

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is DOI:10.2151/jmsj.2025-013 J-STAGE Advance published date: January 15, 2025 The final manuscript after publication will replace the preliminary version at the above DOI once it is available.

1	Seasonality in the ENSO-independent influence
2	of tropical Indian Ocean sea surface
3	temperature anomalies on western North Pacific
4	tropical cyclone genesis
5	
6	Jinjie SONG ¹
7 8 9 10 11	Nanjing Joint Institute for Atmospheric Sciences, Chinese Academy of Meteorological Sciences, Nanjing, China State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
12	Philip J. KLOTZBACH
13 14 15	Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
16	Yi–Fan WANG
17 18 19 20 21	Nanjing Joint Institute for Atmospheric Sciences, Chinese Academy of Meteorological Sciences, Nanjing, China State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
22	and
23	Yihong DUAN
24 25 26	State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
20 27 28	December 30, 2024
29 30 31 32 33	1) Corresponding author: Jinjie Song, Editorial Office, Nanjing Joint Institute for Atmospheric Sciences, 8 Yushun Road, Nanjing, China, 210041 Email: <u>songjinjie@qq.com</u>

34	Abstract
35	This study investigates the seasonality in the influence of tropical Indian Ocean
36	(IO) sea surface temperature (SST) anomalies independent of El Niño-Southern
37	Oscillation (ENSO) on tropical cyclone (TC) genesis over the western North Pacific
38	(WNP) from 1979–2022. We focus on the dominant pattern of Indian Ocean SST
39	variability - the Indian Ocean basin mode (IOBM) independent of ENSO. We
40	separate the WNP TC-active period into the early season April–June (AMJ), the peak
41	season July-September (JAS) and the late season October-December (OND). When
42	the preceding and simultaneous influence of ENSO is removed, the correlation
43	between WNP TC frequency and the ENSO-independent IOBM has considerable
44	seasonality, with a significant correlation during JAS but an insignificant correlation
45	during AMJ and OND. In warm ENSO-independent IOBM phases, WNP TC genesis
46	is significantly suppressed over the region of 15°–25°N and 140°–155°E during JAS,
47	while there are insignificant changes in WNP TC genesis during AMJ and OND.
48	In a warm IOBM independent of ENSO, significant TC genesis reductions during
49	JAS are primarily driven by significantly decreased 850-hPa relative vorticity and
50	significantly increased 500-hPa vertical velocity (e.g., downward motion), while
51	insignificant TC genesis changes during AMJ and OND are consistent with weak
52	environmental changes over the WNP. These features can be linked to the seasonality
53	in Indo-Pacific large-scale circulation anomalies induced by the ENSO-independent
54	IOBM. In analogy to the mechanism of the Indo-western Pacific ocean capacitor
55	mode, warm IO SSTAs independent of ENSO can lead to an anomalous low-level

56	anticyclone over the WNP during both AMJ and JAS, with their remote influence
57	dissipating during OND. The ENSO-independent warm IO-driven anomalous WNP
58	anticyclone is weak and insignificant during AMJ but is strong and significant during
59	JAS, likely due to a smaller amplitude of IOBM-induced SSTAs independent of
60	ENSO during AMJ than during JAS.
61	
62	Keywords: tropical cyclone, western North Pacific, tropical Indian Ocean
63	

65 **1. Introduction**

66	Tropical cyclones (TCs) are one of the most severe natural disasters, often
67	associated with strong winds, heavy rainfall, and storm surge that can cause
68	significant societal and economic damage in coastal and adjacent inland regions. The
69	western North Pacific (WNP) is the most TC-active basin worldwide, where
70	approximately one-third of global TCs form on an annually-averaged basis (Lee et al.,
71	2012). Given increased concern about the impact of climate change, additional focus
72	has been paid to WNP TC activity changes on interannual timescales (Walsh et al.,
73	2016).
74	El Niño-Southern Oscillation (ENSO) has been considered to be the primary
75	mode influencing interannual changes in WNP TC genesis (Emanuel, 2018). There
76	are two major ENSO flavors: eastern Pacific (EP) ENSO and central Pacific (CP)
77	ENSO, with peak anomalous sea surface warming/cooling centered over the eastern
78	equatorial Pacific and the central equatorial Pacific, respectively (e.g., Timmermann
79	et al., 2018). In general, EP El Niño (EP La Niña) leads to a significant southeastward
80	(northwestward) shift in average WNP TC genesis location (e.g., Lander, 1994; Chan,
81	1985, 2000; Saunders et al., 2000; Wang and Chan, 2002; Li and Zhou, 2012), while
82	CP El Niño (CP La Niña) results in an almost basinwide enhancement (suppression)
83	of WNP TC genesis (e.g., Chen and Tam, 2010; Kim et al., 2011; Wang et al., 2013;
84	Li and Wang, 2014; Zhang et al., 2015; Patricola et al., 2018). These ENSO-induced
85	changes in TC genesis can be explained by different large-scale anomalous low-level
86	circulations over the WNP, with a Gill response to the maximum oceanic

87	warming/cooling occurring over the eastern or central equatorial Pacific (Gill, 1980).
88	The Pacific meridional mode (PMM) is another climate mode over the tropical
89	Pacific that influences WNP TC genesis (e.g., Zhang et al., 2016; Gao et al., 2018;
90	Gao et al., 2020; Zhang et al., 2020; Wu et al., 2020; Fu et al., 2023). During positive
91	(negative) phases of the PMM, TC genesis is generally enhanced (suppressed) over
92	almost the entire WNP, mainly because of an anomalous basinwide low-level
93	cyclonic (anticyclonic) circulation. Given the strong relationship between the PMM
94	and CP ENSO (Stuecker, 2018), there is still debate on the significance of the PMM-
95	TC relationship independent of ENSO (e.g., Qian et al., 2019; Takaya et al., 2019;
96	Zhang et al., 2020; Wu et al., 2020).
97	There are also remote regions that have been shown to modulate interannual
98	changes in WNP TC genesis. Among these are sea surface temperature (SST)
99	anomalies (SSTAs) over the Indian Ocean (IO) (e.g., Du et al., 2011; Zhan et al.,
100	2011a; Zhan et al., 2011b; Tao et al., 2012; Kosaka et al., 2013; Zhan et al., 2014; Ha
101	et al., 2015; Zheng et al., 2016; Takaya et al., 2018; Ueda et al., 2018; Huangfu et al.,
102	2018; Zhao et al., 2019; Huangfu et al., 2019). Several of these studies examined TC
103	genesis anomalies in positive and negative IO SSTA years without excluding
104	concurrent ENSO events (Zhan et al., 2011a; Zhan et al., 2011b; Tao et al., 2012;
105	Zheng et al., 2016). Given the strong relationship between ENSO and IO SSTAs (e.g.,
106	Yang et al., 2007; Xie et al., 2009), other studies have either investigated the sole
107	influence of IO SSTAs on TC genesis after removing the simultaneous ENSO effect
108	(Zhan et al., 2014; Ha et al., 2015; Huangfu et al., 2018) or have focused on the

109	relationship between IO SSTAs and TC activity in ENSO-decaying years (Du et al.,
110	2011; Kosaka et al., 2013; Takaya et al., 2018; Ueda et al., 2018; Zhao et al., 2019;
111	Huangfu et al., 2019). Regardless of analysis method, the consensus is that IO
112	warming (cooling) can induce a basinwide suppression (enhancement) of TC genesis
113	over the WNP. The Indo-western Pacific Ocean capacitor mechanism (IPOC; e.g.,
114	Xie et al., 2009; Xie et al., 2016) is often used to link SSTAs over the IO and
115	environmental changes over the WNP. Tropical IO warming excites a warm
116	equatorial Kelvin wave that moves eastward into the equatorial western Pacific. This
117	wave induces surface convergence on the equator and surface divergence off the
118	equator, triggering a large-scale anomalous low-level anticyclone over the WNP. This
119	anticyclone and its associated descending motion can suppress WNP TC activity.
120	Recently, several studies have noted the seasonality of WNP TC genesis changes,
121	modulated by different ENSO flavors. Wang et al. (2013) reported that EP ENSO
122	contributed to an obvious southeast-northwest dipole pattern of WNP TC genesis
123	anomalies only during July-September (JAS). Significant EP ENSO-induced TC
124	genesis changes mainly occurred over the southern WNP during April-June (AMJ)
125	and over the western WNP during October-December (OND). There were no
126	significant CP ENSO-induced TC genesis changes over most of the WNP during
127	AMJ, while CP ENSO strongly influenced WNP TC genesis during JAS and OND.
128	By comparison, Choi et al. (2019) showed that EP El Niño caused a southward
129	(southeastward) migration of WNP TC genesis during boreal summer (autumn). CP
100	

