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10 ABSTRACT

11 Surrogate downscaling is one of the most promising applications of deep learning 

12 techniques in meteorology. Sekiyama et al. (2023), a companion paper to this study, 

13 employed a super-resolution surrogate downscaling (SRSD) scheme to construct 1-km 

14 gridded wind fields from 5-km gridded operational weather forecasts. The SRSD model 

15 functions at a much lower computational load than physics-based weather forecast models do 

16 to downscale wind fields. This study presents a dispersion simulation, in which fluid 

17 dynamics are physics-based but driven by the SRSD’s wind fields, reproducing air pollution 

18 plumes over complex terrain near Tokyo. The purpose of this study is to demonstrate the 

19 accuracy of not only the SRSD’s wind fields but also the dispersion simulation driven by the 

20 SRSD’s wind fields. The SRSD’s wind-driven dispersion model (1-km grid) yielded better 

21 statistical scores than a lower-resolution physics-based model (5-km grid). In the snapshots of 

22 air pollution plumes, the SRSD’s wind-driven dispersion reproduced reasonable distributions 

23 in physics, such as horizontally diverted and blocked plumes around steep terrain and 

24 highland areas, better than the lower-resolution physics-based model did. Although a perfect 

25 surrogate of higher-resolution physics-based dispersion models cannot be achieved, our 

26 strategy can support air pollution dispersion simulations considering the overwhelming 

27 difference in the wind downscaling forecast speed between the SRSD and physics-based 

28 schemes. This strategy must be beneficial for environmental emergency responses (EER).

29

30 Keywords: Advection, Air quality, Deep learning, Downscaling, Mesoscale model

31
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32 1. Introduction

33 Low-resolution atmospheric models never duplicate the grid averages of high-resolution 

34 atmospheric models. This is because numerical models demonstrate a resolution dependence 

35 of physical and topographical parameterizations. In particular, wind fields in the planetary 

36 boundary layer (PBL) are strongly affected by the complexity of model topography 

37 (Sekiyama and Kajino, 2020; Suzuki et al., 2021). Moreover, low-resolution models often 

38 have a front position bias near coastal areas, which is strongly dependent on model resolution 

39 (Sekiyama and Kajino 2020; Suzuki et al. 2021). Therefore, low-resolution models cannot be 

40 substituted for high-resolution models in the PBL even if low-resolution models have good 

41 performance for large-scale dispersion simulations (Sekiyama et al., 2015; Sekiyama and 

42 Kajino, 2021). Moreover, high-resolution models consume large amounts of computational 

43 resources as long as we use conventional methods (i.e., physics-based numerical simulations) 

44 for downscaling (i.e., a procedure to infer high-resolution variables from low-resolution 

45 variables). This deficiency in model simulation becomes critical in environmental emergency 

46 responses (EER; cf. World Meteorological Organization, 2006) over complex terrain. The 

47 EER situation requires a quick response, while computational resources for dispersion 

48 simulations are often limited.

49 Recent advancements in artificial intelligence (AI) technology have led to the 

50 development of surrogate downscaling methods (e.g., temperature/precipitation fields by 

51 Baño-Medina et al., 2020; wind fields by Höhlein et al., 2020 or Sekiyama et al., 2023). 

52 These studies employ a super-resolution (SR) technique (Yang et al., 2019; Wang et al., 

53 2020), where high-resolution photographic images are generated from low-resolution images 

54 via deep neural networks. The advantage of super-resolution surrogate downscaling (SRSD) 

55 is its computational speed. For example, Sekiyama et al. (2023) reported that their SRSD 

56 model could run three orders of magnitude faster than a physics-based downscaling model 
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57 when downscaling a single-layer wind field, even if the SRSD model was operated with only 

58 one GPU and the physics-based model was operated with more than one hundred CPUs.

59 Sekiyama et al. (2023) investigated the accuracy of the PBL wind fields constructed by 

60 their SRSD model, which downscaled 5-km gridded operational forecasts to 1-km gridded 

61 forecasts. They aimed at high-resolution air pollution dispersion simulations over complex 

62 terrain at low computational costs, where the SRSD model provided the time series of wind 

63 fields. They intended to perform dispersion simulations via a physics-based model. However, 

64 while they confirmed the good performance of the SRSD model, they did not perform 

65 dispersion simulations using the SRSD wind fields. The purpose of this study is to conduct 

66 the dispersion simulations left undone by Sekiyama et al. (2023). In this study, the 1-km 

67 dispersion simulations driven by the SRSD wind fields are compared with physics-based 1-

68 km and 5-km dispersion simulations.

