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29 Abstract

30 Quantifying emissions from megacities is important for reduction of greenhouse gases. 

31 We used atmospheric carbon dioxide (CO2) concentration data obtained at an altitude of 

32 around 250 m above the ground on TOKYO SKYTREE (TST; a 634-m-high freestanding 

33 broadcasting tower; 35.71°N, 139.81°E), which is located north of central Tokyo, Japan. 

34 To use the TST observations for estimating net CO2 fluxes from Tokyo, a global, high-

35 resolution simulation of atmospheric CO2 transport with CO2 flux data from a global 

36 inverse analysis was performed. In the simulation, atmospheric CO2 variations were well 

37 reproduced at remote sites around Japan. The application of tagged tracers in the 

38 simulation revealed that variations of CO2 concentrations at TST were largely driven by 

39 fluxes in the southwest region of Tokyo, including the western Tokyo Bay area where 

40 huge power plants are located. Then, we performed a regression analysis of modeled 

41 and observed Tokyo-originated CO2 concentrations, both of which were derived from the 

42 simulated background concentrations, while changing the minimum wind speed used in 

43 the analysis. The removal of low wind speeds altered the slope of the regression line, and 

44 excluding wind speeds below 7 m s−1 resulted in a stabilized slope of 0.93 ± 0.08. This 

45 stabilized regression indicated that the annual net CO2 emission from Tokyo is 79.5 ± 6.6 

46 Tg-C year−1. Our findings demonstrate that analysis using a global high-resolution model 

47 with tagged tracers has the potential to monitor emissions changes in a megacity.

48 Keywords carbon dioxide; model simulation; East Asia
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50 1. Introduction

51 The aim of the Paris Agreement in 2015 was to bring about large reductions in the 

52 emissions of greenhouse gases (GHGs) to achieve the target of limiting global warming to 

53 1.5/2.0 °C. The cause of the growth of atmospheric concentrations of carbon dioxide (CO2), 

54 one of the most important GHGs, is anthropogenic CO2 emissions; 81%–91% of which are 

55 from fossil-fuel combustion (IPCC, 2022). Urban areas account for 75% of global fossil-fuel 

56 emissions; in addition, 55% of the global population lived in urban areas in 2018. This 

57 proportion will increase to 60% by 2030, at which time one in three people are expected to 

58 live in urban areas with a population of half a million or more (World Bank, 2010; UN 

59 Population Division, 2018). So-called "bottom-up" approaches, in which the total emissions 

60 from each source category are calculated by means of multiplying activity data by GHG 

61 emission factors, are useful for estimating detailed GHG emissions data for different sectors 

62 and fuel types. However, there are uncertainties in the assessment of data at an urban scale, 

63 due to several factors such as the measurement technique used and data availability (Arioli 

64 et al., 2020). Conversely, estimation methods using atmospheric GHG observations and 

65 atmospheric transport models to estimate surface fluxes with quantifiable uncertainties are 

66 referred to as "top-down" approaches (e.g., Turnbull et al., 2015). For assessing urban 

67 emissions by means of a top-down approach, continuous observations of atmospheric GHG 

68 concentrations at tall towers are useful because they capture representative signals from 

69 emissions.
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70 Tower GHG monitoring networks such as the Indianapolis Flux Experiment (INFLUX; 

71 Lauvaux et al., 2016) are being deployed in some urban areas to assess urban GHG 

72 emissions. Turnbull et al. (2015) estimated urban CO2 emissions from Indianapolis using 

73 flask sampling data from the INFLUX towers. The urban emissions were estimated from the 

74 difference in CO2 concentrations measured at upwind and downwind sides of the urban area. 

75 Miles et al. (2021) also estimated urban CO2 emissions using observation data from INFLUX 

76 towers situated in different vegetation types. Although these multiple tower methods enable 

77 estimation of urban emissions based on in situ observations, they are limited in that they 

78 require data for a specific wind direction and assume an ideal condition that ignores vertical 

79 or horizontal mixing, which would induce concentration changes at the boundaries of the 

80 target area. 

81 Tokyo, Japan, is one of the largest cities in the world, with a population of over 37 

82 million as of 2018 (UN Population Division, 2018). Tokyo’s main CO2 emissions are from 

83 power generation, automobiles, and industry (Long and Yoshida, 2018). Sun et al. (2021) 

84 compared with the capitals of neighboring countries, and they showed that CO2 emissions 

85 from the Tokyo metropolitan area are slightly larger than those of Seoul (South Korea) and 

86 half those of Beijing (China). However, the spatial distribution of emissions is centralized, 

87 and 90% of CO2 emissions are concentrated on 56% of the land area. The mean flux from 

88 Tokyo is less than half that from Seoul. Especially along the shores of Tokyo Bay, there are 

89 large point sources such as power plants and steel plants (Ohyama et al., 2023). In 
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90 residential areas, fossil-fuel CO2 emissions come from household gas consumption and 

91 traffic emissions (Hirano et al. 2015). Another important factor is inflow from East Asia, 

92 where large emissions are produced. Shirai et al. (2012) analyzed aircraft CO2 data over the 

93 Tokyo area and showed a strong influence of fossil-fuel CO2 from East Asia (mainly China) 

94 in the free troposphere above 2 km over the surface. Therefore, it might be necessary to 

95 consider the contribution from the strong emissions in East Asia when estimating Tokyo 

96 emissions.