131	summer, while it led to significant increases (decreases) in TC genesis over the
132	western (eastern) WNP during boreal autumn. Furthermore, Wang et al. (2013) and
133	Choi et al. (2019) both concluded that the seasonality in the relationship between
134	ENSO and WNP TC genesis was primarily a result of seasonal changes in the ENSO
135	background state.
136	Fu et al. (2023) found that the relationship between the PMM and WNP TC
137	genesis was seasonally-dependent, due to different responses of WNP environmental
138	conditions to PMM-related SST changes and different climatological locations for the
139	TC main development region (MDR). During January–July, positive PMM-related
140	SST warming in the subtropical North Pacific predominantly induced TC-favoring
141	(TC-suppressing) conditions over the eastern (western) WNP. There was a significant
142	PMM-TC frequency correlation during January-April, given that the TC MDR is
143	limited over the eastern WNP. By contrast, there was only a weak PMM-TC
144	frequency correlation during May-July, because the TC MDR during those months
145	spanned the entire tropical WNP. During August-December, positive PMM-related
146	SST cooling over the equatorial eastern Pacific resulted in a basinwide WNP TC-
147	favorable environment, leading to a significant PMM-TC frequency correlation.
148	Like the PMM, the dominant mode of IO SST variability often develops in boreal
149	winter, peaks in the following spring, and persists into summer (e.g., Klein
150	et al., 1999; Alexander et al., 2002; Li et al., 2003; Yang et al., 2007; Xie et al., 2016).
151	This annual cycle suggests that the influence of IO SSTAs on WNP TC genesis may
152	vary with season. Some studies (e.g., Du et al., 2011; Zhan et al., 2011a; Zhan et al.,

153	2011b; Tao et al., 2012; Zhan et al., 2014; Ha et al., 2015; Zheng et al., 2016;
154	Huangfu et al., 2018; Huangfu et al., 2019) have considered IO SSTAs as a
155	seasonally-consistent forcing, with most attention focusing on the effect of IO SSTAs
156	on WNP TC genesis during the peak TC season or the full TC season. By comparison,
157	other studies (Kosaka et al., 2013; Takaya et al., 2018; Ueda et al., 2018; Zhao et al.,
158	2019) have noticed the seasonality in the relationship between IO SSTAs and WNP
159	TC frequency, with a significant (insignificant) warm IO-induced suppression of TC
160	activity before (after) the early boreal winter. Ueda et al. (2018) further linked this
161	seasonality to the weakening of an anomalous anticyclone over the western Pacific
162	that was anchored with positive SSTAs over the IO after September.
163	Given that all these studies focused on ENSO decaying years, the seasonality in
164	the relationship between IO SSTAs and WNP TC activity is likely to be influenced by
165	the evolutionary characteristics of ENSO. However, IO SSTAs can modulate the
166	WNP environment without the occurrence of ENSO. By performing a numerical
167	experiment without ENSO-related influences, Kosaka et al. (2013) found an internal
168	atmosphere-ocean coupled IPOC mode in the Indo-Pacific region. Some recent
169	studies (e.g., Takaya et al., 2020; Zhou et al., 2021; Du et al., 2022) also suggested
170	that the Indian Ocean dipole (IOD) could cause the IPOC mode without a strong
171	ENSO event. As noted in these studies, the IPOC could work without ENSO forcing,
172	including the coupling of the IO warming and the WNP anomalous anticyclone. This
173	so-called ENSO-independent IPOC that is driven by other factors (e.g., the IOD) may
174	be similar to the ENSO-dependent IPOC. It is likely that when excluding ENSO's

175	influence, the seasonality in the relationship between IO SSTAs and WNP TC activity
176	is driven by seasonal changes in the IPOC. Therefore, this study extends prior
177	research by excluding the potential influence of ENSO and then examining the
178	differing responses of WNP TC genesis to IO SSTAs during different seasons. We
179	also investigate the corresponding physical mechanisms, particularly IPOC changes in
180	different seasons. We focus on the dominant mode of IO SST changes, which has
181	been termed the Indian Ocean basin mode (IOBM; e.g., Klein et al., 1999; Yang et al.,
182	2007).
183	The remainder of this study is organized as follows. Section 2 describes the data
184	and methodology. Sections 3 and 4 discuss the seasonality of IOBM-induced changes
185	for WNP TC genesis and for environmental conditions, respectively. Section 5
186	summarizes and concludes.
186 187	summarizes and concludes.
186 187 188	summarizes and concludes.2. Data and methodology
186 187 188 189	 2. Data and methodology <i>2.1 Data</i>
186 187 188 189 190	 summarizes and concludes. 2. Data and methodology <i>2.1 Data</i> <i>a. TC data</i>
186 187 188 189 190 191	 summarizes and concludes. 2. Data and methodology <i>2.1 Data</i> <i>a. TC data</i> WNP TC best track data from 1979–2022 are obtained from the International
186 187 188 189 190 191 192	 summarizes and concludes. 2. Data and methodology <i>2.1 Data</i> <i>a. TC data</i> WNP TC best track data from 1979–2022 are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) v4 dataset (Knapp et al.,
186 187 188 189 190 191 192 193	 summarizes and concludes. 2. Data and methodology <i>2.1 Data</i> <i>a. TC data</i> WNP TC best track data from 1979–2022 are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) v4 dataset (Knapp et al., 2010). TC data prior to 1979 are not used, due to lower reliability of TC observations
186 187 188 189 190 191 192 193 194	 summarizes and concludes. 2. Data and methodology 2.1 Data a. TC data WNP TC best track data from 1979–2022 are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) v4 dataset (Knapp et al., 2010). TC data prior to 1979 are not used, due to lower reliability of TC observations due to lack of global satellite coverage (Kossin et al., 2014). To further minimize the
186 187 188 189 190 191 192 193 194 195	 summarizes and concludes. 2. Data and methodology 2.1 Data a. TC data WNP TC best track data from 1979–2022 are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) v4 dataset (Knapp et al., 2010). TC data prior to 1979 are not used, due to lower reliability of TC observations due to lack of global satellite coverage (Kossin et al., 2014). To further minimize the uncertainty in TC data, this study only considers TC cases simultaneously recorded by

197	including the Joint Typhoon Warning Center, the Japan Meteorological Agency, the
198	China Meteorological Administration, and the Hong Kong Observatory. TC cases that
199	are not recorded by all four agencies are excluded. Only TCs with a lifetime
200	maximum intensity (LMI) of at least tropical storm intensity (≥34 kt) are recorded in
201	the TC best track from the Japan Meteorological Agency, while the other three
202	agencies record different numbers of TCs with an LMI <34 kt. Therefore, tropical
203	storms (34 kt≤LMI<64 kt) and typhoons (LMI≥64 kt) are considered in this study,
204	while all tropical depressions (LMI< 34kt) are excluded. TC genesis is identified as
205	the first record that is simultaneously reported by all four agencies, as suggested by
206	Song and Klotzbach (2018). Gridded TC genesis frequencies (TCGFs) are first
207	obtained by counting TC genesis numbers over a $5^{\circ} \times 5^{\circ}$ grid and are then spatially
208	smoothed through the method proposed by Kim et al. (2011).
209	b. Oceanic and atmospheric data
210	Monthly mean SST data over a $1^{\circ \times 1^{\circ}}$ grid are calculated from the Hadley Centre
211	Sea Ice and Sea Surface Temperature dataset (HadISST; Rayner et al., 2003). SSTAs
212	are defined by subtracting the corresponding long-term SST trends from 1979 to 2022
213	to remove any global warming signal. Monthly mean atmospheric conditions are
214	derived from the fifth generation European Centre for Medium-Range Weather
215	Forecasts (ECMWF) reanalysis of the global climate (ERA5; Hersbach et al., 2020),
216	with a horizontal resolution of $0.25^{\circ} \times 0.25^{\circ}$.
217	2.2 TC genesis potential index

218 We use the dynamic genesis potential index (DGPI) developed by Wang and

219	Murakami (2020) to measure the joint influence of large-scale environmental
220	conditions on TC genesis. The DGPI has shown greater skill in capturing interannual
221	variability of WNP TC genesis than the genesis potential index proposed by Emanuel
222	and Nolan (2004) (Wang and Murakami, 2020). The DGPI consists of four
223	atmospheric variables: 850–200-hPa vertical wind shear (VWS), 850-hPa absolute
224	vorticity, 500-hPa vertical velocity and the 500-hPa meridional gradient of zonal wind
225	(MGZW). All these variables are calculated from ERA5. Greater DGPIs commonly
226	correspond to more TC geneses, resulting from positive anomalies of absolute
227	vorticity and negative anomalies of VWS, vertical velocity and MGZW.
228	2.3 IOBM indices
229	a. Definition
230	The original IOBM index is calculated as the average SSTA over the tropical IO
231	(20°S–20°N, 40°–100°E) (e.g., Xie et al., 2009). The ENSO index is computed as the
232	SSTA averaged over the Niño-3.4 region (5°S–5°N, 170°–120°W). As shown in
233	Figure 1a, there is a significant positive simultaneous correlation between the monthly
234	IOBM and ENSO indices from 1979–2022 ($r=0.56$; $p<0.01$). Moreover, the
235	correlation between monthly ENSO and IOBM indices reaches its maximum at the
236	time when the IOBM lags ENSO by approximately three months, as documented in
237	previous publications (e.g., Yang et al., 2007; Xie et al., 2009). This also corresponds
238	to ENSO often maturing in boreal winter and the IOBM peaking in boreal spring. The
239	regression-based method proposed by An (2003) has been widely used to linearly
240	remove the signal of one index from another index. Here, we utilize three formulas to

exclude ENSO's effect on the IOBM index:

242
$$I_{\text{IOBM}}^{1} = I_{\text{IOBM}}^{o} - I_{\text{ENSO}}^{0} \times \text{cov}(I_{\text{IOBM}}^{o}, I_{\text{ENSO}}^{0}) / \text{var}(I_{\text{ENSO}}^{0}),$$
(1)

243
$$I_{\rm IOBM}^2 = I_{\rm IOBM}^o - I_{\rm ENSO}^{\rm NDJ} \times \operatorname{cov}(I_{\rm IOBM}^o, I_{\rm ENSO}^{\rm NDJ}) / \operatorname{var}(I_{\rm ENSO}^{\rm NDJ}),$$
(2)

244
$$I_{\rm IOBM}^3 = I_{\rm IOBM}^2 - I_{\rm ENSO}^0 \times \text{cov}(I_{\rm IOBM}^2, I_{\rm ENSO}^0) / \text{var}(I_{\rm ENSO}^0),$$
 (3)

245 where $cov(\cdot)$ and $var(\cdot)$ denote covariance and variance, respectively. I_{ENSO}^0 and

246 $I_{\text{ENSO}}^{\text{NDJ}}$ are the simultaneous and preceding November–January (NDJ) ENSO indices,

247 respectively. I_{IOBM}^{o} is the original IOBM index, while I_{IOBM}^{1} (I_{IOBM}^{2}) denotes the

248 IOBM index when the influence of the simultaneous (preceding NDJ) ENSO is

249 linearly removed in I_{IOBM}^o . Furthermore, I_{IOBM}^3 represents the IOBM index when

excluding the influence of the simultaneous ENSO on I_{IOBM}^2 , which minimizes both

the simultaneous and preceding effect of ENSO.

252 b. Comparison

Figure 1b–d highlights that during any individual season (AMJ, JAS or OND),

there is a significant relationship between the original IOBM and ENSO indices.

255 During AMJ and JAS, the preceding ENSO plays a greater role in influencing the

256 IOBM than the simultaneous ENSO (Figure 1b, c). During OND, the IOBM-ENSO

257 relationship becomes more simultaneous, with a simultaneous correlation that is much

258 larger than during AMJ and JAS (Figure 1d). In particular, there is only a weak and

259 insignificant correlation between the preceding winter ENSO index and the OND

260 IOBM index.

The above results mean that the original IOBM indices during different seasons

are primarily controlled by ENSO at different lead times. As a result, when

263	simultaneous ENSO's influence is removed, there remains a significant correlation of
264	the IOBM during AMJ and JAS with the preceding ENSO (Figure 1b, c). When the
265	influence of the preceding NDJ ENSO is removed, the simultaneous IOBM-ENSO
266	correlation is still large during OND and even becomes significant during JAS (Figure
267	1c, d). These results imply that Eqns. (1) and (2) can only partially exclude ENSO's
268	effect on the IOBM. By comparison, after applying Eqn. (3), the IOBM during any
269	one season of AMJ, JAS and OND only weakly correlate with both the preceding
270	ENSO and the simultaneous ENSO (Figure 1b-d). Additionally, the correlation
271	between the monthly IOBM and ENSO indices during 1979-2022 becomes weak and
272	insignificant, when ENSO leads the IOBM (Figure 1a). Consequently, Eqn. (3) can
273	effectively remove both the simultaneous and preceding influences of ENSO on the
274	IOBM. Therefore, the IOBM index obtained by Eqn. (3) is considered as ENSO-
275	independent in the following sections.
276	c. Classification
277	Takaya et al. (2021) showed that a warm IO could occur concurrently with either
278	El Niño or La Niña. We thus identify positive, neutral and negative IOBM seasons
279	during 1979–2022 by using the following two procedures. First, the seasons with 3-
280	month averaged Niño-3.4 SSTAs > $+0.5^{\circ}$ C or < -0.5° C are excluded. Second, a
281	threshold of 0.6 standard deviations, which roughly corresponds to a 0.5°C change of
282	the Niño-3.4 SSTA, is applied to the ENSO-independent IOBM index (approximately
283	0.3°C change in this index) to separate the remaining seasons into positive, neutral
284	and negative IOBM phases. Tables 1-3 list the identified AMJ, JAS and OND

seasons with positive, neutral and negative IOBM phases.

286 2.4 Significance test

287	Statistical significance of correlation coefficients, regression coefficients and the
288	differences in means between two samples is estimated by using a two-tailed
289	Student's <i>t</i> -test. In evaluating significance of correlation coefficients, the effective
290	sample size proposed by Bretherton et al. (1999) is applied to account for
291	autocorrelation of the individual time series.
292	

3. Seasonality of IOBM-induced changes in TC genesis

Figure 2a shows a significant inverse relationship between the annual WNP TC

number and the annual mean IOBM index during 1979–2022, regardless of which

296 IOBM index is considered. This is consistent with previous publications which found

a suppression of WNP TC genesis in warm IO years (e.g., Tao et al., 2012) or in TC-

active seasons with warm IO SSTAs (e.g., Du et al., 2011; Zhan et al., 2011a; Zhan et

al., 2011b; Tao et al., 2012; Zhan et al., 2014; Ha et al., 2015; Zheng et al., 2016).

300 However, the IOBM-TC relationship exhibits obvious seasonality. The correlation

301 between TC number and the original IOBM index is significant from mid spring to

302 early autumn but insignificant for the remainder of the year (Figure 2b). The most

303 significant correlation occurs during AMJ (r=-0.50; p<0.01).

304 By comparison, the IOBM-TC relationship changes when ENSO's impact is

305 excluded. When removing the influence of the simultaneous ENSO, the IOBM-TC

306 correlation becomes insignificant during spring, while changing less during other

Page 15 of 59

For Peer Review

307	seasons. When removing the influence of the preceding NDJ ENSO, the IOBM-TC
308	correlation becomes insignificant during mid spring to summer but remains
309	significant during early autumn. When considering the correlation of TC number with
310	the ENSO-independent IOBM index, which removes both the influences of the
311	simultaneous and preceding NDJ ENSO on the IOBM, the IOBM-TC relationship
312	becomes weak and insignificant from mid spring to early summer, while remaining
313	significant from mid summer to early autumn. This underscores the significant IO-
314	mediated influence of ENSO, as noted by previous studies. Note that the seasonal
315	change in the correlation of TC number with the ENSO-independent IOBM index is
316	more similar to that with the IOBM index excluding the influence of the preceding
317	NDJ ENSO during spring-summer, while it is more like that with the IOBM index
318	excluding the influence of the simultaneous ENSO during autumn. This means that
319	ENSO modulates the IOBM-TC relationship mainly through its delayed effect during
320	spring and summer but through its simultaneous effect during autumn. Additionally,
321	seasonal distributions of the IOBM-TC relationship as shown in Figure 2b differ from
322	the PMM-TC relationship found in Fu et al. (2023), where an insignificant correlation
323	was reported during May-July. The difference in the seasonality of these relationships
324	implies that interannual variability in WNP TC number during different seasons is
325	likely controlled by different climate modes.
326	Following Wang et al. (2013), we now examine three TC seasons: the early

327 $\,$ season (AMJ), the peak season (JAS) and the late season (OND). During AMJ, the

328 climatological TC MDR displays a northwest-southeast orientation, with a majority of

Page 16 of 59

329	TCs occurring south of 20°N (Figure 3a). When the original IOBM index is
330	considered, there is a basinwide suppression of WNP TC genesis in a warm IOBM,
331	with significant TCGF decreases west of 150°E (Figure 4a), This pattern resembles
332	warm IOBM-induced TCGF changes, if simultaneous ENSO's influence is removed
333	(Figure 4b). By comparison, when removing the influence of the preceding NDJ
334	ENSO, warm IOBM-induced TCGF reductions weaken and become insignificant over
335	most of the WNP (Figure 4c). Similarly, TCGF decreases induced by warm ENSO-
336	independent IOBM are concentrated over the region of 5°–25°N and 110°–170°E, but
337	are weak and insignificant (Figure 4d). Consequently, there is a weak and
338	insignificant correlation between TC number and the ENSO-independent IOBM index
339	($r=-0.13$; $p=0.39$). These results mean that the suppressing influence of the IOBM on
340	WNP TC genesis during AMJ predominately occurs due to the delayed effect of
341	ENSO, with the ENSO-independent IOBM itself playing only a minor role.
342	During JAS, the climatological TC MDR shifts northward and spans the
343	latitudinal belt of 10°–25°N (Figure 3b). Consistent with Tao et al. (2012), a warm
344	IOBM is associated with strong TCGF decreases over the subtropical WNP (10°-
345	30°N, 120°–170°E) and weak TCGF changes over other parts of the WNP, regardless
346	of which IOBM index is considered (Figure 5). As a result, basinwide TC frequency
347	during JAS is significantly anti-correlated with the ENSO-independent IOBM index
348	(r =-0.31; p =0.04). These results imply that neither the preceding ENSO nor the
349	simultaneous ENSO has a significant impact on the IOBM-TC relationship during
350	JAS.