69 Generally, model advection errors consist of wind velocity errors accumulated along 

70 advection routes (Sekiyama et al., 2017; 2021). Consequently, as Sekiyama and Kajino 

71 (2020) reported, pollution plume distributions sometimes do not match at all over complex 

72 terrain between low-resolution and high-resolution dispersion models even if the model 

73 errors in the wind fields are relatively small. Thus, the dispersion model performance in this 

74 study will be worse than the SRSD model performance in Sekiyama et al. (2023). However, 

75 even if perfect surrogate downscaling is not achieved, the concept of this study is that the 

76 SRSD wind fields could be used as an alternative to expensive physics-based wind fields, 

77 considering the overwhelming difference in the downscaling speed. Notably, the SRSD wind 

78 fields are merely the boundary conditions in this study. The dispersion models are not 

79 surrogated directly. Typically, for dispersion simulations, low-resolution wind fields can be 

80 easily obtained from governmental operational weather forecasts, for example, which are 

81 gridded 5-km datasets in Japan as of 2024. Moreover, the most expensive process for high-

Page 5 of 38 For Peer Review



5

82 resolution dispersion simulations is to obtain high-resolution wind fields. Therefore, once we 

83 obtain high-resolution wind fields, the difficulty of high-resolution dispersion simulations is 

84 greatly reduced. This paper shows the possibility of such economical dispersion simulations, 

85 which must be beneficial for EER systems.

86

87 2. Methodology

88 2.1 Meteorological Data

89 When Sekiyama et al. (2023) constructed 1-km gridded SRSD wind fields, they prepared 

90 meteorological variables as training, validation, and test data via 5-km and 1-km gridded 

91 weather forecast models. The datasets are available from Sekiyama (2023). The weather 

92 forecast models, which are based on a governmental operational model (Saito et al., 2006; 

93 2007; Japan Meteorological Agency, 2022), are physics-based, mesoscale-oriented, and 

94 nonhydrostatic and comprise 59 vertical layers from the surface to approximately 21 km. The 

95 1-km gridded weather forecast model is nested with the 5-km model. Both models are 

96 identical except for the horizontal area and resolution, time intervals, and cumulus 

97 parameterizations. The meteorological dataset was prepared for 10 years from 2010 to 2019 

98 via the boundary conditions derived from 3-hourly operational mesoscale analyses (Japan 

99 Meteorological Agency, 2022). The period from 2010 to 2017 was used for SRSD training. 

100 The data from 2018 were used for prediction examination, whereas the data from 2019 were 

101 used for validation.

102 Sekiyama et al. (2023) constructed SRSD wind fields by employing a convolutional deep 

103 neural network (CDNN), which combines a U-Net architecture (Ronneberger et al., 2015) 

104 and a ResNet architecture (He et al., 2016). The loss function contains four terms: the cosine 

105 dissimilarity, the magnitude difference, the divergence difference, and the curl difference for 
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106 horizontal wind fields. Given the target wind vector 𝒕𝑖 and the predicted wind vector 𝒚𝑖 at 

107 location i, the cosine dissimilarity (CosDis) and magnitude difference (MagDif) are defined 

108 as follows:

109 𝐶𝑜𝑠𝐷𝑖𝑠(𝒕𝑖,𝒚𝑖) = 1
2 1 ― 𝒕𝑖∙𝒚𝑖

‖𝒕𝑖‖‖𝒚𝑖‖ (1) and

110 𝑀𝑎𝑔𝐷𝑖𝑓(𝒕𝑖,𝒚𝑖) = | ‖𝒕𝑖‖ ― ‖𝒚𝑖‖ | (2),

111 where •, ‖‖, and || indicate the inner product, vector length, and absolute value, respectively. 

112 When the two vectors are identical, the cosine dissimilarity is zero. When the angles between 

113 the two vectors are 11.25° (1 in 32 directions), 22.5° (1 in 16 directions), and 45° (1 in 8 

114 directions), the cosine dissimilarities are 0.01, 0.04, and 0.15, respectively. An angle of 90° 

115 (180°) results in a cosine dissimilarity of 0.5 (1.0).

116 The predictands were 1-km gridded zonal (east‒west) and meridional (south‒north) 

117 winds. The predictors were the 1-km gridded land/water surface elevation and land/water 

118 ratio as well as the 5-km gridded zonal and meridional winds, temperature, humidity, vertical 

119 gradient of potential temperature, land/water surface elevation, and land/water ratio. 

120 Sekiyama et al. (2023) employed 20-member ensemble predictions to stably obtain a single-

121 layer wind field. The details of the weather forecast simulation and the SRSD process are 

122 described in Sekiyama et al. (2023). We use the same CDNN model and SRSD process as 

123 those of Sekiyama et al. (2023) to obtain the SRSD wind fields.

124 As in Sekiyama et al. (2023), the SRSD target domain was cropped to a 180 km × 180 km 

125 (Fig. 1a) from the physics-based model domain. The SRSD target domain contains 

126 mountainous, plain, and bay areas, such as Mount Fuji, the Tokyo city area, and Tokyo Bay. 

127 The sizes of the 5-km and 1-km gridded fields were 36 × 36 and 180 × 180 pixels, as shown 

128 in Figs. 1b and 1c. Although Sekiyama et al. (2023) computed only a single-layer surface 

129 wind field, we need multiple layers in the PBL to perform local dispersion simulations. 

