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 56 

Abstract 57 

Himawari-8/9 is a next-generation Japanese Geostationary Earth Orbit (GEO) 58 

meteorological satellite with an onboard sensor – the Advanced Himawari Imager (AHI). 59 

Because Himawari-8/9 AHI observe the Earth's hemispheres every 10 min with multiple 60 

spectral bands, AHI providing an unprecedented opportunity to facilitate its observation 61 

datasets are expected to be a new data source for terrestrial monitoring in terms of mitigating 62 

cloud contaminations. Estimation of land surface reflectance (LSR) is crucial in quantitative 63 

terrestrial monitoring. In this study, we aimed to develop a method for estimating the LSR 64 

and angular-adjusted LSR of the Himawari-8/9 AHI using the look-up table based Second 65 

Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model 66 

(RTM) and kernel-driven semi-empirical bidirectional reflectance distribution function (BRDF) 67 

model. The estimated LSR underwent evaluation and inter-comparison through two distinct 68 

approaches: ray-matching and estimating angular-adjusted LSR. Ray-matching of the 69 

obtained data pairs with the MODIS LSR product shows that the correlation coefficients (r) 70 

for all bands are greater than 0.86 at low latitudes. Angular-adjusted LSRs estimated using 71 

AHI time-series data at mid-latitudes also show good agreement with MODIS (r>0.5), 72 

particularly the red and near-infrared bands (r>0.9). The results obtained by our method are 73 

in high agreement with those calculated using the reference aerosol optical thickness (AOT) 74 
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(r>0.98). Our findings highlight the potential application of our methodology to other GEO 75 

satellites for high-frequency terrestrial monitoring at continental to global scales. 76 

Keywords Himawari-8/9 AHI, geostationary satellite, land surface reflectance, atmospheric 77 

correction, LEO-GEO inter-comparison, bidirectional reflectance distribution function 78 



 0 

1. Introduction 79 

Land surface reflectance (LSR) is indispensable in terrestrial monitoring, and quantifies 80 

the fraction of solar radiation reflected off Earth's surface, which is intrinsically linked to 81 

surface properties, as well as the geometry of illumination and observation (Lee et al. 2020; 82 

Lee et al. 2022). Traditionally, sensors from low earth orbit (LEO) satellites, such as the 83 

Terra/Aqua and Suomi national polar-orbiting partnership (NPP), have been widely 84 

employed as the primary sources of LSR data (Liang et al. 2002; Vermote et al. 2014). 85 

However, these data are often limited by cloud cover and infrequent observations (Fensholt 86 

et al. 2011). Particularly in the tropical regions, a month of missing data may be observed 87 

(Nagai et al. 2014). In contrast, third-generation geostationary earth orbit (GEO) satellites, 88 

including GOES Advanced Baseline Imager (ABI) (Schmit et al. 2017), Himawari-8 89 

Advanced Himawari Imager (AHI) (Bessho et al. 2016), FY-4 Advanced Geostationary 90 

Radiation Imager (AGRI) (Yang et al. 2018), GK2A Advanced Meteorological Imager (AMI) 91 

(Lee et al. 2017), and MTG-I Flexible Combined Imager (FCI) (Holmlund et al. 2021), have 92 

emerged as promising alternatives owing to their high temporal observation frequency and 93 

multiple solar reflective bands (Miura et al. 2019; Wang et al. 2020). 94 

The AHI onboard Himawari-8/9, developed by the Japan Meteorological Agency (JMA), 95 

offers improvements in sensor capabilities and spatiotemporal resolution compared with its 96 

predecessor, the Multi-functional Transport Satellite (MTSAT)-2 Imager (Bessho et al. 2016). 97 

Although the primary design focus of AHI is weather observation and forecasting, it has 98 
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proven beneficial for other applications such as disaster detection (Higuchi 2021; Miura and 99 

Nagai 2020), vegetation monitoring (Zhang et al. 2021; Yamamoto et al. 2023) and snow 100 

cover estimation (Wang et al. 2019). 101 

Nonetheless, the environmental monitoring potential of its Himawari-8/9 AHI remains 102 

underutilized owing to the lack of rigorously evaluated and validated publicly accessible LSR 103 

datasets. Therefore, reliable methods for LSR retrievals are essential for meaningful AHI 104 

research. Radiative transfer models (RTM) are the most widely used method for estimating 105 

the LSR from GEO satellites because of their ability to simulate solar radiation transmission 106 

in the atmosphere (Vermote et al. 1997). Initially, a simplified method for atmospheric 107 

correction (SMAC) was employed to estimate GEO-based LSR for the Meteosat Second 108 

Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) (Proud et al. 109 

2010). While effective in numerous situations, this method was occasionally limited in 110 

accurately estimating LSR under complex atmospheric conditions and at medium-to-high 111 

viewing angles. Peng (2020) designed the LSR and albedo estimation algorithms for GOES-112 

R using a look-up table (LUT) based on the Second Simulation of the Satellite Signal in the 113 

Solar Spectrum Vector (6SV) RTM. Lee et al. (2020a) designed a GK-2A Land Surface 114 

Albedo estimation algorithm using a 6SV-based LUT method. Li et al. (2019) and Wang et 115 

al. (2020) describe that the NASA GeoNEX group provides AHI LSRs estimated by the Multi-116 

Angle Implementation of Atmospheric Correction (MAIAC) algorithm.   117 
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Currently, there are gaps in knowledge and limitations in the evaluation of GEO-based 118 

LSR. The evaluation of GEO LSR products involves two methods: ray-matching with LEO 119 

satellites (Yu and Wu 2016, Qin and McVicar 2018) and inter-comparison using angular-120 

adjusted LSR (Li et al. 2022). The applicable regions of the ray-matching method are limited 121 

to low-latitude regions due to the differences in the observation condition (sun-target-sensor 122 

geometry) of the GEO sensors and the LEO sensors (Qin and McVicar, 2018), leaving a 123 

gap in mid-latitude evaluations. To overcome those gaps, certain studies have used MODIS 124 

Bidirectional Reflectance Distribution Function (BRDF) products to evaluate GEO LSR (Tran 125 

et al. 2020; Li et al. 2022). Meanwhile, Zhang et al. (2022) suggested the feasibility of BRDF 126 

estimated by time-series data from GEO satellites, which could become a potential method 127 

for evaluating GEO satellite products.  128 

This study aims to refine the existing AHI LSR estimation method and to provide a reliable 129 

AHI LSR dataset. Moreover, we aim to release an open-source framework for estimating 130 

LSR of GEO satellites, promoting research on land monitoring by GEO satellites. Building 131 

on the work of these researchers, we refined the workflow for estimating Himawari/AHI LSR 132 

and its evaluation by applying methods from existing studies and improving data selection 133 

and processing. By utilizing a ray-matching and a kernel-driven semi-empirical BRDF model 134 

to simulate LSR, we conducted an inter-comparison with MODIS (Terra/Aqua) LSR products, 135 

evaluating the estimated AHI LSR at low to mid-latitudes. In addition, we explored the 136 
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feasibility of applying the methodologies and materials used in this study to other GEO 137 

satellites.  138 

 139 

2. Data and Method 140 

2.1 Area 141 

This study focuses on regions within the observation coverage of the Himawari-8/9 AHI, 142 

primarily encompassing East and Southeast Asia and Oceania (Fig. 1), according to the 143 

gridded dataset provided by the Center for Environmental Remote Sensing (CEReS) at 144 

Chiba University. This region experienced various terrestrial surface changes, such as land 145 

use changes due to deforestation and plantation in Southeast Asia (Vadrevu et al. 2019), 146 

and is extensive fire and subsequent ecological changes in Australia (Gibson et al. 2020; 147 

Abram et al. 2021). 148 

 149 

2.2 Materials 150 

a. Himawari-8/9 AHI 151 

The Himawari-8 satellite was launched on October 7, 2014, and its data services 152 

became operational on July 7, 2015. The AHI has 16 spectral bands, from visible to thermal 153 

infrared, to capture various meteorological phenomena and atmospheric components. 154 