Page 17 of 59

For Peer Review

351	During OND, the climatological TC MDR retreats southward (Figure 3c). When
352	using the original IOBM index, there are TCGF increases east of 150°E and TCGF
353	decreases west of 150°E (Figure 6a). This structure is similar to the east-west dipolar
354	pattern in TCGF changes induced by El Niño, likely due to the strong simultaneous
355	IOBM-ENSO correlation as shown in Figure 1d. This feature remains almost
356	unchanged when the influence of the preceding NDJ ENSO on the IOBM is excluded
357	(Figure 6c). However, when removing the influence of the simultaneous ENSO, a
358	warm IOBM is associated with TCGF increases west of 140°E and decreases east of
359	140°E (Figure 6b). This pattern is also shown for the ENSO-independent IOBM-
360	induced TCGF changes, with TCGF increases over the region of 5°–25°N and 105°–
361	140°E and TCGF decreases over the region of 5°–30°N and 140°–160°E (Figure 6d).
362	Given these insignificant TCGF changes, there is an insignificant correlation between
363	WNP TC number and the ENSO-independent IOBM index during OND ($r=-0.03$;
364	p=0.83). These results mean that in contrast to AMJ, ENSO influences the IOBM-TC
365	relationship during OND mainly through its simultaneous effect. The IOBM-induced
366	TCGF changes exhibit almost opposite structures before and after removing the
367	simultaneous effect of ENSO on the IOBM.
368	We focus on the results related to the ENSO-independent IOBM index in the
369	subsequent analyses, given that several studies have already analyzed the IOBM-TC

- relationship when ENSO's impact is not excluded (e.g., Du et al., 2011; Kosaka et al.,
- 371 2013; Takaya et al., 2018; Ueda et al., 2018; Zhao et al., 2019; Huangfu et al., 2019).
- Tables 1–3 list basinwide WNP TC frequencies during the identified positive, neutral

373	and negative IOBM seasons during 1979-2022. During AMJ, compared with neutral
374	phase, there are -0.9 (p =0.19) TCs in positive IOBM and +1.1 (p =0.21) TCs in
375	negative IOBM, while the TC frequency difference between positive and negative
376	IOBM phases is -2.0 (p =0.37). The corresponding values are -3.7 (p <0.01), 4.3
377	(<i>p</i> <0.01) and -8.0 (<i>p</i> <0.01) during JAS and 0.5 (<i>p</i> =0.62), 0.2 (<i>p</i> =0.88) and 0.3
378	(p=0.86) during OND. Consistent with the IOBM-TC correlations shown in Figure
379	2b, TC frequency differences between positive and negative IOBM phases are
380	significant during JAS but insignificant during AMJ and OND.
381	Figure 7 displays WNP TCGF differences between positive, neutral and negative
382	phases of the IOBM. In general, regardless of the season considered, TCGF
383	differences for positive IOBM versus neutral phases and for positive and negative
384	IOBM phases exhibit a similar pattern to regressions of TCGFs onto the IOBM index,
385	while those for negative IOBM versus neutral phases show a nearly mirror image.
386	Significant TCGF differences only appear during JAS, mainly over the region of 15°-
387	25°N, 140°–155°E (Figure 7d–f). Hong et al. (2010) has reported that the amplitude
388	of the basinwide IO warming is on average greater than that of the cooling. However,
389	this asymmetry occurs only when ENSO is concurrent with the IOD, while it becomes
390	negligible during the ENSO-only and the IOD-only events. Cai and van Rensch
391	(2013) has found that the asymmetry in the IOBM modulation effect is primarily a
392	result of the asymmetry in ENSO's influence. Consistent with these findings, the
393	IOBM's influence on WNP TC genesis is nearly symmetric, with almost opposite
394	TCGF changes in positive and negative IOBM phases when excluding the ENSO

signal in our IOBM index. Given relatively few samples in some of our IOBM groups
(Tables 1–3), we focus on regressions of environmental factors in the following
sections.

398

4. Seasonality of IOBM-induced changes in environmental conditions 399 400 Figure 8 displays climatological mean DGPIs and the regressions of DGPIs onto the IOBM index during different seasons. As noted in previous studies (e.g., Wang et 401 al., 2013; Choi et al., 2019; Fu et al., 2023), DGPIs can well capture the seasonal 402 403 migration of the climatological TC MDR over the WNP (Figure 8a, c, e). In general, the regressed DGPIs (Figure 8b, d, f) exhibit a similar distribution to the regressed 404 TCGFs during each season (Figure 4d, Figure 5d, and Figure 6d). For a warm IOBM, 405 406 weak TCGF and DGPI decreases during AMJ are both concentrated from 10° to 20°N and east of 150°E (Figure 8b). There are significant decreases in DGPI during JAS 407 over the region of 15°–30°N, 125°–155°E, an area slightly larger than the region with 408 significantly decreased TCGF (Figure 8d). There are insignificant DGPI increases 409 west of 140°E and insignificant DGPI decreases west of 140°E during OND, similar 410 to the observed TCGF changes (Figure 8f). As shown in Table 4, regional TCGF 411 changes are significantly correlated with regional mean DGPIs during each season. 412 These results imply that the seasonality of the ENSO-independent influence of the 413 IOBM on WNP TC genesis can be largely explained by the IOBM-induced seasonal 414 415 changes in environmental conditions.

416 Figures 9–11 show regressions of environmental variables constituting the DGPI

417	during AMJ, JAS and OND, respectively. During AMJ, there are no significant
418	changes in 850–200-hPa VWS, 500-hPa vertical velocity and 850-hPa relative
419	vorticity over most of the WNP (Figure 9a, c, d), while significant changes in 500-hPa
420	MGZW mainly occur at higher latitudes (Figure 9b). This means that the IOBM has a
421	small impact on environmental conditions over the tropical WNP, when the influence
422	of the preceding ENSO is excluded. This also underlines that ENSO-induced IOBM
423	warming predominates in controlling WNP TC activity in AMJ. There are weak
424	increases in vertical velocity (e.g., sinking motion) and weak decreases in vorticity
425	south of 25°N and west of 155°E, corresponding to insignificant decreases in TCGF
426	and DGPI (Figure 9c, d). By comparison, weak decreases in MGZW are found over
427	this region (Figure 9b), which enhances TC genesis according to the DGPI. These
428	results imply that the TC-suppressing effects of vertical velocity and vorticity surpass
429	the TC-favoring effect of MGZW during AMJ.
430	In general, changes in WNP environmental variables are more significant during
431	JAS than during AMJ (Figure 10). During JAS, although significant increases and
432	decreases in VWS are concentrated over the eastern and western parts of the WNP,
433	respectively, they appear near the boundary of the region with significant TCGF
434	reductions (15°–25°N and 140°–155°E) (Figure 10a). Over this region, most of the
435	MGWZ increases are insignificant (Figure 10b), while there are significant increases
436	in vertical velocity (e.g., sinking motion) and significant decreases in vorticity (Figure
437	10c, d). These results imply that the IOBM modulates WNP TC genesis during JAS
438	primarily by modulating vertical velocity and vorticity.