Fig. 1
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130 Therefore, we separately trained six SRSD models for six layers using each layer’s 

131 meteorological variables as training data. The elevations of the six layers were 20 m (defined 

132 as the surface layer), 111 m, 248 m, 431 m, 659 m, and 932 m above ground. These 

133 elevations correspond to the first, third, fifth, seventh, ninth, and eleventh layers of our 

134 weather forecast model. Typically, the vertical resolution of weather forecast datasets 

135 available from official weather services is comparable to these elevations. The 1-km gridded 

136 SRSD wind fields were independently calculated at each layer via each SRSD model. All the 

137 meteorological data, both physics-based and SRSD-based, were prepared and stored hourly 

138 from January 1 to December 31, 2018, to input into the dispersion model.

139

140 2.2 Dispersion Simulations

141 Air pollution dispersion was calculated via an offline Eulerian regional air quality model, 

142 which was driven by the meteorological variables described in the previous section. This 

143 offline dispersion model was developed and evaluated by Kajino et al. (2012; 2018; 2019a; 

144 2019b), Mathieu et al. (2018), Sekiyama and Kajino (2020; 2021), and Sekiyama et al. (2015; 

145 2017; 2021). In this study, virtual pollutants are constantly (1 Tmol h-1) emitted from a 

146 single-grid surface source in Shinjuku, Tokyo, where Tokyo Metropolitan City Hall stands in 

147 the real world (35.69° N, 139.69° E; shown in Figs. 1b and 1c as the black filled circle 

148 “Tokyo”). This location is suitable for dispersion simulation tests over complex terrain 

149 because it is on the edge of the Kanto Plain, close to coastal and mountainous areas. The 

150 pollutants are assumed to be completely inert, volatile, and not affected by wet/dry 

151 depositions. The pollutants disappear outside the model domain. Therefore, the returning 

152 pollutants cannot be considered.
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153 The offline dispersion model shares the same horizontal and vertical domains as the 

154 SRSD wind fields (i.e., Figs. 1b and 1c). The model top height is identical to that of the sixth 

155 layer of the SRSD wind fields. The meteorological variables are input at 1-h intervals and 

156 linearly time-interpolated. This time-interpolation from 1-h intervals to dispersion time 

157 intervals (e.g., 3 sec for this study) has been commonly used in previous studies (Kajino et 

158 al., 2012; 2018; 2019a; 2019b; Mathieu et al., 2018; Sekiyama et al., 2015; 2017; 2021; 

159 Iwasaki et al., 2019; Sekiyama and Kajino, 2020; 2021). In these previous studies, the time-

160 interpolation worked well, with horizontal resolutions ranging from 250 m to more than 10 

161 km and vertical resolutions not significantly different from this study. The vertical resolution 

162 of the dispersion model is twice as high as that of the SRSD wind fields so that the input 

163 variables are linearly interpolated between adjacent SRSD layers. The dispersion simulations 

164 are continuously performed for one year from January 1 to December 31, 2018. The 

165 dispersion model outputs are stored at 1-h intervals to calculate statistical scores.

166 The offline dispersion model requires inputs of not only horizontal winds but also other 

167 meteorological variables, such as vertical wind, temperature, pressure, and eddy diffusivity. 

168 These variables are obtained from the meteorological datasets generated by the physics-based 

169 weather forecast models along with the training, validation, and test data. However, only 

170 vertical winds are diagnostically calculated from horizontal wind divergence/convergence via 

171 a mass-conservative scheme (Ishikawa et al., 1994). Note that this study does not downscale 

172 meteorological variables other than horizontal winds; i.e., we do not have 1-km gridded 

173 variables other than horizontal winds when performing dispersion simulations. Therefore, all 

174 the experiments other than the reference experiment utilize 5-km gridded meteorological 

175 variables except for 1-km gridded horizontal winds.

176 We perform four experiments in this study, as shown in Table 1. The reference simulation 

177 is driven by both the 1-km gridded horizontal winds and other meteorological variables 

Tab. 1
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178 calculated by the 1-km gridded physics-based weather forecast model. In the 1-km gridded 

179 wind experiment (hereafter named “1km-wind”), horizontal winds are derived from the 1-km 

180 gridded physics-based model, but the others are derived from the 5-km gridded physics-based 

181 model. In the 5-km gridded wind experiment (hereafter named “5km-wind”), all the variables 

182 are derived from the 5-km gridded physics-based model. The 1-km gridded SRSD horizontal 

183 winds are used only for the “SR-wind” experiment, in which the other variables are derived 

184 from the 5-km gridded physics-based model. Note that all the 5-km gridded variables are 

185 bilinearly interpolated to the 1-km model resolution. Therefore, the four experiments, 

186 including the 5-km wind experiment, are performed with a 1-km dynamical resolution.

