

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is DOI:10.2151/jmsj.2025-017 J-STAGE Advance published date: February 19, 2025 The final manuscript after publication will replace the preliminary version at the above DOI once it is available. Structure, trend and variability of the semiannual oscillation in the equatorial middle

atmosphere in JRA-3Q and in satellite observations

Kiyotaka Shibata and Hiroaki Naoe

Meteorological Research Institute

February 4, 2025

1

Abstract

3	The Japanese Reanalysis for Three Quarters of a Century (JRA-3Q) with top at 0.01 hPa (high-top)
4	is investigated focusing on the semiannual oscillation (SAO) in the tropical middle atmosphere,
5	together with the other high-top reanalyses, ERA5 and MERRA-2, and the MLS and SABER
6	satellite data. By removing the annual component and using the SAO component alone in the
7	SABER data spanning the recent two decades, the seasonal cycle of the mesospheric SAO (MSAO)
8	at 0.01 hPa is found to have significantly larger first cycle than the second cycle in a year with the
9	largest easterly wind in boreal spring. The seasonal cycle of the stratospheric SAO (SSAO) at 1 hPa
10	shows commonly in both satellite data that the easterly wind amplitude in boreal winter is double as
11	large as that in boreal summer, while the westerly wind amplitudes in boreal spring and autumn are
12	nearly the same. The two satellite data exhibit that the MSAO amplitude has significant and
13	negative trend, about -5 and -7 m s ⁻¹ decade ⁻¹ at 0.01 hPa in MLS and SABER, respectively. JRA-
14	3Q reproduces well the seasonal cycle of the SAO, i.e., the calendar-locked downward propagation
15	of the SAO from 0.01 hPa to 10 hPa with clear separation between the MSAO and SSAO, despite
16	the MSAO being substantially underestimated compared to the satellite observations. The SSAO
17	amplitude at 1 hPa is significantly increasing in JRA-3Q over about three decades from 1970s to
18	2000s, and it exhibits slight decreasing trend over the recent two decades from 2000s. Before 1970s
19	the SSAO wavelet spectra are less concentrated around 6 months and the wavelet spectra around

20	the annual component are significantly larger than those after 1970s in JRA-3Q and ERA5. None of
21	the reanalyses show any hint of the MSAO significant and negative trend at 0.01 hPa.
22	
23	
24	
25	
26	
27	Keywords: JRA-3Q; MLS; SABER; SAO; middle atmosphere; reanalysis
28	

29 1. Introduction

The atmospheric reanalysis provides temporally and spatially uniform data by assimilating 30 various observations such as surface, radio sonde, ship and satellite, which are irregularly 31 distributed in space, with a single numerical forecast model of the same version throughout one 32 33 specified long term. This single forecast model assimilation over a lengthy period gives temporal 34 and spatial consistency to the reanalysis data, which hence is free from abrupt inhomogeneities and 35 discontinuities stemming from changes in assimilation methods and in retrieval algorithms. 36 However, there arise inevitably errors due to changes in the quality and/or quantity of the input observation data (e.g., Fujiwara et al. 2017; SPARC 2022). The reanalysis data, nonetheless, comes 37 38 to be indispensable for credible and accurate analyses of past atmospheric and climatic phenomena 39 consequently. There are several reanalysis centers, which have issued global atmospheric reanalysis 40 datasets. For example, European Centre for Medium-Range Weather Forecasts (ECMWF), Japan 41 Meteorological Agency (JMA), National Aeronautics and Space Administration (NASA), National 42 Oceanic and Atmospheric Administration (NOAA) / National Centers for Environmental Prediction 43 (NCEP) of the NOAA. These centers have continually released update versions of their reanalyses 44 in certain time intervals.

Following the first long-term reanalysis JRA-25 (Onogi et al. 2007) and the second one JRA-55
(Kobayashi et al. 2015; Harada et al. 2016), the JMA released the third one, the Japanese
Reanalysis for Three Quarters of a Century (JRA-3Q) in late 2023 (Kosaka et al. 2024). One major

48	advantages of JRA-3Q over JRA-55 is the longer (by ~10 years) period starting from September
49	1947 and the increase in horizontal and vertical resolutions with an extension of the vertical
50	domain, i.e., higher model lid, in the global forecast model. The horizontal resolution becomes finer
51	from ~55 km (triangular truncation wavenumber with linear grid of 319; TL319) to ~40 km
52	(TL479) and the top level comes to be higher from 0.1 hPa to the mesopause of 0.01 hPa with an
53	increase in the number of vertical levels from 60 to 100 (Kosaka et al. 2024). To be specific in the
54	SAO altitude range above 10 hPa, JRA-55 has 14 intrinsic levels to 0.1 hPa, while JRA-3Q has 19
55	intrinsic levels to 0.01 hPa (15 levels to 0.1 hPa and 4 levels above). As a result, equatorial and
56	gravity waves as well as Rossby waves propagating upward from the troposphere are expected to
57	be better represented in the finer-grid and deeper atmosphere and so are their momentum
58	depositions in the middle atmosphere in JRA-3Q, likely leading to more realistic atmospheric
59	circulation, particularly in the upper stratosphere and mesosphere, where observation inputs for the
60	assimilation are much less than below. Certainly, JRA-3Q reproduced larger (more realistic)
61	semiannual components in zonal wind at the stratopause than JRA-55 (e.g., Kawatani et al. 2020;
62	SPARC 2022).

In the equatorial upper stratosphere and mesosphere, the zonal wind reverses direction with a season(calendar)-locked 6–month period, and this semiannual oscillation (SAO) is the one of the dominant variabilities there. Below the SAO altitudes in the tropical stratosphere there is the quasibiennial oscillation (QBO), wherein the westerly and easterly winds alternate with broad intervals

67	from about 20 to 40 months, centered at about 28 months. In the SAO and QBO the atmospheric
68	waves excited predominantly by strong convective activity in the troposphere play a crucial role in
69	the forcing, because they can freely propagate upward to the middle atmosphere due to the weak
70	Coriolis force in the tropics (e.g., Andrews et al. 1987). The SAO was first observed by rocket-
71	sondes and radars at stations near the equator (e.g., Reed 1966; Groves 1972; Hirota 1978) and
72	these observations indicate that the SAO can be divided into the stratopause (or stratospheric) SAO
73	(SSAO) (Reed, 1966) and the mesopause (or mesospheric) SAO (MSAO) (Groves 1972). The
74	SSAO covers the altitude range from about 40 to 60 km with maximum amplitude at about 50 km
75	(~1 hPa), while the MSAO dominates at altitudes from about 70 to 90 km with maximum
76	amplitude at about 80 km (~0.01 hPa).
77	The SSAO momentum budget is maintained mainly by the momentum deposition due to the
78	equatorial and gravity waves excited in the troposphere and propagating upward, and by the

requatorial and gravity waves excited in the troposphere and propagating upward, and by the momentum flow due to the mean meridional flow across the equator, as demonstrated by observation analyses (e.g., Hitchman and Leovy 1986; Ray et al. 1998), mechanistic models (e.g., Dunkerton 1979; Holton and Wehrbein 1980), and general circulation models (e.g., Hamilton and Mahlman 1988; Jackson and Gray 1994). The importance of cross-equatorial meridional flow in the mechanism of the SSAO is different from that of the QBO, while wave forcing contributes to both. In perpetual season simulations, in which there is no semiannual meridional flow between the two hemispheres, the SSAO cannot be reproduced (Shibata 2022). The SSAO in the dynamical field

86	(wind and temperature) also induces the SSAO in the chemistry field such as ozone distribution
87	(e.g., Maeda 1984; Ray et al. 1994), and thereby reproducing the SSAO wind and temperature as
88	accurate as possible in the reanalysis is linked to the further understanding of the atmospheric
89	chemistry in the middle atmosphere.
90	The SAO in the reanalysis has been investigated mainly for the SSAO (e.g., Kawatani et al.
91	2020; SPARC 2022) because the forecast models for the reanalysis did not have sufficient levels in
92	the mesosphere, wherein the MSAO dominates. However, in recent years, there appeared high-top
93	forecast models with better vertical resolution in the mesosphere (\sim 50–80 km) and they contributed
94	to new generation reanalysis datasets such as the fifth generation ECMWF atmospheric reanalysis
95	of the global climate (ERA5) (Hersbach et al. 2020) by ECMWF, the Modern-Era Retrospective
96	Analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al. 2017) by NASA
97	Global Modeling and Assimilation Office (GMAO), and JRA-3Q by JMA. Of these high-top
98	reanalyses, Ern et al. (2021) analyzed the MSAO as well as the SSAO in ERA5 and MERRA-2 up
99	to \sim 75 km and compared with those in the SPARC climatology (SPARC 2002; Randel et al. 2004)
100	and satellite data such as Aura Microwave Limb Sounder (MLS) and Sounding of the Atmosphere
101	using Broadband Emission Radiometry (SABER) up to ~90 km. The ERA5 SAO is also reported
102	up to 0.01 hPa (~80 km) in SPARC (2022) or equivalently, in the ECMWF website
103	(https://confluence.ecmwf.int/display/CKB/ERA5%3A+The+QBO+and+SAO).