Page 21 of 59

For Peer Review

439	During OND, the changes in the four factors comprising the WNP DGPI are
440	generally insignificant (Figure 11). There are weak changes in VWS and MGZW
441	south of 20°N and west of 155°E (Figure 11a, b), where TCs form more frequently
442	during OND (Figure 3c). Although significant decreases in vertical velocity (e.g.,
443	upward motion) are shown over a small domain of 20°-30°N and 140°-145°E, they
444	are located outside the TC main development region (Figure 11c). Moreover, despite
445	weak and insignificant changes, TCGF increases west of 140°E correspond to vertical
446	velocity decreases and vorticity increases, while TCGF decreases east of 140°E
447	correspond to vertical velocity increases and vorticity decreases (Figure 11c, d).
448	These results indicate that similar to the IOBM's impact during AMJ, the IOBM does
449	not significantly modulate the WNP environment during OND.
450	We now focus on regions with larger ENSO-independent IOBM-induced TCGF
451	changes during different seasons. Table 4 gives correlation coefficients between
452	regional TC frequency and regional mean environmental factors. During AMJ, TC
453	frequency over the region of 5°–25°N and 110°–170°E is significantly correlated with
454	all four factors comprising the DGPI. During JAS, TC frequency over the region of
455	10°-30°N and 120°-170°E is significantly correlated with MGWZ, vertical velocity
456	and relative vorticity. During OND, TC frequency over the region of 5°–25°N and
457	105°-140°E is significantly correlated with MGWZ, vertical velocity and relative
458	vorticity, while TC frequency over the region of 5°–30°N and 140°–160°E is
459	significantly correlated with vertical velocity and relative vorticity. In all cases
	significantif contention with content concerts and relative contents. In an cases,

Page 22 of 59

461	Based on the above analyses, we can conclude that changes in 500-hPa vertical
462	velocity and 850-hPa relative vorticity play a dominant role in the modulation of
463	WNP TC genesis by the IOBM, regardless of the season considered.
464	Changes in these two variables can be further linked to IOBM-induced
465	environmental changes over the Indo-Pacific region. During any of the three seasons
466	investigated (AMJ, JAS or OND), positive SSTAs over the IO can locally trigger
467	anomalously deep atmospheric convection, associated with eastward-propagating
468	Kelvin waves (Figure 12). However, there is a notable remote influence of the IOBM
469	only during JAS, while the IOBM's influence is limited over the IO during AMJ and
470	OND. During AMJ and JAS, Kelvin wave-related anomalous low-level easterlies
471	oppose climatological low-level westerlies (Figure 13a, b), suppressing surface
472	evaporation and further enhancing IO warming through a wind-evaporation-SST
473	(WES) feedback (Xie and Philander, 1994) (Figure 12a, c). This positive feedback
474	favors both warm SSTs and Kelvin waves propagating into the western Pacific. As a
475	result, there are anomalous low-level easterlies over the equatorial WNP, which
476	generates an anomalous WNP anticyclone that generates negative vorticity.
477	Accordingly, there is an anomalous upper-level WNP cyclone, driving anomalous
478	sinking motion and weakened convection (Figure 12b, d).
479	The difference between AMJ and JAS is that the IO warming is much weaker
480	during AMJ than during JAS (Figure 12a, c). Consequently, the anomalous low-level
481	easterlies over the equatorial Indo-Pacific and the anomalous WNP low-level
482	anticyclone are weak and insignificant during AMJ but strong and significant during

483	JAS. This corresponds to weak (strong) IOBM-induced environmental changes during
484	AMJ (JAS) as displayed in Figure 9 (Figure 10).
485	Figures 14 and 15 display regressions of near-global SSTAs onto the IOBM
486	index during 1979–2022. Both the original and ENSO-independent IOBM indices are
487	normalized for a fair comparison. Warm IOBM events based on the original index
488	during both AMJ and JAS generally relate to eastern Pacific El Niño during the
489	preceding winter (Figure 14a and Figure 15a). For a warm IOBM during AMJ (JAS),
490	El Niño decays relatively faster (slower), while positive SSTAs over the eastern
491	equatorial Pacific persist until the following JAS (OND) (Figure 14c, e, g, i, k and
492	Figure 15c, e, g, i, k). By comparison, there are almost no significant SSTAs
493	regressed onto the ENSO-independent IOBM index over the tropical Pacific (Figure
494	14b, d, f, h, j, l and Figure 15b, d, f, h, j, l), because the influences of simultaneous
495	and preceding ENSO have been explicitly excluded in this IOBM index.
496	A warm ENSO-independent AMJ IOBM is characterized by almost no significant
497	SSTAs over other basins during the preceding OND and January-March (JFM)
498	(Figure14b, d), meaning that it is likely to develop locally. During AMJ, when
499	excluding ENSO's impact, IOBM-induced positive SSTAs substantially weaken and
500	cover a narrower area, while significant SSTAs are concentrated over the western IO
501	(Figure 14f). This means a reduced amplitude of ENSO-independent IO warming,
502	leading to an insignificant IOBM-TC correlation during AMJ. Furthermore, the
503	pattern of the SSTA regressions onto the ENSO-independent IOBM index looks more
504	like a positive phase of the IOD, although the basin-averaged IO SSTA is positive

505	(Figure 14f). There are also significantly positive SSTAs over the tropical Atlantic
506	(Figure 14f), consistent with a tight connection between western IO warming and
507	tropical Atlantic warming irrespective of ENSO (e.g., Liao and Wang, 2021).
508	Similarly, a warm ENSO-independent JAS IOBM also tends to develop locally,
509	with warmer SSTAs first occurring over the southwestern IO during the preceding
510	AMJ and then reaching their maxima and covering almost the entire tropical IO
511	during JAS (Figure 15f, h). During JAS, the magnitude and coverage of warm IO
512	SSTAs induced by a warm ENSO-independent IOBM are similar to those induced by
513	a warm original IOBM, meaning that ENSO plays only a minor rule in modulating
514	IOBM-induced SSTAs (Figure 15g, h). This is consistent with a relatively unchanged
515	IOBM-TC relationship after excluding ENSO's influence. Takaya et al. (2018), Ueda
516	et al. (2018) and Zhao et al. (2019) reported a significant warm IO-induced
517	anomalous low-level anticyclonic circulation over the western Pacific during April-
518	September in El Niño-decaying years. These above results imply that the remote
519	influence of IO SSTAs is strengthened by decaying ENSO during AMJ, while it is
520	less affected by ENSO during JAS, owing to the rapid weakening of ENSO from
521	boreal spring to boreal summer.
522	Although the IO warming does not induce significant environmental changes
523	over the WNP during AMJ and OND, the reasons for these lack of significant

modulations differ in different seasons. During OND, the WES feedback weakens 524

substantially, because the SST warming-induced low-level easterlies (Figure 12e) are 525

almost parallel to the climatological winds (Figure 13c). Significant positive SSTAs 526

527	occur mainly over the Arabian Sea. The associated Kelvin waves have difficulty
528	propagating into the WNP, meaning that the influence of the IOBM is predominately
529	limited to the IO. In addition, there are almost no significant environmental changes at
530	upper levels over the Indo-Pacific region (Figure 12f). This is consistent with the
531	seasonality of the IPOC (Xie et al., 2016), which shows a weakening of the remote
532	influence of IO SSTAs in boreal autumn.

534 **5.** Conclusion

This study investigates seasonal changes in the ENSO-independent influence of 535 the IOBM, the dominant mode of IO SST variability, on WNP TC genesis from 1979 536 537 to 2022. When excluding the preceding and simultaneous impact of ENSO, we find a 538 significant relationship between annual WNP TC frequency and the annual ENSOindependent IOBM, consistent with previous studies (e.g., Tao et al., 2012). However, 539 the correlation between WNP TC frequency and the ENSO-independent IOBM 540 exhibits obvious seasonality, with a significant correlation during the peak (JAS) 541 542 season but an insignificant correlation during the early (AMJ) and late (OND) seasons. In a warm IOBM, there are significant WNP TCGF decreases occurring over 543 544 the region of 15°–25°N and 140°–155°E during JAS. By comparison, there are no significant TCGF changes over almost the entire WNP during AMJ and OND. 545 The TCGF changes induced by the IOBM during different seasons can be well 546 captured by the corresponding DGPI changes, implying that the seasonality of the 547 IOBM's influence on WNP TC genesis can be explained by related environmental 548

549	changes. During JAS, the TC-suppressing effect of decreased vorticity and increased
550	sinking motion jointly lead to a reduction of TCGF and DGPI in a warm IOBM, while
551	changes in VWS and MGZW have a minor impact. By contrast, during AMJ and
552	OND, most parts of the WNP show insignificant changes for all environmental
553	variables considered.
554	Our results highlight the seasonally-dependent mechanism of the IOBM's
555	influence on TC genesis. Compared with previous publications (e.g., Kosaka et al.,
556	2013; Takaya et al., 2018; Ueda et al., 2018; Zhao et al., 2019), we conclude that the
557	IOBM-TC relationship is largely weakened during AMJ when removing the ENSO
558	effect, while it remains significant during JAS and insignificant during OND
559	regardless of whether the ENSO influence is excluded. This feature tends to be jointly
560	caused by the seasonality of the IPOC (Xie et al., 2016) and the seasonal cycle of
561	ENSO. Our results also have important implications for forecasting WNP TC activity
562	during different seasons. Given that there is also seasonality in the modulation of
563	WNP TC genesis by ENSO and the PMM, it is very likely that other climate modes
564	affecting WNP TCs (e.g., tropical North Atlantic SSTAs) should not be considered as
565	a seasonally-consistent forcing. When developing seasonal TC forecasting schemes,
566	we should closely examine how different factors influence TC activity during
567	different seasons.
568	