187

188 2.3 Metrics for dispersion simulations

189 First, we assume that the reference simulation provides the truth of the concentration 

190 distributions. We investigate the performance of the dispersion simulations (1km-wind, SR-

191 wind, and 5km-wind) via several metrics. The metrics measure the degree of agreement in the 

192 air pollution plume distribution. One of the metrics is Pearson’s correlation (hereafter, just 

193 called “correlation”). Another is structural similarity (SSIM) (Wang et al., 2004; Doan et al., 

194 2021), which is defined as follows:

195 𝑆𝑆𝐼𝑀(𝒙,𝒚) =
4𝜇𝑥𝜇𝑦𝜎𝑥𝑦

𝜇2
𝑥 𝜇2

𝑦 𝜎2
𝑥 𝜎2

𝑦
(3),

196 where 𝜇𝑥, 𝜇𝑦, 𝜎2
𝑥, 𝜎2

𝑦, and 𝜎𝑥𝑦 are the mean length of vector 𝑥, the mean length of vector 𝑦, 

197 the variance of vector 𝑥, the variance of vector 𝑦, and the covariance of vectors 𝑥 and 𝑦, 

198 respectively. The original formula of the SSIM is more intricate for measuring the quality of 

199 television or movie pictures (Wang et al., 2004), which compares the brightness, contrast, and 

200 structural differences between two image vectors. However, Doan et al. (2021) indicated that 
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201 the original formula can be simplified to Eq. (3) and successfully used as a loss function to 

202 classify synoptic weather charts via machine learning. In this study, we use Eq. (3) to 

203 measure the similarity of the strength and structure between two distributions by averaging 

204 over the target area. The SSIM ranges from -1 to 1, where 1 indicates that the two 

205 distributions are identical. When SSIM = 0, the two distributions are completely independent.

206 Furthermore, we measure the similarity via statistical recall and specificity with a 

207 threshold concentration. Before these statistical scores are defined, the following numbers 

208 should be used:

209 True Positive (TP): the number of truly positive predictions that correctly exceed the 

210 threshold concentration when the truth exceeds it as well (i.e., correct hits);

211 True Negative (TN): the number of truly negative predictions that correctly fall short of the 

212 threshold concentration when the truth falls short as well (i.e., correct rejections);

213 False Positive (FP): the number of false-positive predictions that incorrectly exceed the 

214 threshold concentration, although the truth falls short (i.e., false alarms);

215 False Negative (FN): the number of false-negative predictions that incorrectly fall short of the 

216 threshold concentration although the truth exceeds it (i.e., misses).

217 Recall is defined as the ratio of the number of TPs to the number of positive reference events 

218 (TP+FN):

219 𝑅𝑒𝑐𝑎𝑙𝑙 ≡ 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁),           (0 ≤ 𝑅𝑒𝑐𝑎𝑙𝑙 ≤ 1). (4)

220 Generally, a lower recall score is inadequate for disaster prevention because it misses many 

221 positive events. However, when the TP is much smaller than others (i.e., rare events, such as 

222 tornado outbreaks, typhoon damage, and very narrow plume contamination), the recall score 

223 tends to be lower or unstable. Specificity is defined as the ratio of the number of TNs to the 

224 number of negative reference events (TN+FP):
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225 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ≡ 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃),           (0 ≤ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ≤ 1). (5)

226 A higher specificity score often accompanies a lower recall score, and vice versa. For 

227 example, if a weather forecaster always foretells a negative result, the specificity will be 1, 

228 but the recall will be 0. Therefore, if either of the scores is unnaturally good, the statistics are 

229 not very reliable and need attention.

230 Here, the crucial point is how the threshold concentration should be determined for 

231 correctly evaluating the recall and specificity. The threshold regulates the range of a plume 

232 distribution. Single-point source dispersion simulations, such as those in this study, typically 

233 produce a clearly edged pollution plume, with borders where concentration values jump by 

234 thousands or millions of times (Iwasaki et al., 2019). Therefore, small changes in the 

235 threshold concentration do not have a large effect on the statistical scores used to compare 

236 two plume structures or locations. We only need to adjust the number of digits for the 

237 threshold, as shown in Table 2. This table shows the percentages of TPs, FPs, and FNs for the 

238 SR-wind experiment throughout 2018 over the entire domain at the ground surface. When the 

239 threshold is low, plumes become broader, and then the TPs increase, which makes the recall 

240 unnaturally good. However, if the threshold is too high, not only the TPs but also the FPs and 

241 the FNs become very small (i.e., the TNs is extremely large), which makes the specificity 

242 unnaturally good. A good threshold should ensure that TPs is not too large but FPs and FNs 

243 are not too small. Therefore, we set the threshold concentration as 10-1 mol m-3 on the basis 

244 of the results in Table 2. In addition, the 10% of the domain width (18 pixels) around the 

245 borders was not used in the metric calculations to avoid the adverse effects of the lateral 

246 boundaries.

247

248 3. Results

Tab. 2
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249 3.1 Wind SRSD performance

250 Before investigating the performance of the dispersion simulations, we examine the 

251 accuracy of the SRSD wind fields constructed for this study. Figure 2 shows the monthly 

252 averaged CosDis and MagDif between the 1-km gridded target and the SRSD input/output at 

253 model layers 1 (L-1; 20 m), 3 (L-3; 248 m), and 6 (L-6; 932 m) over the whole domain. At 

254 model layer 1 (i.e., ground surface; black lines in Fig. 2a), the CosDis scores, i.e., the 

255 direction errors, are improved from 0.10–0.13 (approximately “1 off in 8 directions”) to 

256 0.04–0.07 (approximately “1 off in 16 directions”) by the SRSD model. This is consistent 

257 with the results of Sekiyama et al. (2023). The higher the elevation is, the smaller the 5-km 

258 gridded input direction errors (blue and red circles in Fig. 2a). This is because the influence 

259 of complex terrains decreases at higher layers. Nevertheless, the output direction errors (blue 

260 and red stars in Fig. 2a) are consistently smaller than the input direction errors at higher 

261 layers.