Offering two distinct observation intervals, the AHI provides imagery every 10 min for the 155 
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Full Disk (FD) region encompassing the entire hemisphere, and every 2.5 min for the 156 

Japanese region or the target area (Bessho et al. 2016). Himawari-9 was launched on 157 

November 2, 2016. Himawari-9 is a satellite of the same type with Himawari-8 and serves 158 

as a backup for Himawari-8. Observation began on December 13, 2022, replacing 159 

Himawari-8. 160 

In this study, we used the CEReS gridded Himawari-8/9 AHI dataset, which includes 161 

additional precise geometric correction and reprojection to the latitude/longitude coordinates 162 

from Himawari standard data (HSD) distributed by the JMA (Takenaka et al. 2020). The 163 

accuracy of the geometric correction was evaluated, and the dataset can be utilized for 164 

studies requiring high geometric precision (Yamamoto et al. 2020), such as land monitoring 165 

(Zhao et al. 2022; Yamamoto et al. 2023). Furthermore, annually updated calibration 166 

coefficients were applied to the dataset in order to minimize the effects of sensor degradation 167 

(https://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index_en_V20190123.html). The 168 

specifications of the CEReS gridded Himawari-8/9 AHI dataset are presented in Table1. In 169 

this study, Bands 01 to 06 of the AHI were used for the LSR estimation. The spatial 170 

resolution of Band 03 was reduced from 0.005° to 0.01° by taking a mean to align with that 171 

of Band 04. 172 

We utilized cloud mask data based on an algorithm reported by Yamamoto et al. (2018), 173 

which sets thresholds for reflectance and brightness temperature in visible and infrared band 174 

https://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index_en_V20190123.html
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data to identify clouds. The algorithm provides confidence of clear sky at 0.02° spatial 175 

resolution, and all pixels with confidence below 0.95 are identified as cloudy in this study. 176 

Because the cloud mask data are provided with 0.02° spatial resolution, we used the nearest 177 

neighbor (NN) method to convert the data to 0.01° spatial resolution to match the spatial 178 

resolution of solar reflective bands (0.01°).  179 

Moreover, we generated angular data for the AHI, including the solar zenith angle (SZA), 180 

solar azimuth angle (SAA), view zenith angle (VZA), and view azimuth angle (VAA). SAA 181 

and SZA were calculated by the Variations Séculaires des Orbites Planétaire (VSOP) 87 182 

theory (Bretagnon and Francou 1988), a mathematical and analytical theory developed to 183 

accurately predict the orbital positions of the planets in the solar system over time. VZA and 184 

VAA were calculated using the geometric relationship between the satellites and each grid. 185 

To save computational time, we generated angular data with spatial and temporal 186 

resolutions of 0.04° and 10 minutes, respectively, and used NN interpolation to match the 187 

spatial resolution to that of the AHI. 188 

 189 

b. Auxiliary data for LSR estimation 190 

In this study, the Copernicus Atmosphere Monitoring Service Reanalysis (CAMSRA) 191 

ECMWF Atmospheric Composition Reanalysis 4 (EAC4) atmospheric composition dataset 192 

was utilized to retrieve key parameters for atmospheric correction, total column ozone, total 193 
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column water vapor, total AOT at 550 nm, and aerosol components. This dataset 194 

encompasses aerosol and atmospheric chemistry information every 3 h at 0.75° spatial 195 

resolution and is derived from the assimilation of satellite inversion data using the integrated 196 

forecasting system of ECMWF (Inness et al. 2019; Koffi and Bergamaschi 2018). To ensure 197 

compatibility with the temporal and spatial resolutions of the AHI data (10min, 0.01°, and 198 

0.02°), linear interpolation was used for both temporal and spatial interpolation. 199 

The multi-error-removed improved-terrain (MERIT) digital elevation model (DEM) 200 

(Yamazaki et al., 2017) was used for topographic data. This high-resolution representation 201 

of Earth's surface is an invaluable resource for geoscience research (Yamazaki et al. 2017; 202 

Uuemaa et al. 2020). Similarly, we converted the dataset from 3” to match the AHI’s spatial 203 

resolution (0.05°, 0.01°, and 0.02°) by averaging grids within one AHI grid. 204 

 205 

c. Terra and Aqua MODIS LSR products 206 

We used August 2018 Terra/Aqua MODIS daily LSR grid datasets (Terra: MOD09GA, 207 

Aqua: MYD09GA (Vermote et al. 2002)) as reference datasets to quantitatively evaluate the 208 

estimated AHI LSR. These datasets include bands 1 through 7 of MODIS. By referring to 209 

the Spectral Response Functions (SRFs) of AHI and MODIS (Fig. 2), we used MODIS bands 210 

01–07 (except 05), which are close in central wavelength to the AHI bands (bands 01–06). 211 

The accuracy of the latest Collection 6 LSR product is 0.005 + 0.05 x LSR or more (Vermote 212 
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and Kotchenova (2008)). We applied mean value resampling to match spatial resolution of 213 

MODIS to AHI, i.e. MODIS data with 500 m spatial resolution using 2 x 2 pixels corresponds 214 

to one AHI 1 km spatial resolution pixel and 4 x 4 corresponds to AHI 2 km spatial resolution 215 

pixels.  216 

Additionally, we utilized the MODIS BRDF parameter product (MCD43A1) (Schaaf et 217 

al. 2002) to estimate the MODIS LSR at the AHI observation angle. MCD43A1 is a 16-day 218 

synthesized product with a spatial resolution of 500 m and includes BRDF parameters in 7 219 

spectral bands. 220 

 221 

d. AERONET and SKYNET 222 

Uncertainties can arise in the estimation of LSR owing to the accuracy of the input 223 

parameters related to the atmosphere and aerosols. To address this issue, our study 224 

evaluated interpolated data from the CAMSRA-EAC4 with in-situ (23 sites) AOT from the 225 

Aerosol Robotic Network (AERONET) and SKYNET for the years 2018–2019. 226 

AERONET, a global network of ground-based aerosol monitoring stations, provides 227 

long-term continuous datasets of aerosol optical and microphysical properties. These data 228 

have been used extensively in aerosol research, atmospheric correction of satellite data, 229 

and air quality monitoring (O’Neill et al. 2003). Similar to AERONET, SKYNET operates as 230 

a ground-based observation network (Aoki and Fujiyoshi 2003; Irie et al. 2017), thereby 231 
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providing valuable data for validating satellite-based observations (Damiani et al. 2018; Hori 232 

et al. 2018). Given the extensive presence of AERONET stations in Europe and North 233 

America, we incorporated data from SKYNET to improve coverage in East Asia. AOT550 234 

was obtained using Ångström exponent (AE) after calculating the AOT at 500 nm (Ångström 235 

1929). To further mitigate cloud contamination, we used an AHI cloud mask (Yamamoto et 236 

al. 2023) for additional screening. 237 

We further used two SKYNET sites, Beijing (BEJ) and Miyako (MYK), to assess the 238 

uncertainties introduced by the input AOT using observations. These two sites were chosen 239 

for their contrasting aerosol characteristics. We estimated the local LSR at noon using the 240 

in-situ AOT and the AOT interpolated from the CAMSRA-EAC4 dataset in 2018. 241 

 242 

2.3  LSR estimation and BRDF modeling 243 

The estimation of the AHI LSR and BRDF kernel model parameters consisted of two 244 

primary steps (Fig. 3). The first step involved retrieving the AHI LSR by utilizing the 6SV 245 

RTM LUT in conjunction with auxiliary data. In the second step, the estimated LSR within 246 

the framework of the kernel driven BRDF model was used to estimate the BRDF kernel 247 

model parameters and subsequently compute the angular adjusted LSRs. The associated 248 

subsections in Fig. 3 offer detailed explanations of each step of the algorithm. 249 

 250 
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a. Step 1: LSR estimation 251 

We used the vector version of 6S, commonly referred to as 6SV, to estimate the LSR 252 