104	As stated before, the high-top (0.01 hPa) reanalysis data of JRA-3Q is just recently released in
105	late 2023 and thus the performance of the JMA reanalysis data for the SAO is investigated only in
106	the previous version JRA-55 (e.g., Kawatani et al. 2020; Ern et al. 2021; SPARC 2022). In line
107	with the new release of JRA-3Q, this paper is to investigate both the SSAO and MSAO in JRA-3Q
108	up to the mesopause (~0.01 hPa), together with those in the ERA5, MERRA-2, MLS, and SABER
109	data, including the long-term trend and variability. The properties of the QBO in JRA-3Q is to be
110	presented in another paper (Naoe et al. 2025). In this paper, the SAO is literally defined and
111	extracted as the component which covers the spectrum, approximately centered at 6 months, from 3
112	to 8 months. By this preprocessing the seasonal cycle of the SAO comes to be free from the effect
113	of the annual component. This is because the seasonal cycle made by the same month average of
114	unfiltered data over multiyear inevitably includes not only the semiannual component but also the
115	annual component significantly, depending on the altitudes, as demonstrated later. The rest of this
116	paper is organized as follows. Section 2 describes the details of the reanalysis data and satellite
117	data, and the methods in processing these data. Section 3 gives the results, wherein the
118	climatological seasonal cycle, trend, and variability of the SAO in the recent two decades are
119	presented. A discussion on the SSAO trend and behavior in JRA-3Q and ERA5 over longer time
120	scales from 1950s or 1960s are provided in Section 4, and the conclusions are presented in Section
121	5.

122

123	2.	Data a	ind met	hods
145	∠.	Data a	inu met	nous

124 2.1 Satellite observations and reanalysis data

125 In this study all the quantities are zonally averaged, so that we omit the term "zonal mean" in 126 all the variables. The four seasons are referred to the boreal ones, i.e., spring means March-May, and so on. As observation data, we used upper-stratospheric and mesospheric temperatures 127 128 retrieved primarily from bands near O₂ spectral lines at 118 GHz and 239 GHz measured by the 129 MLS instrument on the Aura satellite, together with winds calculated from the MLS geopotential 130 height data. Both the MLS temperature and geopotential height data were taken from level 3 131 monthly binned datasets of version 5.0x (Livesey et al. 2022), the latitudinal resolution of which is 132 4 degrees with the center latitude at the equator (they are available on line from 133 https://acdisc.gesdisc.eosdis.nasa.gov/data/Aura MLS Level3/). The vertical resolution varies with 134 altitude. For example, 13 pressure levels from 10 to 1 hPa; 6 pressure levels from 1 to 0.1 hPa; and 135 3 pressure levels from 0.1 to 0.01 hPa. The MLS data covers about two decades (~19.5 years) from 136 August 2004 to December 2023 in the present study.

We also utilized the SABER data, i.e., the data measured by SABER on the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) spacecraft, version 2.0 level 2A pressure-level data for years from January 2002 to December 2023 (they are available on line from https://data.gats-inc.com/saber/custom/Temp_O3_H2O/v2.0/). The SABER data along satellite orbits are averaged every day in bins of 24° in longitude, 5° in latitude, and 2 km in log-pressure

vertical coordinates. To remove local-time variation components including diurnal and semi-

143	diurnal tides, we followed the method of Iwao and Hirooka (2021) and compiled monthly and zonal
144	mean temperature and geopotential height data from 2002 to 2023.
145	The MLS and SABER zonal wind off the equatorial area is calculated from the geopotential
146	height data using the gradient wind balance equation, which is a quadratic equation of zonal wind
147	and represents that the pressure-gradient force balances the Coriolis force and the centrifugal force.
148	Randel (1987) demonstrated that the gradient wind yielded good performance in the middle
149	atmosphere. On the other hand, in the vicinity of the equator the gradient wind can introduce large
150	errors because of the smallness in the meridional gradient of the geopotential height (Smith et al.,
151	2017). So that, the zonal wind immediately near the equator is evaluated through cubic spline
152	interpolation of the gradient wind outside the near-equator latitudes as in Smith et al. (2017). To be
153	specific, the MLS equatorial zonal winds at 0 and \pm 4 degrees were interpolated from the gradient
154	winds at ± 8 and ± 12 degrees. We used the MLS geopotential height data mostly up to 0.01hPa
155	unless otherwise specified. This is because the MLS data (version 4.2) above 0.01hPa were not
156	recommended for use due to too much noisiness in wind calculations at the equator (Smith et al.
157	2017). We followed this as for the version 5.0x MLS data. The SABER zonal wind is also obtained
158	from geopotential height using the same method as that for the MLS data except that the equatorial
159	zonal winds at 0 and ± 5 degrees were interpolated from the gradient winds at ± 10 and ± 15 degrees.
160	In addition, the high-top (0.01hPa) reanalyses JRA-3Q, ERA5 and MERRA-2 are also

161	analyzed, which span a period from 1948 to 2023 for JRA-3Q, from 1940 to 2023 for ERA5 and
162	from 1980 to 2023 for MERRA-2. The latitudinal resolution of these three high-top reanalysis data
163	is commonly 1.25 degrees, while the number of vertical layers in the SAO altitude range, from 10
164	to 0.01 hPa, is 11 for JRA-3Q and ERA5, and 14 for MERRA-2. Furthermore, previous versions of
165	the JMA and ECMWF reanalyses, i.e., JRA-55, ERA-Interim (Dee et al. 2011), and ERA-40
166	(Uppala et al. 2005) are also used for comparison, although not shown.
167	
168	2.2 Method of filtering, trend analysis, and lagged correlation
169	In the tropical upper stratosphere and mesosphere, the power spectrum analysis demonstrates
170	that the SAO is the most dominant variability and the ANN is the second but modest variability
171	(not shown). In addition, the phase of the ANN of zonal wind varies rather little with altitude and is
172	approximately antisymmetric about the equator (Garcia et al, 1997), being in a distinct contrast to
173	the phase of the SAO, which results in very small ANN amplitude when averaged over the tropical
174	latitudes straddling the equator. Hence, the seasonal (or annual) cycle, i.e., multiyear average over
175	the same month, of temporally unfiltered zonal wind has been interpreted to represent the SAO in
176	most papers (e.g., Garcia et al. 1997; Smith et al. 2017; Kawatani et al. 2020; Ern et al. 2021;
177	SPARC 2022), despite not explicitly referred to so. However, filtered zonal wind and temperature
178	are also used in evaluating the SAO amplitudes (Kawatani et al. 2020; SPARC 2022), resulting in
179	some ambiguity in the SAO evaluation. As demonstrated below, the effect of the ANN on the

180 seasonal cycle of SAO is not necessarily small enough to be neglected except over the equator.

181	We defined the SAO as signals possessing periods from 3 to 8 months, and the annual
182	component (ANN) as those from 9 to 15 months in this study. The SAO and ANN are derived by
183	the Lanczos bandpass filter (Duchon 1979) with the cutoff periods mentioned above. On the other
184	hand, to investigate the temporal behaviors of the SAO and ANN amplitudes, their amplitudes are
185	obtained by the wavelet transform method, which provides a temporally local spectrum as used in
186	the QBO analyses (e.g., Fischer and Tung 2008; Shibata and Deushi 2012).
187	In the wavelet transform method, a Morlet mother wavelet (plane wave modified by a
188	Gaussian envelope) with non-dimensional frequency $\omega_0=6$ (e.g., Torrence and Compo 1998) was
189	used, so that the result of the wavelet analysis incorporates average information within
190	approximately three cycles centered at the time and frequency concerned. After the wavelet
191	calculation, wave amplitude in a narrow spectral interval was evaluated from the square root of its
192	wavelet power, assuming a monochromatic wave as in Shibata and Naoe (2022). Namely, the SAO
193	amplitude is evaluated as a square root of $2 \cdot P_{SAO}$, where P_{SAO} is the sum of the SAO wavelet power
194	spectra between 3 and 8 months. The ANN amplitude is similarly calculated from the sum of ANN
195	wavelet power spectra P_{ANN} between 9 and 15 months as a square root of $2 \cdot P_{ANN}$.
196	A regression line is calculated for the SAO amplitude to obtain its trend, in which the slope
197	and intercept were evaluated by Sen's slope estimator (Sen 1968) and the method by Siegel (1982),
100	

11

respectively. This is because Sen's slope estimator is significantly more robust than the least

199	squares method, because the former is insensitive to outliers. Statistical significance of the trends
200	was made using the Mann-Kendall test for Sen's slope estimator.
201	Lagged correlation coefficients of the SAO amplitude between a reference altitude and other
202	altitudes are calculated, and a statistical test of the correlation coefficients is evaluated by a Monte-
203	Carlo simulation with phase randomization (e.g., Minobe and Nakanowatari 2002; Shibata and

- 204 Naoe 2020). In the simulation, a large number (10,000 in this study) of surrogate time series are
- 205 generated by an inverse Fourier transform with the same power spectra as the original time series at
- 206 the reference altitude but with random phases, and then, surrogate correlation coefficients between
- 207 the two time-series are calculated. The relative position of the real correlation coefficient in the
- sorted distribution of the surrogate correlation coefficients gives the level of confidence.
- 209

210 3. Result

211 3.1 Climatological SAO in the MLS and SABER data

Figure 1 depicts the latitude-height cross sections of the SAO amplitudes, obtained through the wavelet transform method, of the MLS and SABER zonal winds and temperatures from 10 to 0.005 hPa between 30°S and 30°N for the periods 2004–2023 and 2002–2023. The reason of expanding the figure top as high as to 0.005 hPa is to qualitatively confirm that the MSAO maximizes around or just below the mesopause altitude (~0.01 hPa) for zonal wind and temperature. The MSAO (the maximum at 0.015 hPa) and SSAO (the maximum at 1 hPa) of the