262 In contrast, the MagDif scores, i.e., the wind speed errors, are greater in the higher layers 

263 (L-3 and L-6) than in the lower layer (L-1), as shown in Fig. 2b. This is simply because 

264 higher altitude winds are faster than surface winds. At both L-3 and L-6, the input speed 

265 errors (blue and red circles; approximately 1.0–1.5 m s-1) are improved by half or 2/3 

266 compared to the output speed errors of approximately 0.6–0.9 m s-1 (blue and red stars). 

267 Although the absolute values are smaller than those at L-3 and L-6, the improvement ratios of 

268 the wind speeds at L-1 (ground surface) are almost the same, approximately half or 2/3, as 

269 shown in Fig. 2b (black circles and stars), where the surface wind speed errors are improved 

270 from 0.7–0.8 m s-1 to 0.4–0.5 m s-1. Overall, the SRSD models worked well, as presented by 

271 Sekiyama et al. (2023), not only for surface winds but also for upper-level winds in the PBL.

272 The results of the other layers (L-2, L-4, and L-5) for both the CosDis and MagDif scores 

273 are not shown in Fig. 2 but settle in the ranges easily inferred from the results of L-1, L-3, 

Fig. 2
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274 and L-6. In general, the performance degradation in the CosDis scores tends to occur when 

275 the wind velocity is large and simultaneously it changes abruptly (Sekiyama, 2023), as 

276 discussed later. On the other hand, the degradation in the MagDif scores occurs just when the 

277 wind velocity is large because if the error rate is constant, the absolute error becomes large 

278 when the wind is strong. In Japan, the wind speed tends to be higher in winter than in summer 

279 because of the monsoon except for the influence of typhoons. These are probably the sources 

280 of the seasonal variation in the scores.

281 3.2 Dispersion simulation performance

282 Figure 3 shows the monthly average correlation/SSIM/recall/specificity over the 

283 dispersion model domain at the ground surface for each experiment, assuming that the 

284 reference is the true plume concentration. In general, the 1km-wind simulation displays very 

285 high scores for all four indices (black and red stars in Fig. 3), although it does not perfectly 

286 match the reference. The SR-wind simulation (black and red circles) is always superior to the 

287 5km-wind simulation (black and red triangles) for all four indices. However, the difference 

288 between the 1km-wind and the SR-wind scores is greater than that between the SR-wind and 

289 5km-wind scores. In other words, the SR-wind dispersion is closer to the 5km-wind 

290 dispersion rather than the 1km-wind dispersion. Note that the specificity scores are always 

291 high throughout the year for all the experiments (black stars, circles, and triangles in Fig. 3b). 

292 The reason for this feature is described and discussed later.

293 Figure 4 shows the hourly time series of correlation/SSIM/recall/specificity over the 

294 dispersion model domain at the ground surface for each experiment. These values are not 

295 temporally averaged. This period (October 15–18, 2018) was selected because the plumes 

296 drastically changed in direction during a short period, as illustrated later. Unlike the monthly 

297 averages, Fig. 4 shows large fluctuations in each index. The 1km-wind simulation (black and 

298 red stars in Figs. 4a and 4b) displays the smallest fluctuations among the three experiments, 

Fig. 3

Fig. 4
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299 keeping the scores close to 1 except for the SSIM scores. The excellent performance of the 

300 1km-wind model indicates that dispersion models function well even when high-resolution 

301 meteorological variables other than horizontal winds cannot be obtained. In general, the 

302 SSIM score deteriorates sensitively even with very small strength/structure/location errors.

303 Compared with the 1km-wind simulation, the SR-wind and 5km-wind simulations are not 

304 stable. The SSIM, correlation, and recall for the 5km-wind simulation (black lines in Fig. 4) 

305 often decrease to less than 0.5, whereas those for the SR-wind simulation (red lines in Fig. 4) 

306 maintain higher performance in many cases. The specificity deteriorates on October 15 and 

307 16 (the first two days) but is almost perfect on October 17 and 18 (the latter two days) for all 

308 three experiments. In contrast, the recall is relatively good on the first two days but extremely 

309 poor on the latter two days. In particular, the recall for the 5km-wind simulation is 0.1–0.3 for 

310 a long time on the latter two days, which means that the 5km-wind simulation is completely 

311 nonfunctional during that time.

312 We therefore calculated the FN, TP, and FP areas of the simulated plume from the 5km-

313 wind experiment during this period (Fig. 4c). This classification chart clearly shows the 

314 difference between the first two days and the latter two days. The plume is larger in the first 

315 half and smaller in the latter half. Figure 5 shows snapshot maps of the horizontal plume 

316 distribution at the surface layer during this period. The lightest red plume areas represent the 

317 threshold concentration. Consistent with Fig. 4c, the snapshots illustrate that the plume is 

318 broadly sweeping at times A and B and narrowly trailing at times C and D. Note that the 

319 1km-wind result is almost indistinguishable from the “Target” reference to the naked eye 

320 even when the metric scores are not exactly 1.