(Vermote et al. 2006). The 6SV employs the radiative transfer theory and successive order 253 

of scattering method to accurately simulate the atmospheric effects from the sun to the target 254 

and sensor (Vermote et al. 1997; Kotchenova et al. 2006; Vermote et al. 2006; Kotchenova 255 

and Vermote 2007). Its implementation has become widespread across various studies, 256 

including those focusing on the retrieval of AOT (Xie et al. 2022), the estimation of land 257 

surface albedo, and LSR (Kotchenova et al. 2008; Lee et al. 2020). We first assume that the 258 

land surface is Lambertian and conducted atmospheric corrections to the AHI data. 6SV 259 

provides three coefficients ( Xap ,	 Xb 	 and	 Xc 	 in Eq. (1)) as outputs under the input 260 

conditions. For Lambertian surfaces and above the sea level, the expression for the LSR 261 

within the 6SV is expressed by Eq. (1), 262 

 263 

 𝜌! =
𝑋𝑎𝑝 ∙ 𝜌"#$ − 𝑋𝑏

1 + 𝑋𝑐 ∙ (𝑋𝑎𝑝 ∙ 𝜌"#$ − 𝑋𝑏)
		 Eq. (1) 

with 264 

 𝑋𝑎𝑝 =
1

𝑇%(𝜃&, 𝜃' , 𝑧!) ∙ 𝑇↓(𝜃&, 𝑧!)𝑇↑(𝜃' , 𝑧!)
		  

 𝑋𝑏 =
𝜌*

𝑇↓(𝜃&, 𝑧!)𝑇↑(𝜃' , 𝑧!)
		  

 𝑋𝑐 = 𝑆	  



 

 

 

10  

where  ρ+  is target surface reflectance, ρ,-.	 is the top of atmosphere (TOA) 265 

reflectance, ρ/ is total atmospheric reflectance due to aerosol and molecular scatterings, 266 

θ0 is SZA, θ1 is VZA, φ0 is SAA, φ1 is VAA, φ0 − φ1 is relative azimuth angle (RAA), z+ 267 

is target altitude, S is the spherical albedo of the atmosphere, 	𝑇↓is the total downward 268 

transmittance, T↑ is the total upward transmittance, and T2 is the gaseous transmission of 269 

atmospheric gases, including H2O, O2, O3, CO2, N2O and CH4.  270 

We employed a LUT-based method commonly used for atmospheric correction (Seong 271 

et al. 2020; Peng 2020; Kim et al. 2022) to reduce the processing time. Table 2 presents the 272 

design details of the LUT used in this study, which were based on previous studies (Seong 273 

et al. 2020). The range of input parameters used in the 6SV model was limited to 0° to 80° 274 

for SZA and VZA with 5° incremental steps. The RAA ranged from 0° to 180° in 10° 275 

increments. The atmospheric input conditions consisted of irregularly spaced values, 276 

including the 12 AOT values. The surface elevation range considered ranged from 0 to 8 km 277 

with 2km increments, the ozone range was 0.20 to 0.40 atm-cm with 0.05 atm-cm 278 

increments, and the TPW range was 0 to 7 g cm-2 with 1 g cm-2 increments, based on 279 

statistics from CAMSRA-EAC4 between 2015 and 2020 within the FD region. Additionally, 280 

only maritime and continental aerosol types were employed because of the difficulty in 281 

classifying the continental and urban types and dominance of islands and continents over 282 

urban areas in the Himawari-8/AHI observational region. 283 



 

 

 

11  

The classification of aerosol types was based on matching the total columns of the five 284 

aerosol types (dust, sea salt, organic aerosol, black carbon, and sulphate) in the CAMSRA-285 

EAC4 dataset with the aerosol types in the 6SV RTM, as aerosol-type data are not readily 286 

available (Shen et al. 2019). The classification was based on the percentage contribution of 287 

each aerosol component. We defined the grids in which the maximum component is the 288 

marine component (Oceanic in 6SV RTM) as maritime aerosol and the rest as continental 289 

aerosol. Table 3 presents the correspondence between the aerosol types used in the 290 

CAMSRA-EAC4 and those used in the 6SV. In 6SV RTM, the aerosol profile is assumed to 291 

be exponential with a scale height of 2 km. 292 

 293 

b. Step 2: Angular-adjusted LSR estimation 294 

In this study, a kernel-driven semi-empirical BRDF model was employed to estimate  295 

BRDF information (Matsuoka et al. 2016). This approach is valuable for estimating the 296 

reflectance of challenging-to-measure surfaces and modeling the reflectance under various 297 

illumination and observation conditions (Lucht et al. 2000; Schaaf et al. 2002). Similar to 298 

MODIS, we assumed the land surface to be isotropic and performed BRDF information 299 

estimation. The angular-adjusted LSR is defined by Eq (2). 300 

 301 

 𝜌(4!,4",6!76") = 𝑓𝑖𝑠𝑜 + 𝑓𝑣𝑜𝑙 ∙ 𝐾𝑣𝑜𝑙(9#,9$,:#7:$)
+ 𝑓𝑔𝑒𝑜 ∙ 𝐾𝑔𝑒𝑜(9#,9$,:#7:$)		 

Eq. (2) 
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 302 

where ρ is the angular-adjusted LSR; Kvol and Kgeo are the volume and geometric 303 

kernel values, respectively; and fiso, fvol, and fgeo refer to the kernel model parameters. 304 

The Ross-Thick (RTK) kernel was chosen as the volume kernel, whereas the Li-Sparse-305 

Reciprocal (LSR) kernel was selected as the geometric kernel, same as the MODIS BRDF 306 

product (Schaaf et al. 2002). The RTK-LSR combination model has been widely recognized 307 

for its effectiveness in inverting GEO satellite BRDF kernel model parameters (Matsuoka et 308 

al. 2016; Zhang et al. 2022). The calculation of each kernel is described in Eq. A1 and A2 in 309 

the Appendix. 310 

We performed multiple linear regressions on a pixel-by-pixel basis using the time series 311 

to estimate the BRDF kernel model parameters. Furthermore, we retrieved angular-adjusted 312 

LSR by selecting the center day of a rolling three-day window. We restricted this synthesis 313 

period to the local timeframe of 10:00–17:00 local time, ensuring that the data collected 314 

would be representative of daytime conditions. A time series of consecutive cloud-free 315 

periods was selected to minimize the effect of clouds on the multiple linear regression.  316 

 317 

2.4  Evaluation 318 

The following comparisons were made to evaluate the retrieved LSR and assess their 319 

accuracy. (1) Inter-comparison between Spectral Band Adjustment Factors (SBAF)-320 
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adjusted AHI LSR vs. MOD09 LSR using ray-matched pairs obtained over a tropical Asia 321 

region in August 2018. (2) Inter-comparison between SBAF-adjusted, angle-adjusted AHI 322 

LSR vs. MOD09 LSR for a 0.3°-by-0.3° area located at the center of Australia at January 3, 323 

2018. where angular-adjusted LSR was made using a synthesis period of January 2-4, 2018. 324 

(3) Inter-comparison between SBAF-adjusted AHI LSR vs. angle-adjusted MODIS LSR 325 

(MCD43A1) for the same 0.3°-by-0.3° area located at the center of Australia on January 3, 326 

2018. (4) Inter-comparison between the spatially interpolated CAMSRA-EAC4 AOT vs. 327 

AERONET/SKYNET AOT over the Himawari FD region in 2018, and (5) Inter-comparison 328 

between AHI local-noon LSR estimated with CAMSRA-EAC4 AOT vs. the same LSR but 329 

estimated with in-situ AOT at two SKYNET sites in 2018. 330 

 331 

a. Spectral band adjustment factor  332 

To account for the differences in the SRFs between AHI and MODIS, which could lead 333 

to divergent results when observing identical targets (Chander et al. 2013; Li et al. 2019; 334 

Okuyama et al. 2018), we employed the SBAF tool (Scarino et al. 2016). This tool has gained 335 

extensive acceptance in sensor cross-calibration studies owing to its efficacy in rectifying 336 

spectral discrepancies (Kim et al. 2021; Yu and Wu 2016). Utilizing Eq. 3, along with the 337 