218	MLS zonal wind are both asymmetric with respect to the equator, and the SSAO shows larger
219	asymmetry and wider latitudinal extent than the MSAO. On the other hand, in the SABER zonal
220	wind the MSAO is symmetric and the SSAO exhibits weakly asymmetric structure with both being
221	of similar latitudinal extent. The peak values of the MSAO are about 25 m s ⁻¹ around 0.015 hPa
222	and 5°S for MLS and about 30 m s ⁻¹ around 0.01 hPa over the equator for SABER, while the peak
223	values of the SSAO are commonly about 30 m s ⁻¹ around 1 hPa but at different latitudes, 12°S for
224	MLS and 8°S for SABER.
225	The MSAO and SSAO amplitude of temperature are almost symmetric with respect to the
226	equator maximizing over the equator both in MLS and SABER, while the MSAO amplitude is
227	much stronger and wider than the SSAO amplitude. The peak values of the MSAO amplitude at
228	about 0.02 hPa is about 7 K for MLS and about 8 K for SABER, while those of SSAO is commonly
229	about 4.5 K at about 2 hPa. The MSAO and SSAO altitudes of temperature peaks are slightly lower
230	than those of the zonal wind peaks. The SSAO amplitudes of zonal wind and temperature are
231	quantitatively very similar to those evaluated from the standard deviation of the SSAO (of filtered
232	zonal wind or temperature) time series (Kawatani et al. 2020; SPARC 2022).
233	Figure 2 displays the latitude-height cross sections of the ANN amplitudes of the MLS and
234	SABER zonal winds and temperatures from 10 to 0.01 hPa between 30°S and 30°N. The ANN
235	amplitude of zonal wind minimizes to about 10 m s ⁻¹ over the equator with slight vertical
236	variations. In the tropics within ~ 20 degrees of the equator the ANN amplitude is larger in NH than

237	in SH in the upper mesosphere from 0.2 to 0.02 hPa, while the ANN amplitude is small in NH than
238	in SH from the upper stratosphere (~5 hPa) to the lower mesosphere (~0.5 hPa). The ANN
239	amplitude of temperature shows very weak latitudinal variations within ~15 degrees of the equator
240	above the middle mesosphere of 0.2 hPa with peak value of about 3 K around 0.05 hPa. Below 0.2
241	hPa also the latitudinal variations of the ANN amplitude are weak in the vicinity of the equator.
242	Figure 3 exhibits the month-latitude cross sections of the climatological MLS and SABER
243	unfiltered zonal winds at 0.01 hPa and 1 hPa between 30°S and 30°N, wherein the climatological
244	annual mean is subtracted at each latitude. These plots in Fig. 3 represent the seasonal cycle of the
245	MLS and SABER zonal winds at respective altitude, and the plots at the stratopause altitude of 1
246	hPa (Figs. 3b and 3d) are very similar to the analyses using slightly shorter MLS and SABER data
247	(Smith et al. 2017; Kawatani et al. 2020). It is evident that the zonal wind near the equator reverses
248	direction four times a year, demonstrating the dominance of the SAO. In addition, the zonal wind
249	directions between 1 and 0.01 hPa are almost opposite phase, corresponding to the phase relation
250	between the SSAO and MSAO.
251	However the seasonal evalue in Fig. 2 greated through everyging the same month data is

251 However, the seasonal cycles in Fig. 3 created through averaging the same month data, i.e., 252 average at 12-month interval, inevitably include both 6-month and 12-month components. Namely, the plots in Fig. 3 draw the seasonal cycles not due to the SAO alone but due to both the SAO and 253 ANN. The ANN and SAO seasonal cycles of the MLS and SABER zonal winds at 0.01 and 1 hPa 254 are displayed in Figs. 4 and 5, respectively. The ANN wind shows approximately so simple 255

256	antisymmetric pattern between the summer and winter hemispheres that there blow easterlies in the
257	summer hemisphere and westerlies in the winter hemisphere with near-zero wind latitude areas at
258	the boundaries, which are situated spatially close to the equator and temporally close to the
259	equinoxes (Fig. 4). The near-zero wind area corresponds to the minimum wind amplitude area in
260	the vicinity of the equator (Figs. 2a and 2c). It should be noted that the latitudinal profile of the
261	ANN zonal wind slightly deviates from antisymmetricity, depending on altitudes. Hence, this
262	deviation results in small but significant contribution to the seasonal cycle of the zonal wind
263	latitudinally averaged across the equator, which systematically varies with altitudes as shown later.
264	In the SAO seasonal cycle, the MLS and SABER zonal wind (Fig. 5) varies more slightly
265	with latitudes than the unfiltered zonal wind near the equator, in particular at 0.01 hPa (Fig. 3),
266	leading to more vertically aligned contours in Fig. 5 than in Fig. 3. In the MSAO wind at 0.01 hPa
267	there are distinct differences between MLS and SABER. In the MLS data westerly phases during
268	winter and summer are temporally rather symmetric to each other near the equator, about 5°S-5°N,
269	and so do the easterly phases during spring and autumn, while the westerly winds are weaker with
270	longer duration than the easterly winds. In contrast, in the SABER data the first cycle exhibit
271	substantially larger amplitude than the second cycle, and the durations of easterly and westerly
272	winds are similar. On the other hand, both satellite data are similar in SSAO at 1 hPa: the duration
273	is nearly the same between the two phases. However, the SSAO easterly wind is much stronger in
274	winter than in summer, while the westerly winds in spring and autumn show similar amplitudes,

275	which are approximately an arithmetic mean of the two easterly amplitudes in winter and summer.
276	Figure 6 depicts the three seasonal cycles of the MLS and SABER zonal winds averaged
277	between 10°S and 10°N from 10 to 0.01 hPa: unfiltered one without the annual mean, the ANN,
278	and the SAO. In the stratosphere and lower mesosphere, i.e., the SSAO region, the seasonal cycle
279	of the unfiltered zonal wind is evidently stronger in the first half of a year than that in the second
280	half, precisely, westerly around January and easterly around April is stronger, in coincident with
281	the SSAO characteristics described so far (e.g., Garcia et al. 1997; Kawatani et al. 2020). However,
282	this is not necessarily the intrinsic SSAO characteristics, because the seasonal cycle of the ANN is
283	approximately in phase in the first cycle (winter and spring at 1 hPa) but out of phase in the second
284	cycle (summer and autumn at 1 hPa) with that of the SSAO below about 0.03 hPa (Fig. 6). Thus,
285	the seasonal cycle of the SAO is accordingly strengthened in the first half and weakened in the
286	second half, when those of the ANN and SSAO are combined together, as shown in Figs. 6a and
287	6d. Accordingly, the SSAO intrinsically possesses almost symmetric westerly phases and
288	asymmetric easterly phases. In other words, when the ANN is removed, i.e., the SSAO has nearly
289	symmetric westerly phases in spring and autumn, while the SSAO shows significant asymmetry in
290	the easterly phases, wherein the peak value at 1 hPa is about 50% larger in winter than in summer,
291	as evidently plotted in Fig. 7.

292 Near the tropics the MSAO above the middle mesosphere is out of phase to the SSAO (Figs.
293 6c and 6f) with peaks below the mesopause broadly extending from 0.02 to 0.01 hPa (Figs. 1a and

294	1c). There is substantial difference in the MSAO seasonal cycle between MLS and SABER. The
295	MLS MSAO at 0.01 hPa is temporally symmetric in a year, i.e., the first cycle and the second cycle
296	are very similar to each other, while the first cycle is significantly larger than the second cycle in
297	the SABER MSAO (Fig. 7). In particular, the easterly wind in spring shows the largest amplitude,
298	and this reflects the occasional occurrences of the mesospheric spring equinox enhancements
299	(MSEE) analyzed in the radar observation data (Kishore Kumar et al. 2014), in which MSEE
300	occurred in six years out of 20 years from 1993 to 2012. Further, there is another clear asymmetry
301	between the two cycles of the MSAO at about 0.02 hPa commonly in both satellite data. The
302	easterly and westerly winds in the second cycle maximize at lower altitude of 0.02 hPa than those
303	in the first cycle, which maximize at 0.01 hPa (Fig. 6). So that, it is more preferable to depicts the
304	SAO seasonal cycle over the whole months in a year rather than over one cycle (6 months) (Kumar
305	et al. 2011) not only for the SSAO but also for the MASO.
306	
307	3.2 Climatological SAO in the JRA-3Q, ERA5, and MERRA-2 data
308	Figure 8 exhibits the latitude-height cross sections of the SAO amplitudes of zonal wind and
309	temperature for JRA-3Q, ERA5, and MERRA-2 from 10 to 0.01 hPa between 30°S and 30°N, in

- 310 which the analysis period is 2004–2023 for JRA-3Q and ERA5, and 2005–2023 for MERRA-2.
- 311 This one-year shorter period for MERRA-2 is to avoid conspicuous discontinuity above 2 hPa
- between 2004 and 2005, which can be seen in the monthly and globally averaged temperature

313	anomaly (Gelaro	et al.	2017),	and	also	in	the	monthly	averaged	temperature	in	the	tropics	(not
314	shown).													