97 The National Institute for Environmental Studies (NIES) observes GHG concentrations 

98 continuously at a height of around 250 m at TOKYO SKYTREE (TST; 35.71°N, 139.81°E), 

99 a 634-m-high freestanding broadcasting tower. In this study, using the continuous TST 

100 observation data, we estimated net CO2 fluxes from the megacity area of Tokyo for two 

101 years (2019 and 2020) in combination with a global high-resolution model simulation, which 

102 can consistently simulate flows from out of the target area (i.e., there is no boundary 

103 condition). To evaluate CO2 fluxes from a local area, we performed a tagged tracer 

104 simulation, in which independent tracers from different sources were simulated in the model. 

105 We separated the atmospheric signals of the Tokyo local flux from those of other areas in 

106 the tagged tracer simulation, and the contributions from different sectors and regions were 

107 estimated quantitatively.

108

109 2. Data and Method
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110 2.1 Observations

111 The atmospheric CO2 concentrations at a height of approximately 250 m on TST have 

112 been measured by NIES with a cavity ring-down spectrometer analyzer (G2401, Picarro Inc.) 

113 since January 2017. CO2 mole fractions were determined against three working standard 

114 gases that were calibrated against the NIES 09 CO2 standard scale (Machida et al. 2011). In 

115 the target region, the nearly neutral mixing layer is maintained up to at least 250 m in summer 

116 season even at night. Even in winter, a strongly stable layer can form aloft, which may result 

117 in the mixed layer exceeding 200 m (Nakajima et al., 2018). Therefore, the observation height 

118 may be included within the mixed layer.

119 Considering the inhomogeneity of CO2 fluxes is important to analyze variations of CO2 

120 concentrations because strong point sources are scattered around the observation point. 

121 Therefore, in addition to CO2, we used 222Rn (hereinafter simply called Rn) data in the 

122 analysis. Rn is a natural radioisotope with a half-life of 3.8 days and has a relatively 

123 homogeneous flux field over land. Because Rn is produced by decay of 226Ra in soil, the land 

124 surface is the dominant global source, and the flux is often assumed to be constant over land 

125 (Jacob et al., 1997). To evaluate the effect of flux inhomogeneity, we performed a similar 

126 analysis for both Rn and CO2. Rn concentrations are observed at the same height on TST 

127 as CO2 concentrations with the electrostatic collection method developed by the National 

128 Institute of Advanced Industrial Science and Technology and the Meteorological Research 

129 Institute (MRI) of the Japan Meteorological Agency (Wada et al., 2010). Continuous 
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130 observations of Rn started in February 2018.

131

132 2.2 Model simulation

133 We simulated atmospheric CO2 concentrations at TST from January 2019 to December 

134 2020 using the Nonhydrostatic ICosahedral Atmospheric Model (NICAM: Tomita and Satoh, 

135 2004; Satoh et al., 2008, 2014). NICAM has been developed as a global high-resolution 

136 simulation (e.g., Kodama et al., 2021). The atmospheric tracer transport model version 

137 named NICAM-based Transport Model (NICAM-TM: Niwa et al., 2011) has been developed 

138 and used for CO2 and other trace gas simulations by virtue of the perfect mass conservation 

139 property of NICAM. The NICAM original icosahedron consists of 20 triangles to describe the 

140 Earth, and this state is called as glevel-0. The “glevel-n” represents the grid division level. 

141 By dividing each triangle into four small triangles, n increases by 1 and the horizontal model 

142 resolution becomes higher. The shape of grid is hexagon, except that it is pentagon at only 

143 twelve points inherited from the original icosahedron’s vertices. Because CO2 is a long-lived 

144 tracer and requires a long-term simulation, NICAM-TM has been used with a low horizontal 

145 resolution of “glevel-5” or “glevel-6” (Niwa et al., 2012, 2021), corresponding to mean grid 

146 intervals of ~223 and 112 km, respectively. NICAM is a general circulation model, and wind 

147 velocities and directions modeled by NICAM were used for the wind analysis (Fig. S1).

148 We used NICAM-TM with the high resolution of glevel-9 (mean grid interval ~14 km) 

149 for the atmospheric CO2 transport simulation (Fig. 1a). This horizontal resolution is the 
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150 highest for our available computing resources to perform a two year-long integration. Ours 

151 is the first study to use the high-resolution NICAM for CO2 simulation, though several studies 

152 of short-lived species or aerosols have already been performed (Ishijima et al., 2018; Goto 

153 et al. 2020). As demonstrated by Ishijima et al. (2018), synoptic variations are better 

154 simulated at a remote site by the high-resolution NICAM; however, that high-resolution 

155 model has not yet been used for assessing emissions at a local scale such as Tokyo. Usually, 

156 the glevel-9 of NICAM does not use a parameterization scheme for cumulus convection; 

157 however, we applied the cumulus convection scheme of the Chikira–Sugiyama Scheme 

158 (Chikira and Sugiyama, 2010) that has been used at lower resolutions for consistency with 

159 inverse analysis simulations. In contrast to the conventional studies with the high-resolution 

160 NICAM, we applied the nudging scheme with JRA-55 horizontal wind (Kobayashi et al., 

161 2015) to reproduce real atmospheric transport fields, which is the usual approach with 

162 NICAM-TM. The numbers of the vertical layers are 40, and the center of the lowest layer is 

163 at ~81 m. That of the second layer is at ~249 m, which roughly corresponds to the 

164 observation altitude of TST, and that of the next layer is at 430m. A summary of the model 

165 setup is provided in Table 1. 

166 The locations of TST, remote sites around Japan, and the Tokyo area that we define 

167 in this study are illustrated in Fig. 1. In this study, the Tokyo area is defined as the land within 

168 50 km of the bay area of Tokyo (35.6°N, 139.8°E) to include point sources around Tokyo 

169 Bay. In this study, “CO2tk” denotes the Tokyo-originated CO2 concentration. "Tokyo" in this 
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170 paper is different from Tokyo in terms of administrative divisions. This study focuses only on 

171 the Tokyo area, but we used the global model to reproduce CO2 concentration variations. In 

172 fact, simulating atmospheric plumes in a scale comparable to or smaller than the horizontal 

173 model grid is challenging (Skamarock, 2004; Frehlich & Sharman, 2008; Sato et al., 2018). 