SBAFs supplied, we adjusted the MODIS LSR to better align with AHI measurements for a 338 

more accurate intercomparison. 339 
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Where 𝜌;#<=>  is the MODIS LSR and 𝜌
$?=，;#<=>

 is MODIS LSR after employing 340 

SBAF. 341 

However, Band 06 (2.3μm) of AHI falls outside the spectral coverage of the Scanning 342 

Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) used by 343 

the SBAF. Consequently, in this study, we focused on adjusting bands 1 to 5 of AHI for 11 344 

landcovers. 345 

 346 

b. Ray-matching  347 

The ray-matching method was employed to generate data pairs for comparison 348 

between the LEO and GEO sensors. Ray-matching screening data pairs with similar 349 

observation and illumination conditions by constraining the sun, sensor, and target geometry. 350 

This method has been extensively applied to numerous LEO-GEO inter-calibration studies 351 

including AHI-MODIS (Qin and McVicar 2018), AHI-VIIRS (Yu and Wu 2016), and ABI-VIIRS 352 

(Sirish Uprety et al. 2020; Jing et al. 2020).  353 

We performed ray-matching between the AHI data and daily LSR products from MODIS 354 

(Terra: MOD09GA, Aqua: MYD09GA), setting a matching interval of 0.02° in August 2018. 355 

We further evaluated the quality of this match using a scatter plot of the filtered pixels. This 356 

process was accomplished using the AHI-MODIS screening criteria established by Qin and 357 

 𝜌
$?=，;#<=>

= 𝜌;#<=> ∙ 𝑆𝐵𝐴𝐹>@AB* + 𝑆𝐵𝐴𝐹#CC&*!	 Eq. (3) 
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McVicar (2018), where the difference of the VZA and VAA was less than 1° and 10°, 358 

respectively (see Table 4). Furthermore, to reduce the uncertainties introduced by factors, 359 

such as cloud cover, resampling, and aerosols, we introduced four additional matching 360 

conditions (See Table 4). The spatial distribution of the matching results (Fig. 4) shows only 361 

very limited regions in low latitudes were selected. 362 

 363 

c. Angular-adjusted LSR 364 

To address the limitation of the ray-matching method, which can only derive data pairs 365 

in low-latitude regions (Fig. 4), we employed the estimated BRDF kernel model parameters 366 

to estimate the angular-adjusted LSR of AHI at the MODIS observation angle. Because of 367 

the fixed observation angle of AHI, we selected a flat area covering a size of 0.3° × 0.3° as 368 

the evaluation area in this study (Fig. 5). The topography of the area is relatively simple, with 369 

a southeast to northwest aspect (Fig. S1). The land cover type is open shrubland based on 370 

MCD12Q1. Through visual inspection, we selected January 2 to 4, 2018, as the synthetic 371 

period of continuous clear skies. The angular-adjusted LSR was estimated by calculating 372 

the kernel value of the observation angle of MODIS/Terra and Aqua and intercomparison 373 

with MOD/MYD09GA.  374 

 375 

3. Results 376 
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3.1 Evaluation 377 

a.  Accuracy of atmospheric parameters and its impact on estimated LSR 378 

The inputted AOT (i.e. CAMSRA-EAC4 data) were consistent with in-situ 379 

observations (Fig. 6 and Table S1). Most sites exhibited low RMSE values (RMSE < 0.15), 380 

except urban locations such as Beijing, Taipei_CWB, and Mandalay_MTU. In contrast, 381 

the Lauder site in New Zealand (Liley and Forgan 2009) exhibited minimal AOT and the 382 

lowest RMSE. 383 

Regardless of the differences in AOT between in-situ observation and our inputs, the 384 

impact of the error in AOT on LSR was small (Fig. 7). In the results of the MYK site, where 385 

the AOT error is small, the r of all the bands is greater than 0.99, the RMSE is below 0.005, 386 

and all the data are closely distributed on both sides of the 1:1 line. Conversely, at the BEJ 387 

site, where the AOT error is larger, the r is greater than 0.94 for all six bands. However, the 388 

bias of AHI band 01 to 04 is larger than that of band 05 and 06. The majority of the points in 389 

these bands are concentrated around the 1:1 line, but certain values that are over- or under-390 

estimated. 391 

 392 

b. Ray-matching condition 393 

As a result of intercomparing ray-matching conditions over low latitude regions (Fig. 4), 394 

the estimated AHI LSR (post-SBAF adjustment) exhibits strong consistency with those of 395 
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MODIS, as indicated by a r exceeding 0.82, and most data points clustered around the one-396 

to-one line (Fig. 8). Table 6 presents statistics on land cover types for the data pairs used in 397 

the AHI-MODIS intercomparison in Fig. 8. Unlike the results for AHI-MODIS/Terra, the AHI-398 

MODIS/Aqua comparison shows two distinct clusters of scatter points across all bands 399 

except for Band 01. However, these clusters are distributed on both sides of the 1:1 line. 400 

Thus, AHI LSRs estimated in this study are consistent with those of MODIS over the 401 

geographic regions covered by the ray-matching.  402 

The relationships between AHI and MODIS LSR varied for each band. For Band 03 403 

(0.64 µm) and Band 04 (0.86 µm), which are of importance for vegetation monitoring, the 404 

regression slopes are close to one, ranging from 0.889 to 1.011. These bands also maintain 405 

high r between 0.923 to 0.978, demonstrating their strong linear relationship. The biases for 406 

these bands are minimal, within ±0.003. Similarly, the results for Band 01 (0.47 μm) and 407 

Band 05 (1.6 μm) also indicate a good agreement, with regression slopes ranging from 0.76 408 

to 1.084  and r between 0.82 and 0.945. The biases for these bands are slightly positive, 409 

between 0.003 and 0.02, indicating a tendency for the AHI LSR to be slightly higher than 410 

the MODIS LSR. Conversely, the regression slopes for Band 06 for both Terra and Aqua 411 

are lower at approximately 0.719. Particularly, Band 02 (0.51μm) exhibits the least 412 

consistency among all the bands. Furthermore, Band 02's linear regression slope for Terra 413 

is  low at 0.549, and inconsistent between Terra and Aqua. 414 



 

 

 

18  

 415 

c. Angular-adjusted LSR 416 

Without matching the observation condition (sun-target-sensor geometry), the AHI and 417 

MODIS LSR were not as consistent as when those were matched (Fig. 9). Direct comparison 418 

of MODIS LSR data with AHI LSR estimates—conducted without matching and BRDF 419 

adjustments, even if reveals a strong linear relationship in AHI Bands 03 and 04 (r > 0.78), 420 

and the linear regression coefficients are close to 1 (1.012 to 1.117), but there are twice as 421 

many RMSEs and bias as in the corresponding results of Fig. 8. Similarly in the results for 422 

the rest of the bands, this increased bias remains even though r > 0.5 and the slope of the 423 

linear regression near 1 (e.g. AHI-MODIS/Terra Band 05). The evaluation indexes of AHI-424 

MODIS/Terra and AHI-MODIS/Aqua in AHI Bands 01 and 02 are close to each other. 425 

Conversely, in the other spectral bands, the performance of AHI-MODIS/Aqua is somewhat 426 

inferior to that of AHI-MODIS/Terra, particularly in Band 06, which exhibits the highest RMSE 427 

at 0.072. 428 

The angular-adjusted LSR estimated using the BRDF information shows good linear 429 

relationship with MODIS LSR (Fig. 10), for all bands, with r exceeded 0.5. In the case of 430 

bands 03 and 04, the r was improving to over 0.89, meanwhile the regression slopes are 431 

close to one (0.904 to 1.169), demonstrating their strong consistency. Also, the bias for 432 

these bands are minimal, 0.007 for Band 03 , and 0.017 for Band 04. However, in Bands 01 433 
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and 02, the dynamic range is narrower due to the centralized data distribution and lower 434 

value domain. Even though r is greater than 0.733 for all bands except AHI-MODIS/Terra 435 