569

Data availability statement

570 All data used in this study are freely available online. Western North Pacific TC

- 571 best track data recorded by the Joint Typhoon Warning Center, the Japan
- 572 Meteorological Agency, the China Meteorological Administration and the Hong Kong
- 573 Observatory are all given in IBTrACS, which is available at:
- 574 <u>https://www.ncei.noaa.gov/products/international-best-track-archive?name=ib-v4-</u>
- 575 <u>access</u>. Monthly mean SST data provided by the Hadley Centre Sea Ice and Sea
- 576 Surface Temperature (HadISST) are obtained from:
- 577 <u>https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html</u>. The fifth
- 578 generation European Centre for Medium–Range Weather Forecasts atmospheric
- 579 reanalysis of the global climate (ERA5) is retrieved from:
- 580 <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-</u>
- 581 <u>monthly-means?tab=form.</u>
- 582
- 583 Acknowledgements
- 584 This work was jointly funded by the National Natural Science Foundation of
- 585 China (U2342203, 42192554, 61827901, 42175007, 41905001 and 42305005) and
- 586 the G. Unger Vetlesen Foundation.
- 587
- 588

589	References
590	Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott,
591	2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea
592	interaction over the global oceans. J. Climate, 15, 2205–2231.
593	An, S. I., 2003: Conditional maximum covariance analysis and its application to the
594	tropical Indian Ocean SST and surface wind stress anomalies. J. Climate, 16,
595	2932–2938.
596	Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blade, 1999:
597	The effective number of spatial degrees of freedom of a time-varying field. J.
598	<i>Climate</i> , 12 , 1990–2009.
599	Cai, W., and P. van Rensch, 2013: Austral summer teleconnections of Indo-Pacific
600	variability: Their nonlinearity and impacts on Australian climate. J. Climate, 26,
601	2796–2810.
602	Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to
603	the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599-606.
604	Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific
605	associated with El Niño and La Niña events. J. Climate, 13, 2960–2972.
606	Chen, G., and C. –Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean
607	warming on tropical cyclone frequency over the western North Pacific. Geophys.
608	<i>Res. Lett.</i> , 37 , L01803.
609	Choi, Y., K. Ha, and F. Jin, 2019: Seasonality and El Niño diversity in the
610	relationship between ENSO and western North Pacific tropical cyclone activity.
	27

- 611 *J. Climate*, **32**, 8021–8045.
- 612 Du, Y., L. Yang, and S. P. Xie, 2011: Tropical Indian Ocean influence on Northwest
- 613 Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24,
- **614 315–322**.
- 615 Du, Y., Z. Chen, S. P. Xie, L. Zhang, Y. Zhang, and Y. Cai, 2022: Drivers and
- characteristics of the Indo-western Pacific Ocean capacitor. *Front. Clim.*, 4,
 1014138.
- 618 Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45,
- **619** 1143–1155.
- Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. *26th Conf. on Hurricanes and Tropical Meteorology*, Miami, FL, Amer. Meteor.
- 622 Soc., 240–241.
- 623 Emanuel, K., 2018: 100 years of progress in tropical cyclone research. A Century of
- 624 Progress in Atmospheric and Related Sciences: Celebrating the American
- 625 *Meteorological Society Centennial, Meteor. Monogr.*, No. 59, 15.1–15.68.
- 626 Fu, M., C. Wang, L. Wu, and H. Zhao, 2023: Season-dependent modulation of Pacific
- 627 Meridional Mode on tropical cyclone genesis over the western North Pacific. J.
- 628 *Geophys. Res.*, **128**, e2022JD037575.
- 629 Gao, S., L. Zhu, W. Zhang, and Z. Chen, 2018: Strong modulation of the Pacific
- 630 Meridional Mode on the occurrence of intense tropical cyclones over the western
- 631 North Pacific. J. Climate, **31**, 7739–4479.
- 632 Gao, S., L. Zhu, W. Zhang, and X. Shen, 2020: Impact of the Pacific Meridional

633	Mode on landfalling tropical cyclone frequency in China. Quart. J. R. Meteor.
634	<i>Soc.</i> , 146 , 2410–2420.
635	Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart.
636	J. R. Meteor. S., 106 , 447–462.
637	Ha, Y., Z. Zhong, X. Yang, and Y. Sun, 2015: Contribution of East Indian Ocean
638	SSTA to western North Pacific tropical cyclone activity under El Niño/La Niña
639	conditions. Int. J. Climatol., 35, 506–519.
640	Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J.
641	Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X.
642	Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara,
643	P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M.
644	Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková,
645	S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F.
646	Vamborg, S. Villaume, and J. Thépaut, 2020: The ERA5 global reanalysis.
647	Quart. J. R. Meteor. Soc., 146, 1999–2049.
648	Hong, C., T. Li, LinHo, and Y. Chen, 2010: Asymmetry of the Indian Ocean
649	basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 3563–3576.

- Huangfu, J., W. Chen, T. Ma, and R. Huang, 2018: Influences of sea surface
- temperature in the tropical Pacific and Indian Oceans on tropical cyclone genesis
- over the western North Pacific in May. *Clim. Dyn.*, **51**, 1915–1926.
- Huangfu, J., W. Chen, R. Huang, and J. Feng, 2019: Modulation of the impacts of the
- 654 Indian Ocean basin mode on tropical cyclones over the Northwest Pacific during

655	the boreal summer by La Niña Modoki. J. Climate, 32, 3313–3326.
656	Kim, HM., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific
657	tropical cyclone activity by three phases of ENSO. J. Climate, 24, 1839–1849.
658	Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature
659	variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate,
660	12 , 917–932.
661	Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010:
662	The International Best Track Archive for Climate Stewardship (IBTrACS). Bull.
663	Amer. Meteor. Soc., 91, 363–376.
664	Kosaka, Y., S. –P. Xie, N. –C. Lau, and G. A. Vecchi, 2013: Origin of seasonal
665	predictability for summer climate over the Northwestern Pacific. Proc. Natl.
666	Acad. Sci. USA, 110, 7574-7579.
667	Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the
668	location of tropical cyclone maximum intensity. Nature, 509, 349-352.
669	Lander, M. A., 1994: An exploratory analysis of the relationship between tropical
670	storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122,
671	636–651.
672	Lee, TC., T. R. Knutson, H. Kamahori, and M. Ying, 2012: Impacts of climate
673	change on tropical cyclones in the western North Pacific basin. Part I: Past
674	observations. Trop. Cycl. Res. Rev., 1, 213-230.
675	Li, C., and C. Wang, 2014: Simulated impacts of two types of ENSO events on

676 tropical cyclone activity in the western North Pacific: large–scale atmospheric

- 677 response. *Climate Dyn.*, **42**, 2727–2743.
- 678 Li, R. C. Y., and W. Zhou, 2012: Changes in western Pacific tropical cyclones
- associated with the El Niño–Southern Oscillation cycle. *J. Climate*, 25, 5864–
 5878.
- Li, T., B. Wang, C. –P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean
 dipole-zonal mode. *J. Atmos. Sci.*, 60, 2119–2135.
- Liao, H., and C. Wang, 2021: Sea surface temperature anomalies in the western
- 684 Indian Ocean as a trigger for Atlantic Niño events. *Geophys. Res. Lett.*, 48,
- 685 e2021GL092489.
- 686 Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018:
- 687 The influence of ENSO flavors on western North Pacific tropical cyclone
 688 activity. *J. Climate*, **31**, 5395–5416.
- 689 Qian, Y., H. Murakami, M. Nakano, P. -C. Hsu, T. L. Delworth, S. B. Kapnick, V.
- 690 Ramaswamy, T. Mochizuki, Y. Morioka, T. Doi, T. Kataoka, T. Nasuno, and K.
- 691 Yoshida, 2019: On the mechanisms of the active 2018 tropical cyclone season in
- 692 the North Pacific. *Geophys. Res. Lett.*, **46**, 12293–12302.
- 693 Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P.
- Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface
- temperature, sea ice, and night marine air temperature since the late nineteenth
- 696 century. J. Geophys. Res., 108, 4407.
- 697 Saunders, M. A., R. E. Chandler, C. J. Merchant, and F. P. Roberts, 2000: Atlantic
- 698 hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and