174 The global model was used to estimate CO2 concentrations in a larger scale than the Tokyo 

175 area. Especially, the model calculated CO2 concentrations originated from out of the Tokyo 

176 area, which this study defines as background concentrations (Sec. 2.5). Furthermore, in the 

177 analysis of CO2 concentration variations at TST, we used wind speed thresholds to select 

178 well-mixed and highly representative data (Sec. 3.3).  

179 To simulate atmospheric CO2 concentrations comparable to observations from global 

180 to regional scales, we used inversion fluxes in which non-fossil-fuel fluxes were optimized 

181 by the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2: Niwa, 2020; 

182 Niwa et al., 2022) with globally distributed observations. Atmospheric simulations in 

183 NISMON-CO2 were performed by NICAM with glevel-5 (~223 km) resolution, and surface 

184 fluxes were optimized on 1° × 1° grids through a grid conversion scheme. The 1° × 1° 

185 inversion flux data thus produced were downscaled to the glevel-9 grids for the high-

186 resolution simulation of this study. For the inverse analysis of NISMON-CO2, fossil-fuel 

187 emissions were not optimized and other natural CO2 fluxes were optimized. The Gridded 

188 Fossil Emissions Dataset (GridFED; Jones et al., 2021), which was produced by scaling 

189 data from the Emissions Database for Global Atmospheric Research (EDGAR; Janssens-
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190 Maenhout et al., 2019), was used for the fixed fossil-fuel emissions in the inverse analysis. 

191 The same data, but regridded to the glevel-9 grid data of GridFED, were used in this study.

192 To evaluate the dependency of the fossil-fuel emissions dataset on the results of the 

193 analysis, we used additional fossil-fuel emissions data from the Open-source Data Inventory 

194 for Anthropogenic Carbon dioxide (ODIAC; Oda et al., 2018). The inventory is produced 

195 from information on emissions intensity and the locations of power plants and satellite-

196 observed nighttime lights. The monthly mean fossil-fuel emissions of GridFED and ODIAC 

197 are both high around Tokyo Bay (Fig. 2a and b), but their distributions are slightly different 

198 on the east coast of Tokyo Bay (Fig. 2c). In contrast, on the western coast of Tokyo Bay, 

199 where strong emissions are present, the GridFED emissions are much larger than those of 

200 ODIAC. Furthermore, ODIAC emissions are slightly stronger in the northern part of the 

201 Tokyo area, where fossil-fuel emissions are relatively small. In the following analysis, unless 

202 otherwise noted, the GridFED but not ODIAC is used for the fossil fuel emissions.

203 In addition, Rn, which has fluxes over almost all land surfaces, was also simulated and 

204 compared with the observations. The Rn results were compared with those for CO2 to 

205 evaluate the influence of the flux inhomogeneity. In the model, the flux distribution of Rn is 

206 set uniformly on the basis of latitude and whether the locality is land or ocean (Jacob et al., 

207 1997). Fluxes from 60°N to 60°S on land and over the ocean are 1.0 and 0.005 atoms cm−2 

208 s−1, respectively; fluxes from 70°N to 60°N and 70°S to 60°S are 0.005 atoms cm−2 s−1. The 

209 other fluxes around the poles are zero.
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210 Observed one-hourly mean CO2 concentrations display large variability, which cannot 

211 be correctly reproduced on brief timescales by the model. For a site such as TST, where 

212 strong emissions occur nearby, it is typically difficult to reproduce short-term concentration 

213 variations resulting from the large influence of small-scale turbulence. Because such model 

214 errors can be reduced by increasing the mean interval (Turnbull et al., 2016), we applied 12-

215 h moving averages to both simulated and observed data.

216

217 2.3 Pre-comparison in remote sites

218 To test the model's basic performance in simulating variations of CO2 concentrations, 

219 we used data from Hateruma Island (HAT; 24.06°N, 123.78°E; Mukai et al., 2014; Tohjima 

220 et al., 2020), in the Pacific Ocean southwest of the Japanese archipelago, and on 

221 Minamitorishima Island (MNM; 24.29°N, 153.98°E; Watanabe et al., 2000), the easternmost 

222 island belonging to Japan, where the influence of anthropogenic CO2 emissions is very small 

223 (Fig. 1b). HAT, like TST, is operated by the NIES/the Center for Global Environment 

224 Research (CGER); MNM is operated by the Japan Meteorological Agency (JMA). Both HAT 

225 and MNM observed CO2 concentrations with a nondispersive infrared absorption 

226 spectrometer analyzer during the target period. Comparisons of observed and calculated 

227 total CO2 concentrations (CO2tot) at HAT and MNM for 2019–2020 are illustrated in Fig. 3a 

228 and 3b, respectively. The correlation coefficients between the model simulation and the 

229 observation are 0.823 and 0.941 at HAT and MNM, respectively, with almost no bias. The 
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230 good agreement between the model and the observations for both the remote sites suggests 

231 that the inversion flux from NISMON-CO2 was successfully downscaled to the high-

232 resolution NICAM (note that the observations at these two sites were used in the 

233 optimization of NISMON-CO2; Niwa, 2020). 