321 The SR-wind result is more similar to the “Target” reference than to the 5km-wind result 

322 in all snapshots A, B, C, and D. Specifically, in snapshot A, the SR-wind plume moves 

323 toward the northwest just after it is emitted from the source, as the reference and 1km-wind 

Fig. 5
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324 plumes do, although they slightly meander. However, the 5km-wind plume flows in the 

325 opposite direction at this time, which has a completely different tail distribution over the 

326 mountainous region from the others. These detailed differences in the plume shapes make the 

327 SSIM and correlation significantly worse at time A. In contrast, the recall is not very poor at 

328 this time because the areas of the plumes are quite large and then overlap with each other, 

329 which makes the area of TPs relatively large, as shown in Fig. 4c.

330 In contrast, the plumes are very narrow and straight at time C for all the experiments. 

331 Consequently, the SSIM, correlation, and specificity scores are very high. In fact, this plume 

332 structure appears most frequently throughout the year, which makes the difference between 

333 the 1-km and 5-km gridded simulations seem small. However, when the plumes flow into the 

334 mountainous area, even if the tails are narrow, the distribution difference becomes 

335 pronounced, as shown in snapshot D. At this time, the plumes other than the 5km-wind plume 

336 divert to the north of the peninsula and then surround Mt. Fuji to avoid steep terrain and 

337 highland areas. Only the 5km-wind plume flows straight and does not divert to the north of 

338 the peninsula because the 5-km gridded topographies are too gentle to block the plume. 

339 Consequently, the 5km-wind result is extremely degraded at time D, except for the 

340 specificity.

341 While the recall scores are very poor, the specificity scores are close to 1 not only for the 

342 1km-wind and SR-wind simulations but also for the 5km-wind simulation at time D. During 

343 the latter two days, because the plume areas are very small (Fig. 4c), the FN/TP ratio 

344 becomes large (i.e., misses tend to be more frequent than correct hits because a small plume 

345 shift easily diminishes plume overlap). As a result, the recall becomes significantly worse. In 

346 contrast, under the circumstances of the latter two days, the TN area becomes extremely large 

347 because the entire area, with the exception of FNs, TPs, and FPs, within the model domain is 
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348 the TN area (i.e., the overwhelming majority is “no target and no prediction”). Consequently, 

349 the specificity score becomes unnaturally good.

350 When either the recall or the specificity is unnaturally good, the plumes are too broad or 

351 too narrow to adequately perform the model comparison. Therefore, the statistics that exclude 

352 these events should also be checked. The monthly averaged recall (specificity) is recalculated 

353 to select samples only when the recall (specificity) for the 5km-wind experiment is less than 

354 0.8 (Fig. 6). Here, the SSIM and correlation coefficient are calculated when either the recall 

355 or the specificity is less than 0.8. The recall is calculated with 75% of the samples, the 

356 specificity with 6% of the samples, and the SSIM/correlation with 77% of the samples. Even 

357 after recalculation, the change in the SSIM and the correlation is not large (see Figs. 3a and 

358 6a). On the other hand, the recall and specificity exhibit a large change after recalculation 

359 (see Figs. 3b and 6b). For both metrics, the scores for the 1km-wind simulation do not 

360 substantially change. In contrast, the score gaps between the SR-wind and 5km-wind 

361 simulations increase, as shown in Fig. 6 and listed in Table 3. This finding indicates that the 

362 SR-wind model is more robust than the 5km-wind model under the condition of model 

363 performance degradation.

364

365 4. Discussion

366 First, the 1km-wind simulation is an unrealistic setup experiment, where the horizontal 

367 winds are obtained from the high-resolution physics-based model nested by a low-resolution 

368 model, but the other meteorological variables cannot be obtained from the high-resolution 

369 model. It is not surprising that the 1km-wind simulation shows extremely high agreement 

370 with the reference run because both are driven by the same high-resolution wind fields. 

371 Instead, the fact that the 1km-wind simulation maintains high scores throughout the year 

Fig. 6

Tab. 3
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372 indicates that high-resolution dispersion models function well if only high-resolution 

373 horizontal wind fields are available. The other input variables are not top priorities. 

374 Therefore, developing a dispersion model driven by the combination of high-resolution 

375 horizontal winds and low-resolution other meteorological variables (other than the wind) is 

376 important.

377 A comparison of the snapshot maps (Fig. 5) reveals that the difference between the SR-

378 wind and 5km-wind plumes is evident. The SR-wind plume has distributions that reflect real 

379 terrain structures (e.g., snapshot A or D), but the 5km-wind plume does not. Notably, the 

380 SRSD model is able to reproduce diverted and blocked wind flows around steep terrain and 

381 highland areas. We do need a high-resolution dispersion model when the wind field is 

382 affected by complex terrain and low-resolution models cannot reproduce diverted and 

383 blocked plumes.