Band 01, the linear regression slope is low, ranging from 0.443 to 0.649. In Band 02 (green), 436 

even though the domain of values is small, a large bias (0.015) still occurs. Linear regression 437 

slopes for AHI bands 05 and 06 improved to over 0.56, and r exceeded 0.62, indicating a 438 

good consistency. In Bands 03-06, the angular-adjusted LSR computed under the Terra 439 

observational condition agrees better with the MODIS/Terra LSR than the corresponding 440 

MODIS/Aqua observational condition.  441 

 442 

3.2 Estimated AHI LSR 443 

The RGB image composited using LSR provides a better representation of the true 444 

color of the ground (Fig. 11). We generated cloud-free RGB images using 7 days of data 445 

from UTC 02:00 to 06:00 with a gamma value of 2.2. The LSR composite image (Fig. 11b) 446 

effectively removed the atmospheric haze and more clearly showed the ground surface than 447 

the TOA composite image (Fig. 11a). The LSR composite displays these regions relatively 448 

vividly, which is likely closer to the actual color of the terrain, particularly in the case of 449 

Australia's distinct red soils and desert landscapes. However, in areas with high VZA and 450 

SZA, the LSR composite image is reddish in color compared to the TOA composite image. 451 
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Time series of normalized difference vegetation index (NDVI) show clear seasonal 452 

pattern with overall larger NDVIs in LSR compared with TOA values (Fig. 12). In the 453 

Deciduous Needleleaf Forest site (FHK), there is a clear seasonal pattern with NDVI values 454 

peaking in the summer and declining towards the winter. The LSR NDVI shows a high 455 

amplitude in these seasonal peaks and troughs compared to the TOA NDVI. The deciduous 456 

broadleaf forest site (TKY) follows a similar seasonal trend as the needleleaf forest, with 457 

NDVI values rising during the growing season and falling during the deciduous season. The 458 

LSR NDVI peaks are higher than those from the TOA, and the seasonal changes are marked. 459 

For the open forest savanna site (AU_Dry), the NDVI values show little variation throughout 460 

the two years, with both the LSR and TOA reflectance NDVI relatively constant and close 461 

together. The seasonal fluctuations in NDVI values for evergreen broadleaf forests (YNF) 462 

were much more subdued. While LSR NDVI remained at a high value (0.8) throughout the 463 

year, TOA NDVI was lower and had slight fluctuations. 464 

 465 

4. Discussion 466 

4.1 Potential causes of uncertainty in LSR estimation and BRDF modeling  467 

a. Selection of atmospheric input variables 468 

We employed the CAMSRA-EAC4 dataset as the input for the 6SV model. Unlike the 469 

daily CAMS near-real-time dataset used by Lee et al. (2020) and Seong et al. (2020), the 470 
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CAMSRA-EAC4 provides improved temporal resolution from daily to 3 hourly. Consistency 471 

between CAMSRA-EAC4 and in-situ AOT data has also improved compared with the daily 472 

CAMS near-real-time dataset (Lee et al. 2022). In addition, the interpolated CAMSRA-EAC4 473 

based water vapor, ozone and AOT550 were also consistent those by AERONET 474 

measurements (Fig. S2). The r between CAMSRA-EAC4 and AERONET AOT exceeded 475 

0.82. For water vapor and ozone, this coefficient was even higher, surpassing 0.9. The 476 

global coverage of CAMSRA-EAC4 allows it to be used as an input for atmospheric 477 

corrections from other GEO satellites. Thus, our current selection of CAMSRA-EAC4 data 478 

as inputs of atmospheric parameters is one of the best available datasets if we aim to apply 479 

it to other GEO satellites. 480 

We developed an aerosol type map that categorizes aerosols into maritime and 481 

continental types using the CAMSRA-EAC4 dataset. This categorization offers new insights, 482 

helping bridge data gaps in current 6SV atmospheric correction research. In the 6SV RTM, 483 

continental aerosol types are classified into three components: dust-like (70%), water-484 

soluble (29%), and soot (1%). Similarly, urban aerosols are defined with the following 485 

components: 17% dust-like, 61% water-soluble, and 22% soot (Vermote et al. 2006). We 486 

classified black carbon and organic matter of CAMSRA-EAC4 as the soot and water-soluble 487 

components, respectively(Table 3). Since 84% of organic matter is water-soluble in 488 
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CAMSRA-EAC4(Inness et al. 2019), the remaining particles create discrepancies in 489 

classifying between continental and urban aerosol types. 490 

 491 

b. Performance of estimated LSR 492 

The ray-matching results revealed a strong linear relationship (all of r>0.78 in ray-493 

matching with MODIS; Fig. 8) underscores the strong consistency between the estimated 494 

AHI LSR and the MODIS LSR product. In particular, r is greater than 0.9 in both Band 03 495 

and 04, which is close to the evaluation results reported by Li et al. (2019). Compared to the 496 

results in the previous study on AHI-LEO sensor ray-matching (Yu and Wu 2016; Qin and 497 

McVicar 2018), even though we performed rigorous cloud screening, our result exhibited 498 

outliers (Fig. 8). Ray-matching is a common method used in sensor cross-calibration studies; 499 

therefore, its matching area encompasses land, oceans, and clouds. When applied ray-500 

matching to land surface product evaluation, the ocean and clouds become interferences. 501 

Moreover, because the homogeneity of the land is worse than that of the sea, it is more 502 

likely to be affected by geo-location errors. 503 

The differences between the Terra and Aqua LSRs stem from the different land covers 504 

of the corresponding matching areas. In the matching results of August 2018, the available 505 

matching area of AHI-MODIS/Terra mainly constitutes forests, while the matching area of 506 

AHI-MODIS/Aqua includes cropland and natural vegetation mosaics in addition to forests 507 
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(Table 6). Owing to the spectral properties of vegetation, this land cover difference was 508 

prominent in AHI Bands 02, 03, and 04 (Fig. 8). In AHI Band 02, the center wavelength of 509 

AHI is shorter than that of the corresponding band of MODIS (See Fig. 2), which is 510 

manifested by the lower LSR of AHI than that of MODIS in the results of AHI-MODIS/Terra. 511 

In Band 03, the highest density value in AHI-MODIS/Terra is lower than that of AHI-Aqua, 512 

and similarly in Band 04 AHI-MODIS/Terra is higher than that of AHI-MODIS/Aqua. 513 

Furthermore, the band and land cover dependency ray-matching results showed LSR 514 

discrepancies were found only in Band 02 over evergreen broadleaf and woody savannas 515 

among different land cover types (Fig. S4).  516 

 517 

c. Compensating the effect of different wavelength ranges of AHI and MODIS 518 

The application of SBAF effectively reduced differences between AHI and MODIS 519 

bands (Table 5). In AHI bands 01, 03, and 04, the incorporation of SBAF enhances both the 520 

slope of the linear regression and the r, but bias did not change significantly. AHI band 05 521 

has a slight improvement in r (from 0.879 to 0.892), but bias decreases from 0.001 to -0.012, 522 

and the LSR of AHI is higher than the adjusted MODIS LSR. Owing to the AHI’s band 02 523 

center wavelength of which near towards the blue, the application of SBAF exacerbates the 524 

discrepancy between the two datasets, from r from 0.836 to 0.801. This result aligns with 525 

the findings presented in Qin and McVicar (2018). 526 
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 527 

d. BRDF estimation and angular-adjusted LSR 528 

The significance of the BRDF effect becomes particularly pronounced when comparing 529 

the AHI with the MODIS LSR data, particularly only simultaneously without BRDF correction 530 

(see Section 3.1.b). Notably, our BRDF-correction approach the r and linear regression 531 

slope for the Angular-adjusted LSR under MODIS observation conditions, while concurrently 532 

reducing bias. However, the inherent limitations of AHI as a single-angle sensor, unable to 533 

capture multi-angular surface observations, necessitate a nuanced consideration of hillslope 534 

effects on AHI's BRDF estimations, as underscored by Matsuoka et al. (2016). This limitation 535 

is evident in the results presented in Fig. 10, where the observation angles of Terra (VAA 536 