315	The MSAO amplitude of the JRA-3Q zonal wind maximizes at the mesopause altitude (0.01
316	hPa) as in MLS and SABER, though its peak value (~22 m s ⁻¹) is moderately weaker and
317	latitudinal width is much narrower. The SSAO amplitude around the stratopause altitude is
318	approximately close to those of MLS and SABER with respect to intensity (~28 m s ⁻¹) and
319	latitudinal extent. The MSAO amplitude of the JRA-3Q temperature maximizes not at 0.01 hPa but
320	at 0.1 hPa in the tropics with smaller value (~5 K) than those of MLS and SABER. On the other
321	hand, the SSAO amplitude the JRA-3Q temperature is very similar to those of MLS and SABER
322	with respect to intensity and latitudinal and vertical extent.
323	The MSAO amplitude of the ERA5 zonal wind is very different from those of MLS and
324	SABER. It has a peculiar bulge (\sim 35 m s ⁻¹) around 0.1 hPa over the equator with its axis extending
325	downward and merging with the SSAO region. The SSAO amplitude of the ERA5 zonal wind is
326	approximately similar to those of MLS and SABER with slightly stronger peak value. The MSAO
327	amplitude of the ERA5 temperature shows much smaller peak value (~4 K) at about 0.05 hPa than
328	those of MLS and SABER, while the SSAO amplitude is very close to those of MLS and SABER.
329	In the MERRA-2 zonal wind the SAO amplitude monotonically decreases with altitude above 0.5
330	hPa in the tropics, indicating no distinct but blurred MSAO in zonal wind. In contrast, the SAO
331	amplitude of the MERRA-2 temperature maximizes to ~4 K at about 0.02 hPa, demonstrating a

clear MSAO in temperature. The SSAO meridional structure of the MERRA-2 zonal wind is

332

333 slightly different from the satellite observations, while that of the MERRA-2 temperature is similar. 334 The SSAO amplitude within 10 degrees of the equator is realistically reproduced in zonal wind and 335 temperature as those in JRA-3Q and ERA5. 336 The three reanalyses, JRA-3Q, ERA5, and MERRA-2, simulate well the observed relation of 337 the SSAO structures between zonal wind and temperature, i.e., zonal wind peak at 1 hPa and temperature peak at 2 hPa. On the other hand, none of the reanalyses can reproduce the observed 338 339 relation of the MSAO structures, particularly much deteriorated in the zonal wind. This is probably 340 due to some artificial forcing and/or damping in the near-top layers for stable time integration of 341 the forecast model, resulting in a balance between zonal wind and temperature being different from 342 the observed structure. 343 Figure 9 depicts the SAO zonal winds at 0.01hPa, and 1 hPa of JRA-3Q, ERA5, and

MERRA-2, respectively. The seasonal cycle of the SSAO wind at 1 hPa of JRA-3Q, ERAS, and data (Figs. 5b and 5d) is approximately reproduced in the three reanalyses at each latitude. On the other hand, the three reanalyses have different performance for the seasonal cycle of the MSAO wind at 0.01 hPa in the MLS and SABER data (Figs. 5a and 5c). In JRA-3Q the phase of the MSAO wind at 0.01 hPa (Fig. 9a) is correctly reproduced to be opposite to that of the SSAO wind at 1 hPa (Fig. 9b) and the MSEE-related intensification is also simulated despite the easterly wind being about half of the observed value in the SABER wind (Fig. 5c). In ERA5 the seasonal cycle of

351	the MASO wind at 0.01 hPa (Fig. 9c) is shifted not observed $\sim \pi$ but $\sim \pi/2$ from that of the SSAO
352	wind at 1 hPa (Fig. 9d). In MERRA-2 the seasonal cycle of the MASO wind (Fig. 9e) is nearly in
353	phase with that of the SSAO wind (Fig. 9f). Of the three reanalyses, ERA5 and MERRA-2 severely
354	underestimated the features of the MSAO amplitude.
355	In the vertical cross section of the seasonal cycle of the SAO wind in the three reanalyses
356	(Fig. 10) the phase descent with time from 0.01 to 10 hPa is realistically reproduced in JRA-3Q
357	with separation between the MSAO and SSAO regions around 0.1 hPa, despite insufficient
358	difference in the strength of the MSAO easterly wind between the first and second cycles as stated
359	above. In ERA5 the SAO phase descent with time from 0.01 hPa does not persist down to 10 hPa
360	but ceases at about 0.05 hPa, below which the phase temporal procession is reverted, i.e., the phase
361	ascends with time from 1 to about 0.05 hPa (Fig. 9b). This phase ascent with time in the
362	mesosphere of ERA5 can also be seen in the seasonal cycle of the unfiltered zonal wind (Ern et al.
363	2021; SPARC 2022), which is comprised dominantly of the SAO, ANN and the annual mean.
364	MERRA-2 simulates generally well the SSAO seasonal cycle (Fig. 10c). Still, zonal wind weakens
365	to below 10 m s^{-1} abruptly above ~0.3 hPa up to 0.05 hPa. The MSAO amplitude of the MERRA-
366	2 zonal wind is much weaker over deep layer above ~ 0.3 hPa than the observations. The MSAO
367	seasonal evolution is opposite to the observations from about 0.05 to 0.01 hPa, i.e., the phase
368	propagates upward with time, though below about 0.05 hPa there are downward phase propagations
369	continuing to the SSAO phases as in the observations (Fig. 10c).

370

371 3.3 SAO amplitude trend and intraseasonal variability

372	In this section we investigate the SAO linear trend together with its intraseasonal variations
373	for the MLS period 2004–2023 and for the SABER period 2002–2023, notwithstanding that the
374	period length of about 20 years is not necessarily long enough for the trend evaluation. In the trend
375	calculation, the SABER zonal wind and temperature are interpolated to the same altitudes as those
376	of the MLS data. Figure 11 depicts the vertical cross section (10-0.01 hPa) of the time evolution of
377	the SAO amplitudes of MLS and SABER zonal winds and temperatures averaged between 10°S
378	and 10°N. In the amplitude variations there are approximately two periods independently in the
379	MSAO and SSAO, that is, short period of 1-2 years and long period of 3-4 years. The short period
380	variations have relatively small vertical extent so that they remain within the MSAO or SSAO
381	altitudes, respectively. On the other hand, the long period variations tend to be tall, and thereby
382	sometimes they are connected between the MSAO and SSAO altitudes, such as around 2006, 2010,
383	2013, 2016, 2019.

Figure 11 also shows that the MSAO temperature amplitude immediately below the mesopause is significantly decreasing, while the SSAO temperature amplitude just below the stratopause scarcely exhibits significant long-term change. The long-term trends in the MSAO and SSAO zonal wind are quantified through evaluating linear fitting at each altitude. Figure 12 displays the vertical profiles of the linear trends in the SAO amplitudes of the MLS and SABER

389	zonal wind and temperature along with the statistical significance. It is evident that the MSAO
390	wind amplitude is declining with a peak of about -5 and -7 m s ⁻¹ decade ⁻¹ in the MLS and SABER
391	data around 0.01 hPa accompanied by significant negative trend in the temperature amplitude of
392	about -1 K decade-1 in 0.02-0.04 hPa. Both MSAO negative trends in zonal wind and temperature
393	are statistically significant exceeding the 99% level, indicating that the MSAO is significantly
394	weakening over the recent two decades.
395	The SSAO amplitude of zonal wind also shows significant negative trend of about -1 and -2
396	m s ⁻¹ decade ⁻¹ in the MLS and SABER data around 0.8 hPa accompanied by negative trend in the
397	temperature amplitude of about -0.3 K decade ⁻¹ around 1 hPa. On the other hand, the SSAO
398	amplitudes of the two satellite data have similar positive trend of about 0.1 K ⁻¹ decade ⁻¹ around 10
399	hPa. However, the corresponding trends in the SSAO amplitude of zonal wind do not agree to each
400	other. Similarly, the two SSAO zonal wind amplitude trends substantially differ around 2 hPa,
401	where SABER shows about +1 m s ⁻¹ decade ⁻¹ with 99% significance but MLS indicates almost no
402	trend.

Figure 13 exhibits the vertical profiles of the linear trends in the SAO amplitudes of JRA-3Q, ERA5, and MERRA-2. Just below the mesopause region ERA5 reproduced the significant negative trends at 0.03 hPa for both temperature and zonal wind, and MERRA-2 reproduced them at 0.01 and 0.03 hPa. However, their trends of the zonal wind were too small and the relations between the zonal wind and temperature trends did not resemble the observations Hence, none of the reanalyses

reproduced the significant negative trends of the MSAO around 0.01 hPa for zonal wind and

408

409	around 0.02-0.04 hPa for temperature. The observed negative trends of the SSAO amplitudes
410	around 0.8 hPa for zonal wind around 1 hPa for temperature are simulated both in JRA-3Q and
411	MERRA-2, while ERA5 simulates the negative trend of temperature alone with almost zero or
412	positive trend in zonal wind around 0.8 to 1 hPa.
413	
414	3.4 Lagged correlation of the SAO amplitude
415	Since the SAO momentum budget is maintained mainly through the momentum deposition
416	due to upward propagating waves, i.e., wave-mean flow interaction (e.g., Holton and Wehrbein
417	1980; Hitchman and Leovy 1986; Jackson and Gray 1994), the SAO variations at one level could
418	affect those at other levels. So, to investigate the extent of the SAO variability in time-altitude
419	domain, we evaluate the lagged correlation of the SAO amplitude between different altitudes, in
420	which the reference altitude is taken at the maximum amplitude altitude of the SSAO, i.e., at 1 hPa
421	for zonal wind and at 2 hPa for temperature. Figure 14 represents the lagged correlation coefficients
422	for the detrended SAO amplitudes of the MLS and SABER zonal wind and temperature in the lag-
423	altitude space, wherein the lag is from -12 to $+12$ months and positive (negative) lags mean
424	retarded (advanced) phases from the phase at the reference altitude. Since the lag imposed is within

425 12 months, Fig. 14 shows the lagged correlation of the intraseasonal variations in the SAO

426 amplitude. The statistical significance is calculated at each lag by the Monte-Carlo simulation with

427 phase randomization (e.g., Minobe and Nakanowatari 2002; Shibata and Naoe 2020) as stated428 before.

