 mm d−1 (α70

20(t)
′,blue line). The time variation in the number

of grid points with congestus and cumulunimbus clouds precipitating
between 20 and 70 mm d−1 are displayed as a green and orange line,
respectively.
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Table 1. Correlation between the time series of tropical precipitation vari-
ability ([P (t)]′) and of the area fraction of grid points precipitating
more than 20mm d−1 (α∞

20(t)
′), between 20 and 70 mm d−1 (α70

20(t)
′)

and more than 70 mm d−1 (α∞
70(t)

′) in ICON-Sapphire and IMERG. De-
seasonal correlation is computed after removing the seasonal variability
by using a running mean with a 60-day window.

ICON-Sapphire IMERG
α∞
20(t)

′ α70
20(t)

′ α∞
70(t)

′ α∞
20(t)

′ α70
20(t)

′ α∞
70(t)

′

Correlation 0.92 0.75 0.52 0.92 0.76 0.83
Deseasonal correlation 0.90 0.76 0.59 0.90 0.75 0.81
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Table 2. Area covered and precipitation contribution in the tropics from low-
level, congestus and cumulonimbus clouds classified according to the
cloud top height (CTH; see section 2). Only clouds with a base height
lower than 3km are considered for the analysis. The numbers inside
the parenthesis represent the partition regarding three precipitating
regions, less than 20 mm d−1 (first number), between 20 and 70 mm
d−1 (second number) and more than 70 mm d−1 (third number).

Cloud type
Cloud top height

(CTH) /km
Area covered

/%
Precipitation contribution

/%
Low-level clouds CTH<4km 59.5 (59.3 / 0.1 / 0) 8 (6.8 / 1.1/ 0.2)

Congestus 4km ≤ CTH<8km 22.5 (20.0 / 2.25 / 0.2) 45.1 (18.7 / 20.7 / 5.8)
Cumulonimbus 8km ≤ CTH<15km 5.2 (2.5 / 2.1 / 0.6) 46.3 (4.9 / 22.4 / 18.7)
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Table 3. Correlation between the time series of the area fraction of grid
points precipitating between 20 and 70 mm d−1 (α70

20(t)
′) and of the area

fraction of congestus and cumulonimbus clouds precipitating between
20 and 70 mm d−1. Deseasonal correlation is computed after removing
the seasonal variability by using a running mean with a 60-day window.

February 2020 to January 2021 June 2020 to January 2021
Congestus Cumulonimbus Congestus Cumulonimbus

Correlation 0.68 0.34 0.85 0.51
Deseasonal correlation 0.76 0.65 0.8 0.64
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