234

235 2.4 Tagged tracer

236 In this high-resolution simulation of NICAM-TM, several “tagged CO2 tracers” were 

237 introduced. We separate flux data by source types and regions in the tagged tracer 

238 simulation. Atmospheric CO2 concentrations from fossil-fuel emissions (CO2ff), terrestrial 

239 biospheres (CO2bio), and the ocean (CO2ocn) were simulated separately. Moreover, 

240 atmospheric CO2 concentrations from East Asia (China, North and South Korea, and Taiwan, 

241 but excluding Japan), Japan (including Tokyo), and Tokyo were also separately calculated; 

242 the Tokyo tracer was further separated into tracers from four zones and a TST-neighbor 

243 area to investigate local influences. The TST-neighbor consisted of the three NICAM grids 

244 closest to TST, and the area overlapped with the four Tokyo local zones (Fig. 1c). CO2tot 

245 contains the atmospheric concentrations from all emissions (not only CO2ff, CO2bio, and 

246 CO2ocn, but also other sources such as biomass burning) and all regions. Although the 

247 calculation in CO2tot incorporates a sufficient spin-up period, calculation of the tagged 

248 tracers has no spin-up time. However, the flux distribution is located only near the 

249 observation point for tagged tracers, and the contribution of background variation caused by 
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250 Tokyo-originated flux relative to variations in CO2 concentration is very small. Thus, the 

251 effect of the lack of spin-up time for tagged tracers can be ignored.

252 To quantify the contributions of CO2 fluxes to variations of CO2 concentrations at TST 

253 from different sectors and regions, we used the variance ratio (VR), which is calculated as 

254 the ratio of the CO2 concentration variance of a tracer to that of another tracer over a 30 

255 day-period; for example, to evaluate the impact of fossil fuel at TST, the VR was calculated 

256 from the ratio of the variance of CO2ff to the variance of CO2tot.

257

258 2.5 Estimation of Tokyo-originated CO2

259 Background_CO2 concentration for estimation of urban emissions could be determined 

260 only by observations, such as the value at upwind site or the daily minimum value. However, 

261 those methods may have limitation in tracking continuous changes or need to limit wind 

262 directions. Our study used the global model with the tagged tracers to calculate the 

263 background concentrations, which does not require any wind direction limitation and enables 

264 us to track continuous changes (Sec. 3.1). The background CO2 concentration of the Tokyo 

265 area was derived from the NICAM simulation (CO2bgNICAM), which is defined as the 

266 simulated total CO2 (CO2totNICAM) minus the simulated Tokyo-originated CO2 concentration 

267 (CO2tkNICAM):

268 𝐶𝑂2𝑏𝑔𝑁𝐼𝐶𝐴𝑀 = 𝐶𝑂2𝑡𝑜𝑡𝑁𝐼𝐶𝐴𝑀 ― 𝐶𝑂2𝑡𝑘𝑁𝐼𝐶𝐴𝑀. (Eq. 1)

269 CO2totNICAM is calculated from all fluxes, while CO2tkNICAM considers only the fluxes from 
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270 Tokyo region in the calculation of the tagged tracer. Because the fluxes other than fossil-

271 fuel emissions are derived from the inverse simulation, CO2 concentrations should be 

272 globally well reproduced in the model. In fact, this assumption was confirmed by the good 

273 agreement of CO2tot between the model and the observations at the remote sites, where 

274 influences from fossil-fuel emissions are small (Section 2.3). Therefore, it is reasonable to 

275 also use CO2bgNICAM for the background value of the observations. Thus, the Tokyo-

276 originated CO2 concentrations of the observations (CO2tkObs) can be estimated by 

277 subtracting CO2bgNICAM from observed total CO2 (CO2totObs):

278 𝐶𝑂2𝑡𝑘𝑂𝑏𝑠 = 𝐶𝑂2𝑡𝑜𝑡𝑂𝑏𝑠 ― 𝐶𝑂2𝑏𝑔𝑁𝐼𝐶𝐴𝑀. (Eq. 2)

279 In this study, we compared CO2tkObs and CO2tkNICAM using a standardized major axis 

280 linear regression, the slope of which is used to evaluate emissions. The slope of the linear 

281 regression is much less sensitive to outlier values than the ratio of the mean value or median 

282 value (Turnbull et al., 2015; Miller et al., 2012). Since both CO2tkObs and CO2tkNICAM were 

283 defined using the same background concentration, the linear regression was calculated with 

284 the intercept fixed to zero.

285

286 3. Results

287 3.1 Comparison between the model simulation and the observations

288 The monthly VRs of CO2 concentrations at TST are illustrated in Fig. 4. The VRs of 

289 CO2ff of both GridFED and ODIAC were large, and their magnitudes were greater than 0.6 

Page 14 of 57For Peer Review



14

290 for all months (Fig. 4a). The VR of CO2bio increased from late spring to autumn, but it was 

291 much smaller than CO2ff. The VR of CO2ocn was negligible. The VR of CO2ff was large in 

292 winter, with small maxima also occurring in July. Suppression of vertical mixing and 

293 increased fossil-fuel consumption might have caused the winter increment of CO2ff in urban 

294 areas (Moriwaki and Kanda, 2004; Xueref-Remy et al., 2018). 

295 The VR of CO2 concentrations from each region from which a tagged tracer was 

296 simulated are shown in Fig. 4b. For CO2ff, the annual mean VR of East Asia relative to all 

297 regions was less than 0.03 at TST. In contrast, the value for the Tokyo area was 0.87; thus, 

298 CO2 emissions from the Tokyo area were dominant at TST. If the effect from areas outside 

299 of Japan is strong near the surface, the boundary condition becomes important when a 

300 regional model is used. Our study used a global model, which did not require boundary 

301 conditions. In fact, previous studies have suggested that effects from East Asia on Japan 

302 are large in terms of synoptic-scale variation (Tohjima et al., 2010) and that the influence of 

303 CO2 from East Asia cannot be ignored in the free troposphere over Tokyo (Shirai et al. 2012). 

304 However, our results showed that the influence of areas outside Japan, such as China, was 

305 very weak at TST in terms of short-term (daily-scale) variation.