429	In the SABER zonal wind, gradual downward propagation of the significant correlation can
430	be clearly seen from -4 months at 0.2 hPa to +5 months at 3 hPa (Fig. 14c), indicating the SSAO
431	intraseasonal variations remain within the SSAO altitude range. However, the downward
432	propagation time is much longer than that of the SAO itself, which is about 2 months from 0.2 to 3
433	hPa (Fig. 6f). In addition, Fig. 14c demonstrates that the MSAO intraseasonal variations at 0.02 hPa
434	advance the SSAO intraseasonal variations at 1 hPa with lead time of 12-10 months in the SABER
435	data. Also in the MLS data, the MSAO intraseasonal variations at 0.02 hPa shows significant
436	correlation with the SSAO ones, but the high correlation area diminishes around 0.1 hPa.
437	In the temperature data, significant correlation area is vertically narrower than that in zonal
438	wind data, but within about ± 3 months lag significant correlation area extends upward to about 0.2
439	and 0.05 hPa for MLS and SABER, resulting in high correlation vertical range being approximately
440	similar to that of zonal wind. However, a close inspection indicates that there are some notable
441	differences in the lag for zonal wind and the lag for temperature, albeit the SAO zonal wind and
442	temperature structures being dynamically consistent. These differences may stem from errors in
443	observation (retrieval), and those in zonal wind calculation algorithm.
444	Figure 15 exhibits the lagged correlation coefficients for the detrended SAO amplitudes of

zonal wind and temperature in JRA-3Q, ERA5, and MERRA-2 as in Fig. 14. JRA-3Q reproduces a

446	thick pattern of large correlation coefficients of greater than 0.4 within ± 4 months lag below about
447	0.2 hPa for the zonal wind amplitude, while above 0.1 hPa the axis of large correlation is leaning
448	toward positive lags with altitudes, opposite to that in the observed data. In temperature amplitude
449	in JRA-3Q the large correlation coefficients (> 0.4) area is confined below 0.5 hPa, i.e., too
450	shallow, compared to those in the observed data. In ERA5 the large correlation coefficients (> 0.4)
451	area in the zonal wind amplitude shows a less vertical extension to the mesosphere but extends in
452	temporal direction more to about ± 6 months lag, indicating that the intraseasonal variation in the
453	zonal wind amplitude near the stratopause is temporally wider and scarcely correlated with that in
454	the mesosphere. The intraseasonal variation in the ERA5 temperature amplitude also exhibits
455	shallower and wider pattern of large correlation, being consistent characteristics with that in the
456	wind amplitude. In MERRA-2 the large correlation coefficients (> 0.4) area extends deep into the
457	mesosphere up to about 0.1 hPa within $\pm(4-5)$ months lag for both zonal wind and temperature,
458	reproducing good intraseasonal variations in SSAO.
459	Figures 14 and 15 also show the autocorrelations of the SSAO amplitudes at the reference

altitudes, 1 hPa for zonal wind and 2 hPa for temperature. The lagged correlations at these altitudes, i.e., the autocorrelations, are positive and significant within approximately \pm (4–6) months lag for the satellite observations and the reanalyses. This indicates that the successive SSAO amplitudes at these altitudes are not fully independent to each other but positively correlated. In other words, if a SSAO amplitude is larger (smaller), then the following one tends to be also larger (smaller).

465

466 4. Discussion

467	JRA-3Q can relatively well reproduce the calendar-locked downward propagation of the SAO
468	from the mesopause to the upper stratosphere of ~ 10 hPa with separation at about 0.1 hPa between
469	the MSAO and SSAO (Fig. 10a). However, quantitative examination reveals that the MSAO in
470	JRA-3Q is very different, particularly above the middle mesosphere, from the satellite observations
471	with respect to the vertical profiles of the MSAO zonal wind and temperature amplitudes, as can be
472	readily seen from a comparison between Figs. 1a-d and Figs. 8a, 8b. In addition, the evident and
473	significant negative trends in the MSAO in the upper mesosphere (Figs. 12a-d) cannot be captured
474	at all in JRA-3Q (Figs. 13a and 13b). The other reanalyses possess much severer drawbacks in the
475	seasonal cycle of the SSAO above the stratopause and MSAO: superfluous upward propagation of
476	the phase between 1 to about 0.05 hPa in ERA5 (Fig. 10b), and between 0.05 and 0.01 hPa in
477	MERRA-2 (Fig. 10c).

On the other hand, below the stratopause the seasonal cycle of the SSAO is fairly realistically simulated not only in JRA-3Q, ERA5, and MERRA-2 but also in JRA-55 and ERA-Interim. Indeed, artificial treatments in the numerical calculation near the upper boundary of the forecast model for the stable time integration are partly responsible for the above-mentioned low and/or erroneous performance for the SAO in the mesosphere, but the scantiness of observation data assimilated in the mesosphere is also likely involved. So that, incorporating the limb sounding data

484 such as the MLS and SABER data in the assimilation is preferable as in Koshin et al. (2020, 2022) 485 to simulate the SAO in the mesosphere as realistically as possible, although the assimilation of the 486 limb sounding data does not necessarily lead to better representation of SAO as in MERRA-2, 487 which assimilates the MLS data (Gelaro et al. 2017). The fact that MERRA-2 does not reproduce 488 the realistic MSAO indicates the effect of some artificial treatment near the forecast model top is 489 much larger than that of assimilation. 490 So far, we investigated the SAO properties over the recent two decades of the MLS and 491 SABER data. Next, we extend the period to the whole terms of the three reanalyses, i.e., 1948-492 2023 for JRA-3Q, 1940-2023 for ERA5, and 1980-2023 for MERRA-2, and focus on the SSAO 493 only below the stratopause. This is because the SAO in the reanalysis above the stratopause is 494 expected to be all the more biased in the past period before 2000 than in the recent two decades, 495 when the SAO in the mesosphere is barely or scarcely reproduced (Figs. 10a-c). This is because the 496 satellite observations assimilated in the reanalysis before about 1995 are much smaller than those 497 after 1995 (e.g., Hersbach et al. 2020; Kosaka et al. 2024). 498 Figure 16 depicts the time series of the amplitude spectra of the JRA-3Q zonal wind at 1 hPa, 499 and temperature at 2 hPa from 3 to 15 months period, along with those of ERA5 and MERRA-2.

500 The SSAO amplitudes of the JRA-3Q zonal wind and temperature, which correspond to the spectra 501 approximately centered at 6 months from 3 to 8 months in Figs. 16a and 16b, show slight 502 decreasing trends in the recent two decades between around 2005 to 2023, while the SSAO

503	amplitudes are steadily increasing with small ups and downs from around 1975 to 2005. On the
504	other hand, before around 1975 the SSAO amplitudes show negative trends and the amplitude
505	spectra are not concentrated in the vicinity of 6 months but spread to shorter and longer periods.
506	That is, the SSAO spectral shape after around 1975 shows significantly steeper and larger peak than
507	that before. In addition, the ANN amplitude becomes conspicuously large, relatively to the SSAO
508	amplitude, in temperature at 2 hPa before 1975.
509	In ERA5 the SSAO amplitudes of zonal wind at 1 hPa and temperature at 2 hPa exhibit slight
510	positive and negative trends, respectively, in the recent two decades, and prior to this period from
511	around 1965 to 2005 the SSAO amplitudes show positive trends (Figs. 16c and 16d). Before around
512	1965, the SSAO amplitudes show negative trends. The SSAO spectral shape after around 1965
513	shows significantly sharper and larger peak than that before. The ANN amplitude of temperature is
514	evidently larger before 1995 than after. These positive trends of the JRA-3Q and ERA5 SSAO
515	amplitudes of zonal wind at 1 hPa and temperature at 2 hPa during the three or four decades before
516	about 2005 can be similarly seen in the previous reanalyses, JRA-55 and a combined data of ERA-
517	Interim and ERA-40 (not shown). The SSAO amplitudes of the MERRA-2 zonal wind at 1 hPa and
518	temperature at 2 hPa show slight negative trends in the recent two decades. There are similar
519	negative trends from 1980 to around 2002, but the SSAO amplitudes discontinuously increased
520	about 5 m s ⁻¹ and 1 K for zonal wind and temperature around 2002.