≈ 280°) and Aqua (VAA ≈ 85°) lead to differences in the results. In the case of our 537 

validation area (Fig. 5), the slope extends from northwest to southeast(Fig. S1). Terra and 538 

Aqua observe the slope from different directions, while AHI and MODIS/Terra observed the 539 

slope from similar directions. Therefore, LSR of AHI-MODIS/Terra achieves better 540 

consistency compared with that of AHI-MODIS/Aqua.  541 

Due to the difference in observational modes between LEO and GEO, there is a 542 

difference between the LEO-based BRDF information and the GEO-based BRDF 543 

information. We used MODIS BRDF product to evaluate our BRDF parameter, as detailed 544 

in Fig. S5. By employing MODIS BRDF parameters from the MCD43A1 product, we 545 
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computed the angular-adjusted LSR corresponding to AHI observation angles. The resulting 546 

scatter distributions and evaluation metrics across various bands closely align with those 547 

observed in Fig. 10. 548 

 549 

e. Different approaches to retrieve LSR of GEO satellite data 550 

There are two primary methods for estimation of LSR of GEO satellite data. The first 551 

method is the traditional RTM approach, which requires additional atmospheric data as 552 

inputs, adopted in this study. The second involves simultaneously estimating AOT and LSR 553 

without relying on external atmospheric data (e.g. MAIAC; Li et al. (2019) and a Coupled 554 

RTM (Ma et al. 2020)). Traditional RTM approaches have been used for decades (MODIS, 555 

VIIRS) due to simplicity and computational efficiency. On the other hand, methods based on 556 

simultaneously estimating AOT and LSR have been applied widely in recent years 557 

(Lyapustin et al. 2018, Li et al. 2019). Further intercomparison of outputs based on these 558 

two approaches is needed to quantify the uncertainties caused by different approaches. 559 

 560 

4.2 Applicability to other 3rd generation GEO sensors 561 

Our methodology for calculating the LSR is designed to be globally applicable and can 562 

be adapted for use with other GEO satellites. By simply modifying the SRFs and observation 563 

angles to match those of different satellites, this method offers a versatile framework for 564 
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extending the LSR calculations to a broader range of satellite systems. Upon the release of 565 

this method and its corresponding code, creating a hyper-temporal and high-spatial 566 

resolution global dataset that integrates data from Himawari-8/9 and other geostationary 567 

satellites would become feasible. This facilitated the development of a homogeneous global 568 

dataset using a uniform processing algorithm.  569 

We showed some practical evidence to support the potential applicability of our 570 

algorithm for application to other GEO satellites. First, evaluation of CAMSRA-EAC4 data 571 

using in-situ AOT revealed remarkable consistency. Therefore, CAMSRA-EAC4 data are 572 

reasonable for global application. Second, essential atmospheric input parameters obtained 573 

by CAMSRA-EAC4 data can produce similar performance compared with MODIS products. 574 

We performed LSR estimation for MOD02 (MODIS TOA reflectance product) using 575 

CAMSRA-EAC4 data and compared the results with those obtained using MOD09 (MODIS 576 

LSR product) in Fig. S6, the estimated LSR by MODIS using our algorithm with CAMSRA-577 

EAC4 data produced similar values with MODIS LSR product. Third, SBAF effectively 578 

reduced inter-sensor variability caused by response functions (Table 5 and see discussion 579 

4.1.a). Lastly, leveraging globally observable sensors, such as MODIS and VIIRS, as 580 

intermediaries facilitates the cross-calibration of various geostationary satellites, thereby 581 

enriching the quality and comparability of the data collected. 582 

 583 
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4.3 Limitations and Future 584 

First, although the AOT of CAMSRA-EAC4 closely matches to the in-situ AOT, AOT 585 

errors continue to persist owing to high pollution levels and biomass burning (Hoque et al. 586 

2020). Moreover, because only two aerosol models were used in this study, limitations exist 587 

in urban or desert aerosols (Shen et al. 2019). Additionally, the spatial resolution of 588 

CAMSRA-EAC4 (0.75°) is much coarser than that of AHI (about 0.01°). Meanwhile, the 589 

current twice-yearly update frequency of the CAMSRA-EAC4 data presents a timeliness 590 

challenge that needs to be addressed. The Himawari-8 hourly AOT data provided by JAXA 591 

and the ECMWF Reanalysis v5 (ERA5) dataset can be used as alternative data owing to its 592 

real-time capability. 593 

Second, evaluation by angular-adjusted LSR in mid-latitude region is still not a direct 594 

evaluation. A potential method involves exploring ray-matching using LEO satellites capable 595 

of capturing a higher VZA. Current off-nadir sensors, such as GCOM-C/SGLI (Imaoka et al. 596 

2010) and Terra/MISR (Diner et al. 1998), diverge from nadir sensors (e.g. MODIS,VIIRS). 597 

Their unique design, featuring both forward and backward tilt angles, allows them to capture 598 

different observation angles compared to conventional nadir observations. 599 

Third, this study fails to adequately address topographic correction, particularly in 600 

challenging terrains, such as mountainous regions. These areas are often affected by 601 
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geolocation errors and require precise orthorectification methods for maintaining high 602 

geometric accuracy, as mentioned by Matsuoka and Yoshioka (2023). 603 

Lastly, challenges persist in the edge regions where the VZA and SZA exceed 70–80°. 604 

As evidenced in the results section and supported by studies such as those by Kim et al. 605 

(2022), these edge regions exhibit a "reddening effect" and are susceptible to atmospheric 606 

over-correction. In addition, in these regions, the method used for interpolating LUTs affects 607 

the accuracy of LSR estimation (Lee et al. 2015; Lee et al. 2020). 608 

 609 

 610 

5. Conclusion 611 

In this study, we formulated and implemented an algorithm for estimating the LSR and 612 

angular-adjusted LSR from the Himawari-8/9 AHI data. The evaluation of the proposed 613 

method was inter-compared using LSR products from the MODIS sensors onboard the Terra 614 

and Aqua satellites. This algorithm encompasses the estimation of LSR using the 6SV RTM 615 

with CAMSRA-EAC4 data, and the derivation of angular-adjusted LSR based on the BRDF 616 

parameters estimated using a kernel-driven BRDF model. 617 

During the evaluation process, we conducted a comprehensive evaluation using ray-618 

matching, angular-adjusted AHI LSR, and angular-adjusted MODIS LSR. Our results show 619 

that the LSR values estimated using our proposed algorithm maintain a high level of 620 
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agreement at both low and mid-latitudes, thus providing researchers with a high-frequency 621 

AHI LSR product. In addition to this, we evaluated the interpolated CAMSRA-EAC4 data 622 

using in-situ AOT and estimated the LSR using these two datasets to assess the uncertainty 623 

in the estimates. The uncertainty introduced into the LSR estimation process was lower than 624 

that observed in previous studies. This finding underscores the potential of CAMSRA-625 

EAC4's high temporal resolution for use in GEO satellite LSR estimation studies. 626 

In conclusion, our study not only successfully estimated the Himawari-8/9 AHI LSR but 627 

also presents a promising algorithm that can potentially be adapted for LSR estimation 628 

studies involving other GEO satellites, such as FY-4A AGRI and GOES ABI. Finally, we 629 

have publicly availed the code and data from this study; our data contributes to global-scale 630 

terrestrial monitoring at higher time scales. 631 

  632 
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accessed at ftp://modis.cr.chiba-u.ac.jp/ichii/SEND_NEW/H8AHI_SR/. The code used for 636 

the analysis is available on GitHub at https://github.com/Lw46/  637 

 638 

 639 

Acknowledgments 640 

This study was supported by JSPS Core-to-Core Program (Grant Number: 641 

JPJSCCA20220008), JSPS KAKENHI (Grant Number: JP20H04320, JP21K12227, 642 

JP22H03727, JP22H05004, 20K20487, JP21K05669, 23KJ0304), JST SPRING (Grant 643 

Number JPMJSP2109), MEXT Virtual Laboratory (VL) project, the Environment Research 644 

and Technology Development Fund (JPMEERF20215005) of the Environmental 645 

Restoration and Conservation Agency of Japan and the JAXA 3rd research announcement 646 

on the Earth Observations (grant number 19RT000351).647 



 0 

Appendix 648 

RTK-LSR Kernel 649 

Ross-Thick: 650 

 
𝐾𝑣𝑜𝑙 = 	

L𝜋2 − 	𝜉P 𝑐𝑜𝑠𝜉 + 𝑠𝑖𝑛𝜉
𝑐𝑜𝑠𝜃& + 	𝑐𝑜𝑠𝜃'