306 When CO2ff from the Tokyo area was divided into the contributions from the four zones, 

307 VR of CO2ff from ZSW (the southwest zone of the Tokyo area) to the whole Tokyo area was 

308 0.4–0.9 and dominant. During summer, particularly strong VR was simulated from ZSW (Fig. 

309 4c), where strong emissions from power plants and industrial areas occur south of TST 
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310 along Tokyo Bay (Fig. 2a).

311 The time-series of CO2tot at TST are illustrated in Fig. 5a. CO2tot in NICAM basically 

312 reproduced the observations; however, the simulated values were sometimes larger than 

313 the observations. Nevertheless, the frequency of large overestimations was small: fewer 

314 than 3% of data were overestimated by more than 10%. Figure 5b shows the simulated and 

315 observed time-series of CO2tk at TST. The fact that the variation of the difference of CO2tk 

316 between the model and the observation was almost the same as that of the CO2tot difference 

317 demonstrated the dominant contribution from the Tokyo area, as already indicated by the 

318 VR results (Fig. 4b). 

319 Around Tokyo Bay, the predominant wind directions are north and south (Fig. 5d) 

320 because of the sea breeze (Yamato et al., 2017). The northern winds are further divided into 

321 northwesterly winds blowing from inland and northeasterly winds blowing from the Pacific 

322 side. Therefore, we defined three wind directions as follows: NE (azimuth degree 0–120° 

323 clockwise from north; 30% of all period); S (120–270°; 41%); and NW (270–360°; 29%). S-

324 wind is the most frequent wind during summer because of the development of sea breezes 

325 at that time of year under the weak pressure gradient associated with the Pacific anticyclone 

326 (Yamato et al., 2017). In fact, southerly winds caused by the sea breeze transport an airmass 

327 with large CO2ff. The frequency of S-wind carrying large CO2ff is high in summer and causes 

328 the large VR of CO2ff in July (Fig. 4a). In particular, from late July to early August of 2019, 

329 the observed CO2tk was higher than that in other months by approximately 20–30 ppm (Fig. 
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330 5b). This marked increase is well reproduced in the model calculation. During this period, 

331 the wind direction was continuously from the south (Fig. 5d). The continuous southerly wind 

332 carried air parcels from sources around Tokyo Bay and caused the large CO2tk at TST. If 

333 the background concentration was estimated only by using observational data, it would be 

334 difficult to capture such changes. The CO2 background concentration estimation method 

335 using the observed daily minimum value would not be able to capture those continuous 

336 changes. In background estimation using multiple tower observations, available data is 

337 limited by the tower locations and wind direction because it is important to select sampling 

338 locations corresponding to the upwind and downwind positions of the emission source. This 

339 continuous elevation of CO2 concentrations can be appropriately recognized as being 

340 derived from the Tokyo area thanks to the tagged tracer in the model.

341

342 3.2 Wind effect on CO2

343 As demonstrated in Fig. 2, fossil-fuel emissions in Tokyo are stronger in the southern 

344 region, around Tokyo Bay, where many industrial areas and power plants are located. This 

345 flux inhomogeneity induces remarkable variations of CO2tk with changes of wind speed and 

346 direction. Figs. 6a and 7a show the two-dimensional histogram in log-scale of the observed 

347 CO2tk versus wind speed and direction, respectively. The frequency of high observed CO2tk 

348 values gradually decreases with increasing wind speed; however, it is possible, although 

349 infrequent, to observe large CO2tk even at wind speeds higher than 10 m s−1 (Fig. 6a). 
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350 Because of the existence of high emissions around Tokyo Bay, S-wind causes the observed 

351 CO2tk values to be larger than the values associated with other wind directions (Fig. 7a). 

352 The difference between calculated and observed CO2tk (ΔCO2tk) depends on wind velocity: 

353 for low wind speeds, the model frequently simulated CO2tk values larger than the 

354 observations (Fig. 6b). ΔCO2tk also depended on wind direction: under S-wind conditions, 

355 when the observed CO2tk was large, ΔCO2tk was also large in comparison with the values 

356 for other directions (Fig. 7d).

357 The ΔCO2tk data were divided at the median wind speed of 5.5 m s−1 into the upper 

358 50% and lower 50% of cases. In May to June and August to September, low wind speeds 

359 dominated (53%–67%), but in other months, the frequency of high wind speeds was greater 

360 (>52%). Under high-wind-speed conditions, the model generally reproduced observations 

361 of CO2tk (Fig. 7c, f). However, under low-wind-speed conditions, the model tended to 

362 overestimate CO2tk frequency (Fig. 7b). In particular, during southern winds, ΔCO2 of 

363 around 10 ppm was the most frequently observed value (Fig. 7e).

364 The VR of CO2ff from the Tokyo area and the four Tokyo zones relative to total CO2ff 

365 calculated with respect to wind speed are illustrated in Fig. 8. The VR of the Tokyo area 

366 decreased slightly with increasing wind speed, but the amount of decrease was very small. 

367 The VR for areas outside of Tokyo was almost zero. In addition, the VR of TST-neighbor did 

368 not show a clear change in response to wind speed. Even under high wind speeds, the VR 

369 of TST-neighbor did not reach zero, thus the influence of TST-neighbor on TST persisted. 