521 Indeed, these long-term trends of the SSAO amplitudes at and just below the stratopause are

522	consistent between zonal wind at 1 hPa and temperature at 2 hPa in JRA-3Q and ERA5,
523	respectively, but their reliability is disputable, in particular, before 1979 when no satellite
524	observation was available. During 1960s and 1970s the SSAO is very weak in the two reanalyses,
525	which reflects accurately the intrinsic limited capability to simulate the SSAO in the forecast
526	models used for the assimilation. Similarly, the SSAO is not necessarily well reproduced in the
527	simulations with state-of-the-art general circulation models reproducing the QBO (Smith et al.
528	2020), indicating the need for further improvement above the upper stratosphere in global models.
529	The other causes may also be involved because the SSAO amplitude at 1hPa shows a gradual
530	increase backward before 1975 in JRA-3Q and 1965 in ERA5 despite the SSAO amplitude itself is
531	much smaller than that in recent two decades, as stated before. The rapid diminishing of the QBO
532	backward before around 1970 in JRA-3Q (Naoe et al. 2025) and around 1960 in ERA5 is one
533	possible cause of the gradual increase in the SSAO amplitude backward before 1975, because the
534	QBO in the stratosphere modulates the SAO above the upper stratosphere and mesosphere (e.g., de
535	Witt et al. 2013; Kishore Kumar et al. 2014; Smith et al. 2017). However, its mechanism is not yet
536	comprehensively clarified. Anyway, the weaker wavelet spectrum peak of the SSAO before about
537	1975 for JRA-3Q (Figs. 16a and 16b) and about 1965 for ERA5 (Figs. 16c and 16d) strongly
538	suggests that these gradual increases also stem from the forecast models themselves.

539

540 5. Conclusions

Page 31 of 64

For Peer Review

541	The Japanese third reanalysis version JRA-3Q with a high-top lid at 0.01 hPa is examined
542	with respect to the SAO in the tropical middle atmosphere from 10 to 0.01 hPa, along with the
543	ERA5 and MERRA-2 reanalyses and the MLS and SABER satellite data. Since the seasonal cycle
544	of the raw (unfiltered) data created through averaging the same month at 12-month interval
545	includes unavoidably the annual component as well as the semiannual component, applying a
546	bandpass filter with cut-off periods at 3 and 8 months is performed to extract the SAO component.
547	The MLS data shows that the seasonal cycle of the MSAO at 0.01 hPa is very similar between
548	the first cycle from winter to spring and the second cycle from summer to autumn, while the
549	SABER data exhibits that the first cycle is significantly larger than the second cycle. In particular,
550	the easterly wind in spring is the largest amplitude, corresponding to the occasional occurrence of
551	MSEE. The seasonal cycle of the SSAO at 1 hPa in both satellite data proves that the easterly wind
552	amplitude in winter is double as large as that in summer, while the westerly wind amplitudes in
553	spring and autumn are nearly the same.
554	JRA-3Q is found to reproduce well the observed characteristics of the seasonal cycle of the
555	SAO, i.e., the calendar-locked downward propagation of the SAO from 0.01 hPa to 10 hPa with

556 clear separation between the MSAO and SSAO, despite the MSAO being underestimated. In the 557 SAO of the ERA5 zonal wind the amplitude at 0.01 hPa is much underestimated and the phase 558 descent from 0.01 hPa does not persist down to 10 hPa but ceases at about 0.05 hPa, below which 559 the phase temporal procession is reverted, i.e., the SAO phase ascends with time from 1 hPa. The

560 MSAO amplitude of the MERRA-2 zonal wind is also much weaker than the observations and its 561 seasonal evolution is opposite to the observations, i.e., the phase propagates upward with time from 562 about 0.05 to 0.01 hPa.

The MSAO amplitude of zonal wind has significant negative trend of about -5 and -7 m s⁻¹ 563 564 decade⁻¹ in the MLS and SABER data, respectively, around 0.01 hPa accompanied by significant negative trend in the temperature amplitude of about -1 K decade-1 in 0.02-0.04 hPa. This 565 566 demonstrates that the MSAO is significantly weakening over the recent two decades. The SSAO amplitude of zonal wind also shows significant negative trend of about -1 and -2 m s⁻¹ decade⁻¹ in 567 568 the MLS and SABER data, respectively, around 0.8 hPa accompanied by negative trend in the 569 temperature amplitude of about -0.3 K decade⁻¹ around 1 hPa. In addition, the SSAO amplitudes of 570 the two satellite data have similar positive trend of about 0.1 K⁻¹ decade⁻¹ around 10 hPa. However, 571 the corresponding trends in the satellite SSAO amplitude of zonal wind do not agree to each other. 572 The SSAO amplitudes of zonal wind at 1 hPa and temperature at 2 hPa are substantially 573 increasing in JRA-3Q and ERA5 from 1970s over about three decades, while they exhibit notable 574 negative trends over the recent two decades except for the ERA zonal wind. Before 1970s the 575 SSAO wavelet spectra is less concentrated around 6 months and the annual components are 576 considerably larger than those after 1970s in JRA-3Q and ERA5.

577

578

Data Availability Statement

579	The JRA-3Q and JRA-55 reanalysis data are provided via collaborative organizations listed in
580	the JRA website (https://jra.kishou.go.jp/). The ERA5, ERA-Interim, and ERA-40 reanalysis data
581	can be obtained from the ECMWF website (https://www.ecmwf.int/en/forecasts/datasets/browse-
582	reanalysis-datasets/). The ERA5 SAO figures are available from the ECMWF website
583	(https://confluence.ecmwf.int/display/CKB/ERA5%3A+The+QBO+and+SAO). The MERRA-2
584	reanalysis data can be obtained from the NASA website (https://disc.gsfc.nasa.gov/datasets/). The
585	MLS level 3 data of temperature and geopotential height are available from the NASA website
586	(https://acdisc.gesdisc.eosdis.nasa.gov/data/Aura_MLS_Level3/). The SABER level 2 data
587	temperature and geopotential height are available on line from the aerospace company GATS
588	(Global Atmospheric Technologies & Sciences) web site (https://data.gats-
589	inc.com/saber/custom/Temp_O3_H2O/v2.0/).

5	0	Λ
J	2	υ

Acknowledgments

591	The authors are grateful to Dr. Chiaki Kobayashi at the Meteorological Research Institute and Dr.
592	Shingo Watanabe at the Japan Agency for Marine-Earth Science and Technology for their help in
593	analyzing the ERA5 data. The authors are also particularly grateful to Professor Koki Iwao at
594	National Institute of Technology, Kumamoto College for providing analysis programs for the
595	SABER data. This study was partly supported by the Japan Society for the Promotion of Science
596	KAKENHI (grant numbers: JP22H04493, JP24K07140, JP24K00710).
597	
598	

5	O	O
Э	У	Э

References

- 600 Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic
- 601 Press, Orland, CA, USA, 489pp.
- 602 Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A.
- Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N.
- Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H.
- 605 Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally, B.
- M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N.
- 607 Thépaut, and F. Vitart, 2011: The ERA-Interim reanalysis: Configuration and performance of
- 608 the data assimilation system. *Quart. J. Roy. Meteor. Soc.*, **137**, 553–597.
- 609 de Wit, R. J., R. E. Hibbins, P. J. Espy, and N. J. Mitchell, 2013: Interannual variability of
- 610 mesopause zonal winds over Ascension Island: Coupling to the stratospheric QBO. J.
- 611 *Geophys. Res. Atmos.*, **118**, 12 052–12 060, doi:10.1002/2013JD020203.
- 612 Dunkerton, T. J., 1979: On the role of the Kelvin waves in the westerly phase of the semiannual
- conal wind oscillation. J. Atmos. Sci., **36**, 32–41.
- Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–
 1022.

616	Ern, M., M. Diallo, P. Preusse, M. G. Mlynczak, M. J. Schwartz, Q. Wu, and M. Riese, 2021: The
617	semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in
618	reanalyses and satellite observations. Atmos. Chem. Phys., 21, 13763-13795, doi: 10.5194/acp-
619	21-13763-2021.
620	ECMWF website, May 5, 2023: ERA5: The QBO and SAO, https://confluence.ecmwf.int/display/
621	CKB/ERA5%3A+The+QBO+and+SAO.
622	Fischer, P. and K. K. Tung, 2008: A reexamination of the QBO period modulation by the solar
623	cycle. J. Geophys. Res., 113, D07114, doi:10.1029/2007JD008983.
624	Fujiwara, M., J. S. Wright, G. L. Manney, L. J. Gray, J. Anstey, T. Birner, S. Davis, E. P. Gerber,
625	V. L. Harvey, M. I. Hegglin, C. R. Homeyer, J. A. Knox, K. Krüger, A. Lambert, C. S. Long,
626	P. Martineau, A. Molod, B. M. Monge-Sanz, M. L. Santee, S. Tegtmeier, S. Chabrillat, D. G.
627	H. Tan, D. R. Jackson, S. Polavarapu, G. P. Compo, R. Dragani, W. Ebisuzaki, Y. Harada, C.
628	Kobayashi, W. McCarty, K. Onogi, S. Pawson, A. Simmons, K. Wargan, J. S. Whitaker, and
629	C. Zou, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and
630	overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452.
631	Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, 1997: Climatology of the
632	semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res., 102, 26019–26032,
633	doi:10.1029/97JD00207.