384 Previous studies on the Fukushima nuclear accident (Nakajima et al., 2017; Sekiyama and 

385 Kajino, 2020) revealed that air pollution plumes flowing in Fukushima (150 km apart from 

386 the Tokyo area) were disturbed by complex terrain for only 10% or less of the total time 

387 during the three weeks after the accident. The wind fields used in this study were also often 

388 stable (i.e., not disturbed) throughout the year. When the wind field is not disturbed by 

389 complex terrain, the difference between the high-resolution and low-resolution simulations is 

390 small, as shown in snapshot C (Fig. 5). Therefore, to clearly distinguish the performance of 

391 the SRSD-wind model from that of the 5km-wind model, it is reasonable to average the 

392 statistical scores only when the plumes are disturbed (i.e., recall or specificity less than 0.8 in 

393 this study), as shown in Fig. 6.

394 The SR-wind model is more accurate than the 5km-wind model is, especially when the 

395 statistics deteriorate, i.e., the wind fields are disturbed, as shown by the comparison between 

396 Figs. 3b and 6b. In addition, Fig. 6 shows that there is a seasonal variation in the performance 
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397 of the SR-wind and 5km-wind models. For the specificity (black lines in Fig. 6b), the SR-

398 wind model scores significantly higher than the 5km-wind model in the winter and spring 

399 seasons. The SR-wind scores are comparable to the 1km-wind scores in those seasons. In 

400 contrast, the difference between the SR-wind and 5km-wind scores decreases in the summer. 

401 Similarly, for the recall (red lines in Fig. 6b), the SR-wind model performs better in the 

402 winter, spring, and late fall seasons. However, its performance worsens from July to 

403 September. The SSIM and correlation scores for the SR-wind and 5km-wind models are also 

404 extremely poor in August and September.

405 The main reason for this poor summer performance might be the passage of typhoons 

406 over the model domain. According to the Japan Meteorological Agency (JMA), the Tokyo 

407 area was approached by typhoons once in June, once in July, twice in August, twice in 

408 September (partly in October), and zero times in other months in 2018 

409 (https://www.data.jma.go.jp/fcd/yoho/typhoon/statistics/index.html; in Japanese). Generally, 

410 the SRSD performance for wind fields (Sekiyama, 2023) deteriorates significantly when the 

411 wind is stormily strong and its direction/speed changes abruptly. Therefore, the performance 

412 is probably affected more by strong storm systems such as typhoons than by regular 

413 extratropical cyclones or winter monsoon winds. It is a future challenge to improve the 

414 accuracy of plume dispersion downscaling over complex terrain under the extreme 

415 conditions. Nevertheless, the SR-wind model performs better than the 5km-wind model even 

416 in the typhoon season and much better in other seasons. Therefore, given the small 

417 computational burden required for SRSD prediction, its use in emergency forecast systems, 

418 such as the EER system over complex terrain, is highly promising.

419

420 5. Conclusion
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421 We confirmed that the wind fields constructed by the SRSD model, i.e., a deep learning 

422 technique, were able to drive a physics-based dispersion model stably for one year. The 

423 dispersion model with the SRSD wind fields was robust and yielded better scores on average 

424 than a lower-resolution physics-based model. In the snapshots of air pollution plumes, the 

425 dispersion model with the SRSD wind fields reproduced reasonable distributions in physics, 

426 such as horizontally diverted and blocked plumes around steep terrain and highland areas, 

427 better than a lower-resolution physics-based model. Although a perfect surrogate of high-

428 resolution physics-based models cannot be achieved, our strategy was capable of supporting 

429 air pollution dispersion models, given the overwhelming speed of the wind downscaling 

430 calculation. Sekiyama et al. (2023) reported that the SRSD model downscaled a single-layer 

431 wind field three orders of magnitude faster than a physics-based model even when the SRSD 

432 model was operated with only one GPU and the physics-based model was operated with 128 

433 Xeon CPUs.

434 On the other hand, in the field of technology for global weather forecasts, the 

435 development of AI-powered forecast models that do not use physics rapidly progressed after 

436 2023 (e.g., Bi et al., 2023; Lam et al., 2023; Bodnar et al., 2024). These models use AI (i.e., 

437 deep neural networks) for water vapor dispersion calculations. Therefore, their architectures 

438 are likely to be directly applicable to air pollution dispersion simulations, although successful 

439 global calculations do not necessarily guarantee successful mesoscale calculations over 

440 complex terrain. Moreover, the AI-powered forecast models require enormous computational 

441 resources for training processes. For example, while Sekiyama et al. (2023) spent half a day 

442 with a single GPU for the AI training, Bi et al. (2023) spent 16 days with approximately 200 

443 GPUs, and Bodnar et al. (2024) spent two and a half weeks with 32 GPUs. Each GPU is 

444 much higher-priced than a high-end CPU. In this respect, our study uses the AI model only 

445 for wind field downscaling; therefore, its training process is overwhelmingly inexpensive in 
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446 comparison with that of AI-powered forecast models. Taking advantage of this economical 

447 approach, we should also aim for the social EER implementation of an AI/physics hybrid 

448 model, such as the dispersion model with the SRSD wind fields.