Page 18 of 57For Peer Review



18

370 Changes of the VR of the other zones were small. To summarize, the impact of each region 

371 varied slightly with wind speed, but the changes were not notably large, even under high-

372 wind conditions (wind speeds ≥ 10 m s−1); thus, even in strong winds, the impact of 

373 emissions from the Tokyo area remained important.

374

375 3.3 Effects of wind speed limitation

376 The seasonal changes of the slopes of the linear regression and the correlation 

377 coefficients of CO2tk between the model simulation and the observation (means of the data 

378 shown in Fig. S2) for all, high (>5.5 m s−1), and low (<5.5 m s−1) wind speed conditions are 

379 illustrated in Fig. 9. Under all wind conditions, the slope of the regression line showed 

380 marked variations of approximately 1.2 to 1.8 (Fig. 9a). The slope of the regression line 

381 approached 1 and the correlation coefficient increased in spring and autumn, albeit at 

382 slightly different times. Because CO2 emissions from GridFED for the Tokyo area were also 

383 relatively low in spring and autumn, these seasonal variations of the regression slope and 

384 correlation coefficient may be attributed to the seasonal changes in GridFED (Fig. S3). 

385 The slope of the regression line was markedly different for different wind speeds: for 

386 high wind speeds, the slope was stable at approximately 1 throughout the year (Fig. 9a). 

387 However, the correlation coefficient did not show a clear trend between low and high wind 

388 speeds. Overall, high wind speeds tended to have a higher correlation coefficient, but there 

389 were cases in which low wind speeds had a higher coefficient (Fig. 9b).
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390 To examine the effect of wind speeds, we performed a regression analysis with the 

391 modeled and observed CO2tk values and changed the wind-speed threshold below which 

392 data were removed (Fig. 10a and b). The slope of the linear regression between observed 

393 and modeled CO2tk became small when the low wind speeds were removed (Fig. 10a). In 

394 particular, the slope constantly decreased under low-wind-speed conditions, whereas the 

395 correlation coefficient increased with lower wind speeds (Fig. 10b). The correlation 

396 coefficient was greatest when results for wind speeds below 5.5 m s−1 were removed. 

397 Increasing the data-removal threshold resulted in the slope’s becoming almost fixed. Over 

398 a wind-speed threshold of 7.0 m s−1, the slope remained nearly constant at 0.93.

399 The slopes of regression lines and correlation coefficients of CO2tk between the 

400 observation and the model for the three wind directions are illustrated in Fig. 10c and d. The 

401 number of S-wind data was greater than the number of either the NE- or NW-wind data: the 

402 proportions of data under S-, NE-, and NW-wind were 41%, 30%, and 29%, respectively, for 

403 all wind speeds, and 38%, 24%, and 37%, respectively, for high wind speeds. The alterations 

404 in slope for each wind direction were similar to that of all wind directions, i.e., removing low 

405 wind speeds reduced the slope (Fig. 10c). Especially under a S-wind, the slope became 

406 almost fixed and approximately 1 by removing low-wind-speed data. Thus, the simulation 

407 under S-wind conditions reproduced observations that were affected by the smoothed 

408 southern region by removing low-wind-speed data. However, the standard deviations under 

409 NE- and NW-wind conditions were larger than those under S-wind conditions. For a NE- or 
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410 NW-wind, the slopes did not become stable, even if low-wind-speed data were removed, 

411 and the reliability was low. In contrast, the correlation coefficients exhibited marked 

412 differences with different wind directions (Fig. 10d). Correlation coefficients under NW- and 

413 NE-wind conditions gradually decreased with fluctuations; however, the S-wind correlation 

414 coefficient increased with rising wind threshold, even for low wind speeds, the same pattern 

415 as for the all-wind-direction data.

416

417 3.4 Comparison of fossil-fuel emissions between GridFED and ODIAC

418 We mainly used GridFED for fossil-fuel emissions for the model simulation; however, 

419 we also considered the ODIAC results, for comparison. A comparison of the flux distribution 

420 between GridFED and ODIAC revealed that the GridFED emissions were much stronger 

421 than those from ODIAC on the west coast of Tokyo Bay, but those from ODIAC were slightly 

422 larger in the northern part of the Tokyo area (Fig. 2c). The larger emissions in GridFED made 

423 a larger contribution to CO2ff than those of ODIAC during the summer months, when the S-

424 wind blew frequently; however, the VR of ODIAC was slightly larger from January to March, 

425 when the northern winds were dominant (Fig. 4a).

426 Both the slope of the linear regression and the correlation coefficient between the 

427 observed and modeled CO2tk were smaller for ODIAC than for GridFED, but the 

428 dependency on wind speed was almost the same for both simulation cases (Fig. 10a and 

429 b). The correlation coefficient between the model and the observations was greatest at a 
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430 threshold of 5.0 or 5.5 m s−1. 

431 For ODIAC, the dependencies on wind-speed threshold were similar to those of 

432 GridFED for all wind directions (Fig. 10e and f). However, the magnitude of the S-wind 

433 regression-line slope of ODIAC was particularly small, and the slopes for the other wind 

434 directions were slightly larger than those of GridFED. The small slope was caused by the 

435 weaker emissions of ODIAC than GridFED on the west coast of Tokyo Bay. In contrast, the 

436 fact that the slopes of ODIAC under NE- and NW-wind conditions were slightly larger than 

437 those of GridFED was the result of the slightly larger ODIAC emissions in the northern zones 

438 of the Tokyo area (Fig. 2c).