For Peer Review

634	Gelaro, R., W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A.
635	Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S.
636	Akella, V. Buchard, A. Conaty, A. M. da Silva, W. Gu, GK. Kim, R. Koster, R. Lucchesi, D.
637	Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M.
638	Sienkiewicz, and B. Zhao, 2017: The modern-era retrospective analysis for research and
639	applications, version 2 (MERRA-2). J. Climate, 30, 5419-5454, doi:10.1175/JCLI-D-16-
640	0758.1.
641	Groves, G. V., 1972: Annual and semiannual zonal wind components and corresponding
642	temperature and density variations, 60–130 km. Planet. Space Sci., 20, 2099–2112.
643	Hamilton, K. and J. D. Mahlman, 1988: General circulation model simulation of the semiannual
644	oscillation in the tropical middle atmosphere. J. Atmos. Sci., 45, 3212–3235.
645	Harada, Y., H. Kamahori, C. Kobayashi, H. Endo, S. Kobayashi, Y. Ota, H. Onoda, K. Onogi, K.
646	Miyaoka, and K. Takahashi, 2016: The JRA-55 reanalysis: Representation of atmospheric
647	circulation and climate variability. J. Meteor. Soc. Japan, 94, 269–302.
648	Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C.
649	Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P.
650	Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M.
651	Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S.

652	Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G.
653	Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and JN. Thépaut, 2020: The
654	ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi: 10.1002/qj.3803.
655	Hitchman, M. H. and C. B. Leovy, 1986: Evolution of the zonal mean state in the equatorial middle
656	atmosphere during October 1978 – May 1979. J. Atmos. Sci., 43, 3159–3176.
657	Hirota, I., 1978: Equatorial waves in the upper stratosphere and mesosphere in relation to the
658	semiannual oscillation of the zonal wind. J. Atmos. Sci., 35, 714–722.
659	Holton, J. R. and W. M. Wehrbein, 1980: A numerical model of the zonal mean circulation of the
660	middle atmosphere. Pure Appl. Geophys., 118, 284–306.
661	Iwao, K., and T., Hirooka, 2021: Opposite contributions of stationary and traveling planetary waves
662	in the northern hemisphere winter middle atmosphere. J. Geophys. Res. Atmos., 126,
663	e2020JD034195, doi:10.1029/2020JD034195.
664	Jackson, D. R. and L. J. Gray, 1994: Simulation of the semi-annual oscillation of the equatorial
665	middle atmosphere using the Extended UGAMP General Circulation Model. Q. J. Roy.
666	Meteorol. Soc., 120 , 1559–1588.
667	Kawatani, Y., T. Hirooka, K. Hamilton, A. K. Smith, and M. Fujiwara, 2020: Representation of the
668	equatorial stratopause semiannual oscillation in global atmospheric reanalyses. Atmos. Chem.
669	<i>Phys.</i> , 20 , 9115–9133, doi: 10.5194/acp-20-9115-2020.

670	Kishore Kumar, G., K. Kishore Kumar, W. Singer, C. Zülicke, S. Gurubaran, G. Baumgarten, G.
671	Ramkumar, S. Sathishkumar, and M. Rapp, 2014: Mesosphere and lower thermosphere zonal
672	wind over low latitudes: Relation to local stratospheric zonal winds and global circulation
673	anomalies. J. Geophys. Res. Atmos. 119, 10: 5913-5927, doi:10.1002/2014JD021610.
674	Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C.
675	Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 reanalysis: General
676	specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48.
677	Kosaka Y., S. Kobayashi, Y. Harada, C. Kobayashi, H. Naoe, K. Yoshimoto, M. Harada, N. Goto,
678	J. Chiba, K. Miyaoka, R. Sekiguchi, M. Deushi, H. Kamahori, T. Nakaegawa; T. Y.Tanaka, T.
679	Tokuhiro, Y. Sato, Y. Matsushita, and K. Onogi, 2024: The JRA-3Q Reanalysis. J. Meteor.
680	Soc. Japan, 102, doi: 10.2151/jmsj.2024-004.
681	Koshin, D., K. Sato, K. Miyazaki, and S. Watanabe, 2020: An ensemble Kalman filter data
682	assimilation system for the whole neutral atmosphere, Geosci. Model Dev., 13, 3145-3177,
683	doi:10.5194/gmd-13-3145-2020.
684	Koshin, D., K. Sato, M. Kohma, and S. Watanabe, 2022: An update on the 4D-LETKF data
685	assimilation system for the whole neutral atmosphere, Geosci. Model Dev., 15, 2293-2307,

686 doi:10.5194/gmd-15-2293-2022.

Kumar, K. K., D. Swain, S. R. John, and G. Ramkumar, 2011: Simultaneous observations of SAO

687

688	and QBO in winds, temperature and ozone in the tropical middle atmosphere over Thumba
689	(8.5°N, 77°E). <i>Climate Dyn.</i> , 37 , 1961–1973.
690	Livesey, N. J., W. G. Read, P. A. Wagner, L. Froidevaux, M. L. Santee, M. J. Schwartz, A.
691	Lambert, L. F. Millán Valle, H. C. Pumphrey, G. L. Manney, R. A. Fuller, R. F. Jarnot, B. W.
692	Knosp, R. R. Lay, 2022: Version 5.0x Level 2 and 3 data quality and description document,
693	JPL D-105336 Rev. B, 177 pp. [Available online at https://mls.jpl.nasa.gov/data/v5-
694	0_data_quality_document.pdf.]
695	Maeda, K., 1984: Semiannual oscillation of stratospheric ozone. Geophys. Res. Lett. 11, 583-586.
696	Minobe, S., and T. Nakanowatari, 2002: Global structure of bidecadal precipitation variability in
697	boreal winter. Geophys. Res. Lett., 29, 35-1-35-4.
698	Naoe, H. C. Kobayashi, S. Kobayashi, Y. Kosaka, and K. Shibata, 2025: Representation of quasi-
699	biennial oscillation in JRA-3Q. J. Meteor. Soc. Japan. (accepted)
700	Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N.
701	Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N.
702	Mannoji, and R. Taira, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369-432.
703	Randel, W. J., 1987: The evaluation of wind from geopotential height data in the stratosphere. J.
704	Atmos. Sci., 44, 3097–3120.

705	Randel, W., P. Udelhofen, E. Fleming, M. Geller, M. Gelman, K. Hamilton, D. Karoly, D. Ortland,
706	S. Pawson, R. Swinbank, F. Wu, M. Baldwin, ML. Chanin, P. Keckhut, K. Labitzke, E.
707	Remsberg, A. Simmons, and D. L. Wu, 2004: The SPARC intercomparison of middle-
708	atmosphere climatologies. J. Climate, 17, 986–1003.
709	Ray, E. A., J. R. Holton, E. F. Fishbein, L. Froidevaux, and J. W. Waters, 1994: The tropical
710	semiannual oscillations in temperature and ozone as observed by the MLS, J. Geophys. Res.,
711	51 , 3045-3052, doi:10.1175/1520-0469(1994)051<3045:TTSOIT>2.0.CO;2.
712	Ray, E. A., M. J. Alexander, and J. R. Holton, 1998: An analysis of the structure and forcing of the
713	equatorial semiannual oscillation in zonal wind, J. Geophys. Res., 103, 1759-1774,
714	doi:10.1029/97JD02679.
715	Reed, R. J., 1966: Zonal wind behavior in the equatorial stratosphere and lower mesosphere, J.
716	Geophys. Res., 71 , 4223–4233.
717	Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall's tau. J. Amer. Stat.
718	Assoc., 63 , 1379–1389.
719	Siegel, A. F., 1982: Robust regression using repeated medians. <i>Biometrika</i> , 69 , 242–244.
720	Smith, A. K., R. R. Garcia, A. C. Moss, and N. J. Mitchell, 2017: The semiannual oscillation of the
721	tropical zonal wind in the middle atmosphere derived from satellite geopotential height
722	retrievals. J. Atmos. Sci., 74, 2413-2425, doi:10.1175/JAS-D-17-0067.1.

Smith, A. K., L. A. Holt, R. R. Garcia, J. A. Anstey, F. Serva, N. Butchart, S. Osprey, A. C.

723

724	Bushell, Y. Kawatani, Y., YH. Kim, F. Lott, P. Braesicke, C. Cagnazzo, CC. Chen, HY.
725	Chun, L. Gray, T. Kerzenmacher, N. Naoe, J. Richter, S. Versick, V. Schenzinger, S.
726	Watanabe, and K. Yoshida, 2020: The equatorial stratospheric semiannual oscillation and
727	time-mean winds in QBOi models. Q. J. Roy. Meteor. Soc., 1-17, 148, doi:10.1002/qj.3690.
728	SPARC, 2002: Temperature and Zonal Wind Climatology, SPARC Data Centre [data set].
729	[Available at: ftp://sparc-ftp1.ceda.ac.uk/sparc/ref_clim/randel/temp_wind/] (last access: 12
730	February 2024).
731	SPARC, 2022: SPARC Reanalysis Intercomparison Project (S-RIP) Final Report. M. Fujiwara, G.
732	L., Manney, L. J. Gray, and J. S. Wright (Eds.), SPARC Report No. 10, WCRP-17/2020,
733	612pp. doi: 10.17874/800dee57d13. [Available online at www.sparc-
734	climate.org/publications/sparc-reports.]
735	Shibata, K. and M. Deushi, 2012: Future changes in the quasi-biennial oscillation under a
736	greenhouse gas increase and ozone recovery in transient simulations by a chemistry-climate
737	model. Greenhouse Gases - Emission, Measurement and Management, Dr. Guoxiang Liu
738	(Ed.), 355-386, ISBN: 978-953-51-0323-3, InTech.
739	Shibata, K., and H. Naoe, 2022: Decadal amplitude modulations of the stratospheric quasi-biennial
740	oscillation. J. Meteor. Soc. Japan, 100, 29-44, doi:10.2151/jmsj.2022-001.