699	landfall. Geophys. Res. Lett., 27, 1147–1150.					
700	Song, J., and P. J. Klotzbach, 2018: What has controlled the poleward migration of					
701	annual averaged location of tropical cyclone lifetime maximum intensity over the					
702	western North Pacific since 1961?. Geophys. Res. Lett., 45, 1148-1156.					
703	Takaya, Y., Y. Kubo, S. Maeda, and S. Hirahara, 2018: Prediction and attribution of					
704	quiescent tropical cyclone activity in the early summer of 2016: case study of					
705	lingering effects by preceding strong El Niño events. Atmos. Sci. Lett., 18, 330-					
706	335.					
707	Takaya, Y., 2019: Positive phase of Pacific meridional mode enhanced western North					
708	Pacific tropical cyclone activity in summer 2018. SOLA, 15A, 55–59.					
709	Yakaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu-					
710	Baiu rainfall in early summer 2020: aftermath of the 2019 super IOD event.					
711	Geophys. Res. Lett., 47, e2020GL090671.					
712	Takaya, Y., Y. Kosaka, M. Watanabe, and S. Maeda, 2021: Skillful predictions of the					
713	Asian summer monsoon one year ahead. Nat. Commun., 12, 2094.					
714	Tao, L., L. Wu, Y. Wang, and J. Yang, 2012: Influences of tropical Indian Ocean					
715	warming and ENSO on tropical cyclone activity over the western North Pacific.					
716	J. Meteor. Soc. Japan, 90, 127–144.					
717	Timmermann, A., S. I. An, J. S. Kug, F. F. Jin, W. Cai, A. Capotondi, K. M. Cobb,					
718	M. Lengaigne, M. J. McPhaden, M. F. Stuecker, K. Stein, A. T. Wittenberg, K. S.					
719	Yun, T. Bayr, H. C. Chen, Y. Chikamoto, B. Dewitte, D. Dommenget, P. Grothe,					
720	E. Guilyardi, Y. G. Ham, M. Hayashi, S. Ineson, D. Kang, S. Kim, W. Kim, J. Y.					
	32					

721	Lee, T. Li, J. J. Luo, S. McGregor, Y. Planton, S. Power, H. Rashid, H. L. Ren,
722	A. Santoso, K. Takahashi, A. Todd, G. Wang, G. Wang, R. Xie, W. H. Yang, S.
723	W. Yeh, J. Yoon, E. Zeller, and X. Zhang, 2018: El Niño-Southern Oscillation
724	complexity. <i>Nature</i> , 559 , 535–545.
725	Ueda, H., K, Miwa, and Y. Kamae, 2017: Seasonal modulation of tropical cyclone
726	occurrence associated with coherent Indo-Pacific variability during decaying
727	phase of El Niño., J. Meteor. Soc. Japan, 96, 381–390.
728	Walsh, K. J. E., J. L. McBride, P. J. Klotzbach, S. Balachandran, S. J. Camargo, G.
729	Holland, T. R. Knutson, J. P. Kossin, TC. Lee, A. Sobel, and M. Sugi, 2016:
730	Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate
731	<i>Change</i> , 7 , 65–89.
732	Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm
733	activity over the western North Pacific. J. Climate, 15, 1643–1658.

- 734 Wang, C., C. Li, M. Mu, and W. Duan, 2013: Seasonal modulations of different
- impacts of two types of ENSO events on tropical cyclone activity in the western
 North Pacific. *Climate Dyn.*, 40, 2887–2902.
- 737 Wu, Q., J. Zhao, R. Zhan, and J. Gao, 2020: Revisiting the interannual impact
- 738 of the Pacific Meridional Mode on tropical cyclone genesis frequency
- in the Western North Pacific. *Climate Dyn.*, **56**, 1003–1015.
- 740 Xie, S. –P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of
- relevance to the ITCZ in the eastern Pacific. *Tellus*, **46A**, 340–350.
- 742 Xie, S. –P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009:

743	Indian Ocean capacitor effect on Indo-western Pacific climate during the summer				
744	following El Niño. J. Climate, 22, 730–747.				
745	Xie, SP., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-				
746	western Pacific ocean capacitor and coherent climate anomalies in post-ENSO				
747	summer: a review. Adv. Atmos. Sci., 33 , 411–432.				
748	Yang, J., Q. Liu, S. – P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean				
749	SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34,				
750	L02708.				
751	Zhan, R., Y. Wang, and X. Lei, 2011a: Contributions of ENSO and East Indian Ocean				
752	SSTA to the interannual variability of Northwest Pacific tropical cyclone				
753	frequency. J. Climate, 24, 509–521.				
754	Zhan, R., Y. Wang, and C. Wu, 2011b: Impact of SSTA in the East Indian Ocean on				
755	the frequency of Northwest Pacific tropical cyclones: a regional atmospheric				
756	model study. J. Climate, 24, 6227-6242.				
757	Zhan, R., Y. Wang, and L. Tao, 2014: Intensified impact of East Indian Ocean SST				
758	anomaly on tropical cyclone genesis frequency over the western North Pacific. J .				
759	<i>Climate</i> , 27 , 8724–8739.				
760	Zhang, H., L. Wu, R. Huang, J. –M. Chen, and T. Feng, 2020: Does the Pacific				
761	meridional mode dominantly affect tropical cyclogenesis in the western North				
762	Pacific?. Climate Dyn., 55, 3469–3483.				
763	Zhang, W., Y. Leung, and K. Fraedrich, 2015: Different El Niño types and intense				
764	typhoons in the western North Pacific. Climate Dyn., 44, 2965–2977.				

765	Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, and L. Jia, 2016: The Pacific
766	meridional mode and the occurrence of tropical cyclones in the western North
767	Pacific. J. Climate, 29, 381–398.
768	Zhao, H., L. Wu, C. Wang, and P. J. Klotzbach, 2019: Consistent late onset of the
769	western North Pacific tropical cyclone season following major El Niño events. J.
770	Meteor. Soc. Japan, 97, 673–688.
771	Zheng, J., Q. Wu, Y. Guo, and S. Zhao, 2016: The impact of summertime North
772	Indian Ocean SST on tropical cyclone genesis over the western North Pacific.
773	<i>SOLA</i> , 12 , 242–246.
774	Zhou, Z. –Q., S. –P. Xie, and R. Zhang, 2021: Historic Yangtze flooding of 2020 tied

- to extreme Indian Ocean conditions. *Proc. Natl. Acad. Sci. USA*, **118**,
- e2022255118.
- 777
- 778

779	List of Figures
780	Figure 1. Monthly distributions of lead-lag correlations for (a) monthly ENSO and
781	IOBM indices and for the 3-month mean ENSO index and the IOBM index during (b)
782	AMJ, (c) JAS and (d) OND. Blue, green, orange and red colors refer to the results for
783	the original IOBM index, the IOBM index removing the influence of the simultaneous
784	ENSO, the IOBM index removing the influence of the preceding NDJ ENSO and the
785	IOBM index removing the influences of both the simultaneous ENSO and the
786	preceding NDJ ENSO. Filled dots denote correlations significant at the 0.05 level.
787	Figure 2. (a) Time series of the annual WNP TC number and the four annual mean
788	IOBM indices investigated in this study from 1979 to 2022. The correlation
789	coefficients between TC number and any IOBM index are given in the legend, while
790	"*" and "**" denote significance at the 0.05 and 0.01 level, respectively. (b) Monthly
791	correlation coefficients between the time series of 3-month running mean WNP TC
792	number and the IOBM indices. Filled dots denote correlations significant at the 0.05
793	level.
794	Figure 3. Climatological mean TCGFs over the WNP during (a) AMJ, (b) JAS and
795	(c) OND from 1979–2022.

Figure 4. (a) Regressions of TCGFs onto the (a) original IOBM index during AMJ

1979–2022. (b) As in (a) but for the IOBM index removing the influence of the

simultaneous ENSO. (c) As in (a) but for the IOBM index removing the influence of

the preceding NDJ ENSO. (d) As in (a) but for the IOBM index removing the

800 influences of both the simultaneous ENSO and the preceding NDJ ENSO,

- 801 respectively. Black crosses in (a) –(d) denote regressions significant at the 0.05 level.
- **Figure 5.** As in Figure 4, but for regressions of TCGFs during JAS.
- **Figure 6.** As in Figure 4, but for regressions of TCGFs during OND.
- **Figure 7.** WNP TCGF differences between two phases of the ENSO-independent
- 805 IOBM for the seasons of (a–c) AMJ, (d–f) JAS and (g–i) OND. The left, middle and
- right columns refer to the differences of positive IOBM versus neutral, negative
- 807 IOBM versus neutral and positive IOBM versus negative IOBM, respectively.
- 808 Identified IOBM seasons are listed in Tables 1–3. Black crosses denote differences
- significant at the 0.05 level.
- 810 Figure 8. (a, c, e) Climatological mean DGPIs and (b, d, f) regressions of DGPIs onto
- 811 the ENSO-independent IOBM index during (a, b) AMJ, (c, d) JAS and (e, f) OND
- 812 from 1979–2022. Black crosses denote regressions significant at the 0.05 level.
- 813 Figure 9. Regressions of (a) 850–200-hPa VWS, (b) 500-hPa MGZW, (c) 500-hPa
- 814 vertical velocity and (d) 850-hPa relative vorticity during AMJ onto the ENSO-
- 815 independent IOBM index from 1979–2022. Black crosses denote regressions
- 816 significant at the 0.05 level.
- **Figure 10.** As in Figure 9, but for regressions of environmental variables during JAS.
- 818 **Figure 11.** As in Figure 9, but for regressions of environmental variables during
- 819 OND.
- **Figure 12.** Regressions of environment variables over the Indo-Pacific region onto
- the IOBM index during (a, b) AMJ, (c, d) JAS and (e, f) OND. Regressed SST and
- 822 850-hPa wind vectors are displayed in the left column, while regressed outgoing