439

440 3.5 Comparison of wind dependency between CO2 and Rn

441 Although the reproducibility of the model was not necessarily determined drastically by 

442 its horizontal resolution (Nassar et al., 2013), it is possible that the increasing correlation 

443 coefficient and decreasing slope in Fig. 10 were caused by inadequate representation of 

444 atmospheric transport or surface fluxes in the model. In particular, the latter possibility is 

445 plausible because the CO2 flux distribution in Tokyo is quite inhomogeneous. Although there 

446 were differences in the flux distribution between GridFED and ODIAC, they were basically 

447 similar, with strong fluxes at point sources around Tokyo Bay and weaker fluxes in other 

448 areas. This similarity probably led to the result that the dependencies of the regression-line 

449 slopes and correlation coefficients between the model and the observations were similar to 
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450 each other for the wind data. To investigate whether the changes in the regression slopes 

451 and correlation coefficients resulted from insufficient model transport performance or from 

452 the inhomogeneity of the CO2 flux distribution, we analyzed Rn, which has a flux distribution 

453 that differs from that of CO2, and compared it with the CO2 case using the same method as 

454 before. 

455 In the time-series of Rn concentrations, simulated Rn was sometimes larger than the 

456 observed concentration (Fig. 5c), similarly to the simulated CO2 concentrations; however, 

457 the timing of large differences between calculations and observations for Rn differed from 

458 that for CO2. It is possible that the flux of Rn was overestimated in the model.

459 The seasonal variations in the slope of the linear regression and correlation coefficient 

460 of Rn between the model and the observation (monthly means of the data shown in Fig. S4) 

461 are illustrated in Fig. 11. The regression-line slope of Rn showed a more distinct seasonal 

462 pattern compared to CO2, and it increased notably from spring to summer. The difference 

463 between the high and low wind speeds, separated using the threshold of 5.5 m s−1, was 

464 particularly large during this period, and a marked contrast observed, especially in June and 

465 July. The correlation coefficient of Rn was larger than that of CO2 because the flux 

466 distribution of Rn was simpler than that of CO2. Changes in the correlation coefficient, unlike 

467 those of CO2, show less clear seasonal variations. Similar to CO2, data for high wind speeds 

468 tended to have a higher correlation coefficient in general. Furthermore, the timing of changes 

469 in the regression-line slope and the correlation coefficient did not necessarily align with each 

Page 23 of 57 For Peer Review



23

470 other.

471 The slope of the regression line also decreased with increasing wind-speed threshold 

472 (Fig. 10c), similar to CO2tk, but the slope was greater than 1, even for a threshold wind 

473 speed of 10 m s−1. The correlation coefficient of Rn generally increased with increasing wind 

474 speed (Fig. 10d), in contrast to CO2, which rose only under low-wind-speed conditions. If 

475 the insufficient model transport performance were the only cause of the large overestimation 

476 of CO2tk and the relationship between CO2tk and wind speed, the relationship between Rn 

477 and wind speed should be the same as that between CO2tk and wind speed. However, the 

478 decrease in the regression-line slope and the rise in the correlation coefficient of Rn was 

479 stronger than the patterns of CO2tk for all wind directions.

480 In the same way as CO2, the regression-line slope and correlation coefficient of Rn 

481 concentration were considered separately for each wind direction (Fig. 10c and d). Under 

482 NW-wind conditions, increasing the wind speed threshold resulted in a decrease of the slope 

483 and an increase of the correlation coefficient. Under S-wind, the slope decreased, but by a 

484 smaller amount than for NW winds; in addition, the increase in correlation coefficient for S-

485 wind was gradual. The NE-wind showed a more obvious decrease in slope than the other 

486 two wind directions. In addition, for the NE-wind, the correlation coefficient decreased with 

487 rising wind-speed threshold, but with some variability. Unlike CO2tk, under S-wind conditions, 

488 the correlation coefficient of Rn did not increase under low-wind-speed conditions. The 

489 regression slopes under S- and NW-wind conditions slowly fell, even under high-wind-speed 

Page 24 of 57For Peer Review



24

490 conditions, but they remained greater than 1. Thus, the Rn concentration in the model was 

491 overestimated, even if the flux distribution was smoothed by removing low-wind-speed data, 

492 as a result of overestimation of the fluxes provided to the model. One reason for the 

493 overestimation may have been the covering of the surface with asphalt and thus prevention 

494 of an Rn flux in the urban area, but it is also possible that the Rn flux input to the model was 

495 too high. In contrast, the slope of CO2tk under high wind speeds and S-wind conditions was 

496 stable at approximately 1, and the model under high-wind-speed conditions reproduced the 

497 observations. The comparison with Rn revealed that the changes of regression on CO2tk 

498 were mostly caused by flux inhomogeneity, but the insufficient flux inhomogeneity could be 

499 smoothed by removing low-wind-speed data. This tendency was more pronounced under 

500 S-wind conditions, which were strongly influenced by the coastal region with abundant 

501 emissions.

502

503 3.6 Estimation of net CO2 flux from Tokyo

504 To estimate the net CO2 flux from Tokyo, we obtained an optimal slope to represent 

505 the Tokyo area of 0.93 ± 0.08 by removing data with a threshold wind speed larger than 7 

506 m s−1. We selected this wind-speed because the slope became constant above this 

507 threshold. The annual mean CO2 fluxes in Tokyo area, within the circle of 50km radius, of 

508 GridFED for fossil fuel and VISIT for the biosphere were 9.4 and −0.1 kg C m−2 year−1, 

509 respectively. From this prior estimate of 9.3 kg C m−2 year−1, which is the sum of the fossil 
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510 fuel emission and the biosphere flux, the net CO2 flux from Tokyo (which contains both land 

511 and ocean areas) was corrected by dividing the optimal slope, yielding a value of 10.1 ± 0.8 

512 kg C m−2 year−1. Multiplying the corrected flux value with the defined area, we obtained a 

513 value of 79.5 ± 6.6 Tg C year−1 for integrated net emissions from the Tokyo area. This flux 

514 included both land and ocean components, and so the magnitude was smaller than that of 

515 the land-only flux.