−	
𝜋
4 

Eq. A1 

Where, 651 

𝑐𝑜𝑠𝜉 = 	𝑐𝑜𝑠𝜃& ∙ 𝑐𝑜𝑠𝜃' + 	𝑠𝑖𝑛𝜃& ∙ 𝑠𝑖𝑛𝜃' ∙ cos(φ0 − φ1) 652 

 653 

Li-Sparse- Reciprocal: 654 

 𝐾𝑔𝑒𝑜 = 	𝑂 − 	𝑠𝑒𝑐𝜃′& − 𝑠𝑒𝑐𝜃′' +	
1
2 ∙ (1 + 𝑐𝑜𝑠𝜉′) ∙ 	𝑠𝑒𝑐𝜃′&

∙ 𝑠𝑒𝑐𝜃′' 

Eq. A2 

Where, 655 

𝑂 =
1
𝜋 	 ∙ (𝑡 − 𝑠𝑖𝑛𝑡 ∙ 𝑐𝑜𝑠𝑡) ∙ (𝑠𝑒𝑐𝜃&

D + 𝑠𝑒𝑐𝜃'D)	 656 

𝑐𝑜𝑠𝑡 =
ℎ
𝑏 ∙
X𝐷E + (𝑡𝑎𝑛𝜃& ∙ 𝑡𝑎𝑛𝜃' ∙ 𝑠𝑖𝑛(φ0 − φ1))E

	𝑠𝑒𝑐𝜃&D + 𝑠	𝑠𝑒𝑐𝜃'D
 657 

𝐷 = X𝑡𝑎𝑛E𝜃& + 𝑡𝑎𝑛E𝜃' − 2 ∙ 𝑡𝑎𝑛𝜃& ∙ 𝑡𝑎𝑛𝜃' ∙ 𝑐𝑜𝑠(φ0 − φ1) 658 

𝑐𝑜𝑠𝜉D = 𝑐𝑜𝑠𝜃′& ∙ 𝑐𝑜𝑠𝜃′' + 𝑠𝑖𝑛𝜃′& ∙ 𝑠𝑖𝑛𝜃′' ∙ 𝑐𝑜𝑠(φ0 − φ1) 659 

𝜃′& = 𝑡𝑎𝑛7F Z
𝑏
𝑟 ∙ 𝑡𝑎𝑛𝜃&\	, 𝜃

′
' = 𝑡𝑎𝑛7F Z

𝑏
𝑟 ∙ 𝑡𝑎𝑛𝜃'\ 660 

h/b = 2.0 , b/r =1.0.  661 
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 914 
Fig. 1 Observation region for CEReS Himawari/AHI gridded data. The red circles in the 915 

figure represent the AHI view zenith angles, and the central star symbol represents the 916 

Himawari-8 AHI sub-satellite point. The background land cover data is from MCD12Q1. 917 

AHI, Advanced Himawari Imager; CEReS, Center for Environmental Remote Sensing 918 
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 922 

Fig. 2 Spectral response functions of AHI (solid line) and MODIS (dashed line), green 923 

vegetation spectral curve (green line). 924 

AHI, Advanced Himawari Imager; MODIS, Moderate Resolution Imaging 925 

Spectroradiometer; SRF, Spectral Response Functions 926 
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 928 

 929 

Fig. 3 Flowchart of the study. 930 

AHI, Advanced Himawari Imager; BRDF, Bidirectional Reflectance Distribution Function; 931 

CEReS, Center for Environmental Remote Sensing; LSR, Land Surface Reflectance; LUT, 932 

Look-up Table; RTM, Radiative transfer models 933 
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 935 
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 937 

 938 

Fig. 4 Spatial distribution of areas where AHI-MODIS sensor observation conditions 939 

match. The light blue and orange regions indicate the matching regions of AHI-940 

MODIS/Terra and AHI-MODIS/Aqua, respectively. 941 

AHI, Advanced Himawari Imager; MODIS, Moderate Resolution Imaging 942 

Spectroradiometer 943 
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 949 

Fig. 5 Location and image of angular correction LSR estimation area.  950 

LSR, Land Surface Reflectance 951 
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 954 

 955 

 956 
Fig. 6 Spatial distribution of RMSE of observation sites for AOT used in the validation of 957 

CAMSRA-EAC4 data. The values above each site name indicate the RMSE calculated 958 

from the comparison between CAMSRA-EAC4 data and site observation data over 2018 959 

and 2019. 960 

AERONET, Aerosol Robotic Network; RMSE, root mean square error. 961 
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 964 

 965 

 966 

Fig. 7 Scatter plot of LSR estimated using in-situ AOT (x-axis) and CAMSRA-EAC4 AOT 967 

(y-axis) in Beijing and Miyako. The red dashed line and black soil line represent the 968 

regression line and 1:1 line, respectively. r, RMSE, and bias are the correlation coefficient, 969 

root-mean-square error, and bias, respectively. The density color bar, ranging from blue to 970 

red, denotes the concentration of data points. Bias is calculated as AHI LSR – MODIS 971 

LSR.  972 

AOT: aerosol optical thickness; CAMSRA-EAC4: Copernicus Atmosphere Monitoring 973 

Service Reanalysis ECMWF Atmospheric Composition Reanalysis; LSR: Land Surface 974 

Reflectance. 975 

 976 
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 977 

 978 

Fig. 8 Scatter plots of MODIS LSR (x-axis) and AHI estimated LSR (y-axis). All matching 979 

points were obtained in August 2018. The red dashed line represents the regression line, 980 

and the black solid line represents the 1:1 line. r, RMSE, and bias are the correlation 981 

coefficient, root-mean-square error, and bias, respectively. The density color bar, ranging 982 

from blue to red, denotes the concentration of data points. Bias is calculated as AHI LSR – 983 

MODIS LSR. 984 

AHI, Advanced Himawari Imager; LSR, Land Surface Reflectance; MODIS, Moderate 985 

Resolution Imaging Spectroradiometer; RMSE; root mean square error. 986 

 987 
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 988 

Fig. 9 Scatter plots of MODIS LSR (x-axis) and AHI LSR (y-axis) directly inter-comparison. 989 

The red dashed line and black soil line represent the regression line and 1:1 line, 990 

respectively. r, RMSE, and bias are the correlation coefficient, root-mean-square error, 991 

and bias, respectively. The density color bar, ranging from blue to red, denotes the 992 

concentration of data points. Bias is calculated as AHI LSR – MODIS LSR. Bias is 993 

calculated by AHI LSR – MODIS LSR. 994 
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 996 

Fig. 10 Scatter plots of MODIS LSR (x-axis) and AHI angular-adjusted LSR (y-axis). The 997 

synthesis period was 2-4 January 2018 and the MODIS data acquisition date was 3 998 

January 2018. The red dashed line and black soil line represent the regression line and 999 

1:1 line, respectively. r, RMSE, and bias are the correlation coefficient, root-mean-square 1000 

error, and bias, respectively. The density color bar, ranging from blue to red, denotes the 1001 

concentration of data points. Bias is calculated as AHI LSR – MODIS LSR. Bias is 1002 

calculated by AHI LSR – MODIS LSR. 1003 
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 1010 
Fig. 11 Comparison of Himawari-8 AHI RGB compositing images using (a) top-of- 1011 

atmosphere reflectance (taken at 0300 UTC on May 1, 2019) and (b) Land Surface 1012 

Reflectance  (May 1-7, 2019). AHI, Advanced Himawari Imager 1013 



 0 

 1014 

 1015 

Fig. 12 NDVI time series at four sites in 2018 and 2019: TKY (36.15°N, 137.42°E); FHK 1016 