823	longwave radiation and 200-hPa wind vectors are displayed in the right column. Only
824	values of SST and outgoing longwave radiation significant at the 0.05 level are
825	shown. Purple arrows denote regressed wind vectors significant at the 0.05 level.
826	Figure 13. Climatological mean 850-hPa streamlines over the Indo-Pacific region
827	during (a) AMJ, (b) JAS and (c) OND.
828	Figure 14. Regressions of near-global SSTAs onto the normalized (a, c, e, g, i, k)
829	original and (b, d, f, h, j, l) ENSO-independent IOBM indices during AMJ in 1979-
830	2022. The subscripts "-1", "0" and "+1" denote the preceding, current and following
831	years, respectively. Only regressed SSTAs significant at the 0.05 level are shown.
832	Figure 15. As in Figure 14, but for regressions of near-global SSTAs onto the IOBM
833	indices during JAS.
834	

836

Figure 1. Monthly distributions of lead-lag correlations for (a) monthly ENSO and
IOBM indices and for the 3-month mean ENSO index and the IOBM index during (b)
AMJ, (c) JAS and (d) OND. Blue, green, orange and red colors refer to the results for
the original IOBM index, the IOBM index removing the influence of the simultaneous
ENSO, the IOBM index removing the influence of the preceding NDJ ENSO and the
IOBM index removing the influences of both the simultaneous ENSO and the
preceding NDJ ENSO. Filled dots denote correlations significant at the 0.05 level.

846

Figure 2. (a) Time series of the annual WNP TC number and the four annual mean
IOBM indices investigated in this study from 1979 to 2022. The correlation
coefficients between TC number and any IOBM index are given in the legend, while
"*" and "**" denote significance at the 0.05 and 0.01 level, respectively. (b) Monthly
correlation coefficients between the time series of 3-month running mean WNP TC
number and the IOBM indices. Filled dots denote correlations significant at the 0.05
level.

Climatological Mean TCGFs

855

- **Figure 3.** Climatological mean TCGFs over the WNP during (a) AMJ, (b) JAS and
- 857 (c) OND from 1979–2022.

858

Regressions of TCGFs onto IOBM during AMJ

861 Figure 4. (a) Regressions of TCGFs onto the (a) original IOBM index during AMJ

862 1979–2022. (b) As in (a) but for the IOBM index removing the influence of the

simultaneous ENSO. (c) As in (a) but for the IOBM index removing the influence of

the preceding NDJ ENSO. (d) As in (a) but for the IOBM index removing the

865 influences of both the simultaneous ENSO and the preceding NDJ ENSO,

866 respectively. Black crosses in (a) -(d) denote regressions significant at the 0.05 level.

867

Regressions of TCGFs onto IOBM during JAS

Figure 5. As in Figure 4, but for regressions of TCGFs during JAS.

871

Regressions of TCGFs onto IOBM during OND

Figure 6. As in Figure 4, but for regressions of TCGFs during OND.

875

878 Figure 7. WNP TCGF differences between two phases of the ENSO-independent

- 879 IOBM for the seasons of (a-c) AMJ, (d-f) JAS and (g-i) OND. The left, middle and
- right columns refer to the differences of positive IOBM versus neutral, negative
- 881 IOBM versus neutral and positive IOBM versus negative IOBM, respectively.
- 882 Identified IOBM seasons are listed in Tables 1–3. Black crosses denote differences
- significant at the 0.05 level.

Figure 8. (a, c, e) Climatological mean DGPIs and (b, d, f) regressions of DGPIs onto
the ENSO-independent IOBM index during (a, b) AMJ, (c, d) JAS and (e, f) OND

Regressions of AMJ Environmental Variables onto IOBM

- 894 vertical velocity and (d) 850-hPa relative vorticity during AMJ onto the ENSO-
- independent IOBM index from 1979–2022. Black crosses denote regressions
- significant at the 0.05 level.

897

892

Regressions of JAS Environmental Variables onto IOBM

901

Regressions of OND Environmental Variables onto IOBM

905 OND.

906

Figure 12. Regressions of environment variables over the Indo-Pacific region onto

910 the IOBM index during (a, b) AMJ, (c, d) JAS and (e, f) OND. Regressed SST and

911 850-hPa wind vectors are displayed in the left column, while regressed outgoing

- 912 longwave radiation and 200-hPa wind vectors are displayed in the right column. Only
- 913 values of SST and outgoing longwave radiation significant at the 0.05 level are
- shown. Purple arrows denote regressed wind vectors significant at the 0.05 level.
- 915

908

Climatological 850-hPa Wind Stream

918 Figure 13. Climatological mean 850-hPa streamlines over the Indo-Pacific region

919 during (a) AMJ, (b) JAS and (c) OND.

920

Regressions of Seasonal SSTAs onto Normalized AMJ₀ IOBM Index (°C)

923 Figure 14. Regressions of near-global SSTAs onto the normalized (a, c, e, g, i, k)

924 original and (b, d, f, h, j, l) ENSO-independent IOBM indices during AMJ in 1979–

925 2022. The subscripts "-1", "0" and "+1" denote the preceding, current and following

926 years, respectively. Only regressed SSTAs significant at the 0.05 level are shown.

927

Regressions of Seasonal SSTAs onto Normalized JAS₀ IOBM Index (°C)

928

930 indices during JAS.

931

933	List of Tables
934	Table 1. List of AMJ seasons with positive, neutral and negative IOBM phases, as
935	well as corresponding TC frequencies over the WNP.
936	Table 2. As in Table 1, but for JAS.
937	Table 3. As in Table 1, but for OND.
938	Table 4. Correlation coefficients between TC frequency and environmental factors
939	during different seasons and over different regions from 1979 to 2022. "*", "**" and
940	"***" denote significance at the 0.05, 0.01 and 0.001 level, respectively.
941	

943 Table 1. List of AMJ seasons with positive, neutral and negative IOBM phases, as944 well as corresponding TC frequencies over the WNP.

Positiv	Positive IOBM		Neutral		Negative IOBM	
Year	TC Frequency	Year	TC Frequency	Year	TC Frequency	
1991	3	1979	3	1995	2	
1998	0	1980	6	2004	8	
2001	3	1981	5	2013	4	
2009	4	1986	5			
2014	4	1990	5			
2020	2	1994	4			
		1996	3			
		2002	4			
		2003	5			
		2005	2			
		2006	3			
		2007	2			
		2010	0			
		2012	5			
		2017	2			
		2018	4			
		2021	4			
Mean	2.7	Mean	3.6	Mean	4.7	

945

Positiv	Positive IOBM		Neutral		Negative IOBM	
V	TC	X7	TC	Year	TC	
Y ear	Frequency	Y ear	Frequency		Frequency	
1983	10	1979	12	1992	17	
2003	10	1980	12	1993	17	
2008	10	1981	16	1994	24	
2020	11	1984	14	1996	17	
		1986	11	2013	17	
		1990	14	2016	18	
		1991	15			
		1995	13			
		2000	16			
		2001	16			
		2005	15			
		2006	12			
		2014	11			
		2017	17			
		2018	18			
		2019	15			
		2021	11			
Mean	10.3	Mean	14.0	Mean	18.3	

Table 2. As in Table 1, but for JAS.

Positive IOBM		Neutral		Negative IOBM	
Year	TC	Year	TC	Year	TC
	Frequency		Frequency		Frequency
1980	6	1979	7	1981	7
1989	8	1990	9	1992	10
2001	7	2003	5	1993	9
2013	8	2008	6	1996	5
		2012	7	2005	4
Mean	7.3	Mean	6.8	Mean	7.0

Table 3. As in Table 1, but for OND.

Table 4. Correlation coefficients between TC frequency and environmental factors 953 during different seasons and over different regions from 1979 to 2022. "*", "**" and 954 "***" denote significance at the 0.05, 0.01 and 0.001 level, respectively.

	TC Frequency				
	AMJ	JAS	OND	OND	
	5°–25°N	10°-30°N	5°–25°N	5°-30°N	
	110°–170°E	120°–170°E	105°–140°E	140°-160°E	
DGPI	0.85***	0.52***	0.65***	0.42**	
850–200-hPa VWS	-0.39**	-0.01	-0.23	-0.06	
500-hPa MGZW	-0.50**	-0.34*	-0.39**	-0.24	
500-hPa Vertical Velocity	-0.71***	-0.46**	-0.60***	-0.34*	
850-hPa Relative Vorticity	0.78***	0.39**	0.55***	0.58***	