449
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588 List of Figures

589 Fig. 1 (a) Model domain of the 5-km gridded physics-based weather forecast model used for 

590 meteorological variable preparation. The target domain of the super-resolution surrogate 

591 downscaling with the topography of the (b) 5-km gridded and (c) 1-km gridded weather 

592 forecast models. The blue areas indicate water surfaces.

593

594 Fig. 2 Monthly averaged (a) cosine dissimilarity and (b) magnitude difference between the 

595 1-km gridded target (i.e., truth) and the super-resolution surrogate downscaling input/output 

596 over the model domain at model layers 1 (20 m), 3 (248 m), and 6 (932 m).

597

598 Fig. 3 Monthly averaged (a) Pearson’s correlation, structural similarity (SSIM), (b) 

599 specificity, and recall over the dispersion model domain at the ground surface for each 

600 experiment. The target is the reference experiment result with a threshold of 10-1 mol m-3.

601

602 Fig. 4 Hourly time series of (a) Pearson’s correlation, structural similarity (SSIM), (b) 

603 specificity, recall, (c) and the areas of FN/TP/FP over the dispersion model domain at the 

604 ground surface for 4 days from 00 UTC October 15 to 00 UTC October 19, 2018. The 

605 threshold for specificity, recall, and plume area definition is 10-1 mol m-3.

606

607 Fig. 5 Snapshots of the surface horizontal plume distribution at times A, B, C, and D shown 

608 in Fig. 4a. The “Target” illustrates the reference experiment result. The lightest red areas 

609 represent the threshold concentration of 0.1 mol m-3. All the topographical contours are 

610 drawn on the basis of the elevation and resolution in the 1-km gridded model.
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612 Fig. 6 Same as Fig. 3, but the recall (specificity) is averaged only when the recall 

613 (specificity) for the 5km-wind experiment is less than 0.8.

614
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616 Fig. 1 (a) Model domain of the 5-km gridded physics-based weather forecast model used for 

617 meteorological variable preparation. The target domain of the super-resolution surrogate 

618 downscaling with the topography of the (b) 5-km gridded and (c) 1-km gridded weather 

619 forecast models. The blue areas indicate water surfaces.
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622 Fig. 2 Monthly averaged (a) cosine dissimilarity and (b) magnitude difference between the 

623 1-km gridded target (i.e., truth) and the super-resolution surrogate downscaling input/output 

624 over the model domain at model layers 1 (20 m), 3 (248 m), and 6 (932 m).
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628 specificity, and recall over the dispersion model domain at the ground surface for each 

629 experiment. The target is the reference experiment result with a threshold of 10-1 mol m-3.
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632 Fig. 4 Hourly time series of (a) Pearson’s correlation, structural similarity (SSIM), (b) 

633 specificity, recall, (c) and the areas of FN/TP/FP over the dispersion model domain at the 

634 ground surface for 4 days from 00 UTC October 15 to 00 UTC October 19, 2018. The 

635 threshold for specificity, recall, and plume area definition is 10-1 mol m-3.
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637

638 Fig. 5 Snapshots of the surface horizontal plume distribution at times A, B, C, and D shown 

639 in Fig. 4a. The “Target” illustrates the reference experiment result. The lightest red areas 

640 represent the threshold concentration of 0.1 mol m-3. All the topographical contours are 

641 drawn on the basis of the elevation and resolution in the 1-km gridded model.
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643

644 Fig. 6 Same as Fig. 3, but the recall (specificity) is averaged only when the recall 

645 (specificity) for the 5km-wind experiment is less than 0.8.

646
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657 Table 1 Preparation methods and horizontal resolutions of the meteorological fields 

658 used for each experiment.

Experiment
Horizontal 

wind

Other 

variables

Reference
Physics-based 

1-km grid

Physics-based 

1-km grid

1km-wind
Physics-based 

1-km grid

Physics-based 

5-km grid

SR-wind
SRSD-based 

1-km grid

Physics-based 

5-km grid

5km-wind
Physics-based 

5-km grid

Physics-based 

5-km grid

659

660 Table 2 Impact of thresholds on true/false segmentations for plume simulations.

Threshold 

concentration 

[mol/m3]

True 

Positive

False 

Positive

False 

Negative

10-4 26.5% 2.7% 4.8%

10-3 21.8% 3.1% 4.4%

10-2 16.0% 3.3% 3.9%

10-1 9.2% 3.3% 3.0%

1 2.8% 2.1% 1.6%
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10 0.5% 0.6% 0.4%

102 0.1% 0.1% 0.1%

661

662 Table 3 Statistical scores for the whole period and the selected cases. In the selected 

663 cases, the recall (specificity) is averaged only when the recall (specificity) for the 5km-wind 

664 experiment is less than 0.8.

Experiment Score Whole Selected Diff.

Recall 0.92 0.91 -0.01
1km-wind

Specificity 0.99 0.97 -0.02

Recall 0.72 0.68 -0.04
SR-wind

Specificity 0.96 0.84 -0.11

Recall 0.63 0.55 -0.08
5km-wind

Specificity 0.94 0.71 -0.23

665

Page 38 of 38For Peer Review