(35.44°N, 138.76°E); YNF (26.75°N, 128.21°E); AU_Dry (15.26°S, 132.37°E). Orange and 1017 

green represent the TOA reflectance and LSR, respectively. 1018 

NDVI, Normalized Difference Vegetation Index; LSR, Land Surface Reflectance; EVI2, 1019 

TOA, top of atmosphere 1020 
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Table 1 Specifications for the visible to short wave infrared bands of CEReS gridded 1023 

Himawari data 1024 

 1025 

CEReS 

Gridded 
JMA AHI Band 

Spatial  

Resolution 

Temporal 

Resolution 

EXT 01 Band 03 (0.64μm) 0.005° 

10 minutes 

VIS 01 Band 01 (0.47μm) 

0.01° VIS 02 Band 02 (0.51μm) 

VIS 03 Band 04 (0.86μm) 

SIR 01 Band 05 (1.6μm) 
0.02° 

SIR 02 Band 06 (2.3μm) 

 1026 

AHI, Advanced Himawari Imager; CEReS, Center for Environmental Remote Sensing; 1027 

JMA, Japan Meteorological Agency; LSR, Land Surface Reflectance 1028 
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 1032 

Table 2 Input parameters of 6SV RTM and step size of look-up table. 1033 

 1034 

Input Parameter Min Max Step Size 

Solar Zenith Angle [°] 0 80 5 

View Zenith Angle [°] 0 80 5 

Relative Azimuth Angle [°] 0 180 10 

Total precipitable water [g /cm2] 0 7 1 

Ozone [atm – cm] 0.2 0.4 0.05 

Altitude [km] 0 8 2 

Aerosol Optical Thickness 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6 

0.8, 1.0, 1.5, 2.0 

Aerosol type Continental, Maritime 

 1035 

 1036 

 1037 
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 1039 

Table 3 Correspondence of aerosol components between CAMSRA-EAC4 and 6SV 1040 

models.  1041 

 1042 

CAMSRA-EAC4 aerosol component 6SV Model aerosol component 

Black carbon   Soot component 

Organic matter Water soluble  

Sulphate Water soluble 

Dust Dust-like 

Sea salt aerosol Oceanic 

 1043 

6SV, Second Simulation of a Satellite Signal in the Solar Spectrum Vector; CAMSRA-1044 

EAC4, the Copernicus Atmosphere Monitoring Service Reanalysis ECMWF Atmospheric 1045 

Composition Reanalysis; 1046 

 1047 

 1048 

  1049 
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 1050 

Table 4 Ray-matching filtering criteria and auxiliary filtering criteria 1051 

 1052 

Screening Criteria Threshold 

Observation time | MODIS – AHI | < 10 min 

View zenith angle | MODIS – AHI | < 1° 

View azimuth angle | MODIS – AHI | < 10° 

AOT CAMS AOT < 0.1  

Cloud mask No cloudy pixel surrounding 

Water mask No water bodies surrounding 

Land cover Without wetland 

 1053 

AHI, Advanced Himawari Imager; AOT, Aerosol Optical Thickness; CAMSRA-EAC4, the 1054 

Copernicus Atmosphere Monitoring Service Reanalysis ECMWF Atmospheric 1055 

Composition Reanalysis; 1056 

 1057 

  1058 
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 1059 

Table 5 Comparison of evaluation indicators before and after the applying of SBAF for AHI-1060 

MODIS/Terra and AHI-MODIS/Aqua results. 1061 

SBAF, Spectral Band Adjustment Factors 1062 

 Band 01 Band 02 Band 03 Band 04 Band 05 

 Before After Before After Before After Before After Before After 

Slope 0.904 0.921 0.895 0.756 1.121 1.042 0.941 0.938 0.788 0.826 

Offset 0.002 0.003 -0.021 -0.014 -0.008 -0.002 0.021 0.017 0.049 0.051 

r 0.841 0.872 0.836 0.801 0.942 0.959 0.895 0.921 0.879 0.892 

Bias -0.001 0.001 -0.032 -0.032 -0.001 0.001 0.011 0.007 -0.001 0.012 

SBAF, Spectral Band Adjustment Factors 1063 

 1064 

Table 6 Land cover statistics for clear sky pixels between AHI-MODIS ray-matching area, 1065 

in August 2018. Land cover data from MCD12Q1. 1066 

 1067 

  1068 

 Evergreen 
broadleaf forest 

Woody 
Savannas 

Savannas Grasslands Cropland/Natural 
vegetation mosaic 

Urban/ 
Built-up 

Terra 536 172 1 20 3 - 

Aqua 274 14 76 6 358 21 
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 1069 

Supplement 1070 

 1071 

 1072 

Fig. S1 Digital elevation map (DEM) of the area shown in Fig. 5 with directions of 1073 

observation for the three satellites, Himawari, Terra, and Aqua. 1074 

 1075 
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 1076 

Fig. S2 Scatterplot between in-situ data for all site of AERONET (x-axis) and CAMSRA-1077 

EAC4 (y-axis). (a) AOT550, (b) Water vapor, (c) Ozone. 1078 

 1079 

Fig. S3 Scatter plot of three cases of AHI NDVI vs MODIS NDVI, Ray-matching (Fig.8), 1080 

Angular-adjusted (Fig.9) and directly compare (Fig.10). 1081 

 1082 
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 1083 

Fig. S4 Scatter plots of MODIS LSR (x-axis) and AHI estimated LSR (y-axis) for four 1084 

dominant land cover types. All matching points were obtained in August 2018.  1085 
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 1086 

 1087 

 1088 

Fig. S5 Scatter plots of MODIS angular corrected LSR by MCD43A1 (x-axis) and AHI LSR 1089 

(y-axis). The AHI data acquisition date was 3 January 2018. 1090 
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 1091 

Fig. S6 Scatter plots of MODIS LSR MOD09 (x-axis) and LSR by MOD02 with CAMSRA-1092 

EAC4 data input and 6SV RTM (y-axis).  1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 
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Table S1 Evaluation indicators for the AERONET and SKYNET sites in this study 1102 

Site Network Slope Intercept Bias RMSE Correlation coefficient 

Ussuriysk AERONET 0.87 0.01 -0.011 0.069 0.842 

Lamearoth AERONET 0.38 0.02 -0.018 0.034 0.437 

Dalanzadgad AERONET 0.83 0.06 0.051 0.091 0.659 

Sonora AERONET 0.67 0.06 0.035 0.069 0.473 

Jambi AERONET 1.06 0.05 0.066 0.094 0.901 

Aspendale AERONET 0.57 0.01 -0.014 0.036 0.424 

Manila_ Obs AERONET 0.62 0.04 -0.003 0.071 0.602 

USM Penang AERONET 0.66 0.11 0.037 0.091 0.668 

Mandalay_MTU AERONET 0.67 0.01 -0.162 0.227 0.836 

Makersar AERONET 0.46 0.09 -0.008 0.057 0.59 

Dibrugarh AERONET 0.73 0.07 -0.022 0.12 0.831 

Taipei_CWB AERONET 0.45 0.15 -0.01 0.193 0.736 

Lake Argyle AERONET 0.5 0.02 -0.045 0.081 0.495 

Beijing AERONET 0.88 0.18 0.134 0.225 0.359 

Birdsville AERONET 0.06 0.05 -0.042 0.067 0.043 

Sendai SKYNET 0.85 0.03 -0.001 0.079 0.724 

Takayama SKYNET 0.95 0.02 0.016 0.047 0.812 

Kasuga SKYNET 0.89 0.02 -0.005 0.071 0.866 

Lauder SKYNET 0.73 0.01 0.002 0.019 0.692 

Tsukuba SKYNET 0.89 0.02 0.005 0.065 0.847 

Chiba SKYNET 0.84 0.04 0.011 0.062 0.843 

Phimai SKYNET 1.09 -0.06 -0.03 0.118 0.878 

Miyako SKYNET 0.82 0.04 -0.002 0.048 0.952 

 1103 