516 For ODIAC, when the same method as that for GridFED was applied, the optimal CO2tk 

517 slope was 0.74 ± 0.07. The mean annual net CO2 flux in the Tokyo area was 6.8 kg C m−2 

518 year−1 with ODIAC; thus, the net CO2 flux from Tokyo corrected by the optimal slope was 

519 9.1 ± 0.9 kg C m−2 year−1 (71.8 ± 6.8 Tg C year−1), which was smaller by approximately 10% 

520 than the value obtained with GridFED.

521

522 4. Discussion and Conclusion

523 4.1 Insufficient representativeness of TST

524 We applied TST to analyze emissions from the Tokyo area; however, the results 

525 indicated that CO2 concentration variations at TST were mainly affected by ZSW and not as 

526 much by ZSE. Therefore, only using TST was not sufficient to investigate the influence of 

527 the whole Tokyo area. Although the intensity of the flux on the east coast of Tokyo Bay was 

528 approximately 70% of that of the west coast, the VR of ZSE (which includes the east coast 

529 emissions) was lower than 0.1 and much smaller than the VR of ZSW (Fig. 8). This 
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530 difference was attributable to the less frequent easterly winds toward TST (Fig. 5d and Fig. 

531 S1). Thus, further observations that can capture signals from the east coast of Tokyo Bay 

532 are needed to evaluate the entirety of Tokyo emissions more accurately.

533

534 4.2 Comparison with previous studies and original bottom-up modeling

535 In the simulation of CO2 using GridFED, although estimated CO2tk was sometimes 

536 overestimated, the overestimations were excluded under high-wind-speed conditions. 

537 Removing low-wind-speed data induced an increment of the correlation coefficient between 

538 simulation and observation, and the regression slope became stable. In contrast, the 

539 regression slope of Rn continued to decrease under high-wind-speed conditions and did not 

540 become stable. Thus, whether the regression slope became stable by excluding low wind 

541 speeds depended on the flux distribution, and one of the causes of the CO2tk overestimation 

542 may have been the flux distribution in GridFED. Similar results were obtained with ODIAC. 

543 By excluding the low-wind-speed data, the influence of flux inhomogeneity was smoothed, 

544 and a stable regression line could be estimated for all seasons. Although removing low-

545 wind-speed data changed the impact from the TST vicinity, this removal did not always 

546 eliminate local influences (Fig. 8). We estimated the net CO2 flux from Tokyo to be 10.1 ± 

547 0.8 kg C m−2 year−1 (79.5 ± 6.6 Tg C year−1) with GridFED, calculated by using the optimal 

548 slope of the regression line.

549 The estimation obtained by using GridFED was consistent with those of previous 
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550 studies in an approximately similar target area: emissions of 75.8 Tg C year−1 (Ohyama et 

551 al., 2023) were calculated by an inversion analysis based on observations of ground-based 

552 Fourier transform spectrometers around Tokyo, and a value of 70 ± 21 ± 6 Tg C year−1 

553 (Babenhauserheide et al., 2020) was derived from a combination of Fourier transform 

554 infrared and radiosonde meteorological observations around Tokyo. Comparing the flux 

555 estimates for the Tokyo area obtained in the present and previous studies showed that our 

556 result from GridFED was approximately 9% larger than that obtained with the original 

557 GridFED (Fig. 12). Our value was also larger than those obtained in previous studies, but 

558 the differences could not be discussed in detail because the target regions were not exactly 

559 the same. The difference between our estimate obtained with ODIAC and the original 

560 estimate was more notable—our estimate was approximately 1.4 times the original. This 

561 difference was consistent with the fact that the two previous studies (Babenhauserheide et 

562 al., 2020; Ohyama et al., 2023) have noted that their estimations were larger than those 

563 obtained by using ODIAC. Therefore, it is likely that Tokyo-originated emissions inferred by 

564 using bottom-up methods, especially ODIAC, were underestimated. 

565 To summarize, we successfully estimated the net CO2 flux from Tokyo, one of the 

566 largest cities in the world, using observations at TST and the high-resolution NICAM with 

567 tagged tracers. For future study, additional observation points on the east coast of Tokyo 

568 Bay will be necessary to improve the estimate of emissions from the whole Tokyo area. By 

569 performing a higher resolution calculation with a regional model and focusing on the urban 
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570 area, the reproducibility of CO2 concentrations within the Tokyo area and the flux estimation 

571 could be further improved.

572

573

574 Data Availability Statement

575 NICAM and NICAM-TM can be obtained by applying through the inquiry form on 

576 [https://nicam.jp/dokuwiki/doku.php].

577 The flux data of NISMON-CO2, GridFED, and ODIAC are available at 

578 [https://doi.org/10.17595/20201127.001], [https://doi.org/10.5281/zenodo.4277266], and 

579 [https://doi.org/10.17595/20170411.001], respectively.

580 The data of CO2 and Rn observed at TST supporting the findings of this study are available 

581 from NIES and MRI, respectively. Restrictions apply to the availability of these data, which 

582 were used under license for the current study and are not publicly available. The data are 

583 available from the authors upon reasonable request, subject to permission from NIES and 

584 MRI, respectively.

585 The data for CO2 observed at HAT are available from Mukai et al. (2014). The data for CO2 

586 observed at MNM were obtained from the World Data Centre for Greenhouse Gases 

587 (https://gaw.kishou.go.jp).
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