741	Shibata, K., 2022: Studies of the effect of seasonal cycle on the equatorial quasi-biennial oscillation
742	with a chemistry-climate model. <i>Climate</i> , 10 , 99, doi:10.3390/cli10070099.
743	Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor.
744	<i>Soc.</i> , 79 , 61–78.
745	Uppala, S. M., P. W. Kållberg, A. J. Simmons, U. Andrae, V. da Costa Bechtold, M. Fiorino, J. K.
746	Gibson, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P.
747	Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. van de Berg, J. Bidlot,
748	N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S.
749	Hagemann, E. Hólm, B. J. Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. Mcnally,
750	JF. Mahfouf, JJ. Morcrette, N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E.
751	Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, and J. Woollen, 2005: The ERA-40 reanalysis.
752	Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

754	Figure legends
755	
756	Fig. 1. Latitude-height cross sections of the SAO amplitudes of the MLS (a) zonal wind, (b)
757	temperature, SABER (c) zonal wind, and (d) temperature from 10 to 0.005 hPa between 30°S and
758	30°N. Contour interval is 5 m s ⁻¹ for wind, and 1 K for temperature.
759	
760	Fig. 2. Latitude-height cross sections of the ANN amplitudes of the MLS (a) zonal wind, (b)
761	temperature, SABER (c) zonal wind, and (d) temperature from 10 to 0.01 hPa between 30°S and
762	30°N. Contour interval is 10 m s ^{-1} for zonal wind, and 1 K for temperature.
763	
764	Fig. 3. Month-latitude cross sections of the climatological unfiltered zonal wind of the MLS (a) at
765	0.01 hPa, (b) at 1 hPa, SABER (c) at 0.01 hPa, and (d) at 1 hPa between 30°S and 30°N. Contour
766	interval is 10 m s ^{-1} . Climatological annual mean is subtracted at each latitude.
767	
768	Fig. 4. Month-latitude cross sections of the climatological ANN zonal wind of the MLS (a) at 0.01
769	hPa, (b) at 1 hPa, SABER (c) at 0.01 hPa, and (d) at 1 hPa between 30°S and 30°N. Contour
770	interval is 5 m s ^{-1} .

For Peer Review

772	Fig. 5. Month-latitude cross sections of the SAO zonal wind of MLS (a) at 0.01 hPa, (b) at 1 hPa,
773	SABER (c) at 0.01 hPa, and (d) at 1 hPa between 30°S and 30°N. Contour interval is 5 m s ⁻¹ .
774	
775	Fig. 6. Month-height cross sections of the MLS (a) unfiltered zonal wind, (b) ANN zonal wind, (c)
776	SAO zonal wind, SABER (d) unfiltered zonal wind, (e) ANN zonal wind, and (f) SAO zonal wind,
777	averaged between 10°S and 10°N, from 10 to 0.01 hPa. Contour interval is 5 m s ⁻¹ .
778	
779	Fig. 7. Seasonal cycles of the MLS (thin lines) and SABER (thick lines) zonal wind of (a) the
780	MSAO at 0.01 hPa and (b) the SSAO at 1 hPa. Dots represent monthly values of MLS and solid
781	lines display cubic spline fits.
782	
783	Fig. 8. Latitude-height cross sections of the SAO amplitudes of the JRA-3Q (a) zonal wind, (b)
784	temperature, ERA5 (c) zonal wind, (d) temperature, MERRA-2 (e) zonal wind, and (f) temperature.
785	Contour intervals are 5 m s ^{-1} for wind and 1 K for temperature.
786	
787	Fig. 9. Month-latitude cross sections of the SAO zonal wind of JRA-3Q (a) at 0.01 hPa, and (b) at 1
788	hPa, ERA5 (c) at 0.01 hPa, (d) at 1 hPa, MERRA-2 (e) at 0.0 1hPa, and (f) at 1 hPa between 30°S
789	and 30°N. Contour interval is 5 m s ^{-1} .

Fig. 10. Month-height cross sections of the SAO zonal wind of (a) JRA-3Q, (b) ERA5, and (c)
MERRA-2 from 10 to 0.01 hPa. The SAO zonal wind is averaged between 10°S and 10°N. Contour
interval is 5 m s⁻¹.

794

Fig. 11. Time series of the SAO amplitude of the MLS (a) zonal wind, (b) temperature, SABER (c) zonal wind, and (d) temperature from 10 to 0.01 hPa. The amplitudes are for the wind and temperature averaged between 10°S and 10°N. Contour interval is 10 m s⁻¹ for wind and 5 K for temperature.

799

Fig. 12. Vertical profiles of the linear trends of the SAO amplitudes of the SABER and MLS (a) zonal wind and (b) temperature. The amplitude is for the wind and temperature, averaged between 10° S and 10° N. Unit of the trend is m s⁻¹ (decade)⁻¹ for wind and K (decade)⁻¹ for temperature. Red crosses, blue squares, and green circles represent statistical significance higher than the 99%, 95%, and 90% levels, respectively.

805

Fig. 13. Vertical profiles of the linear trends of the SAO amplitudes of the JRA-3Q, ERA5, and MERRA-2 (a) zonal wind and (b) temperature, averaged between 10°S and 10°N. Unit of the trend is m s⁻¹ (decade)⁻¹ for wind and K (decade)⁻¹ for temperature. Red crosses, blue squares, and

For Peer Review

809	green	circles	represent	statistical	significance	higher	than	the	99%,	95%,	and	90%	levels,
810	respec	tively.											

811

812	Fig. 14. Lag-height cross section of the lagged correlation coefficient of the detrended SAO
813	amplitudes of the MLS (a) zonal wind, (b) temperature, SABER (c) zonal wind, and (d)
814	temperature between a reference altitude and other altitudes. The reference altitude is 1 hPa for
815	zonal wind and 2 hPa for temperature. The amplitudes are calculated from zonal wind and
816	temperature averaged between 10°S and 10°N. The abscissa is time-lag in months. Contour interval
817	is 0.2, and color shading represents statistical significance higher than the 95% level.
818	
819	Fig. 15. Lag-height cross section of the lagged correlation coefficient of the detrended SAO
819 820	Fig. 15. Lag-height cross section of the lagged correlation coefficient of the detrended SAO amplitudes of the JRA-3Q (a) zonal wind, (b) temperature, ERA5 (c) zonal wind, (d) temperature,
820	amplitudes of the JRA-3Q (a) zonal wind, (b) temperature, ERA5 (c) zonal wind, (d) temperature,
820 821	amplitudes of the JRA-3Q (a) zonal wind, (b) temperature, ERA5 (c) zonal wind, (d) temperature, MERRA-2 (e) zonal wind, and (f) temperature between a reference altitude and other altitudes. The
820 821 822	amplitudes of the JRA-3Q (a) zonal wind, (b) temperature, ERA5 (c) zonal wind, (d) temperature, MERRA-2 (e) zonal wind, and (f) temperature between a reference altitude and other altitudes. The reference altitude is 1 hPa for zonal wind and 2 hPa for temperature. The amplitudes are calculated

- Fig. 16. Time-period cross section of the amplitudes over the periods from 3 to 15 months for the
- 828 JRA-3Q (a) zonal wind, (b) temperature, ERA5 (b) zonal wind, (c) temperature, MERRA-2 (d)
- 829 zonal wind, and (e) temperature. The amplitudes are calculated from zonal wind at 1 hPa and
- temperature at 2 hPa averaged between 10°S and 10°N.

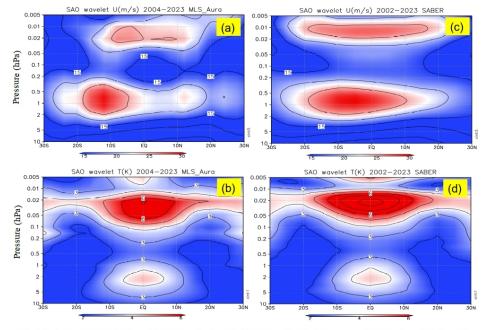


Fig. 1. Latitude-height cross sections of the SAO amplitudes of the MLS (a) zonal wind, (b) temperature, SABER (c) zonal wind, and (d) temperature from 10 to 0.005 hPa between 30° S and 30° N. Contour interval is 5 ms⁻¹ for wind, and 1 K for temperature.

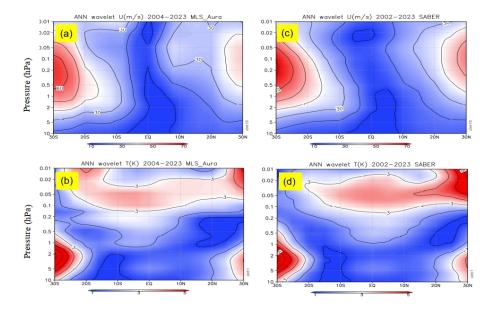


Fig. 2. Latitude-height cross sections of the ANN amplitude of the MLS (a) zonal wind, (b) temperature, SABER (c) zonal wind, (d) temperature from 10 to 0.01 hPa between 30°S and 30°N. Contour interval is 10 m s⁻¹ for wind, and 1 K for temperature.

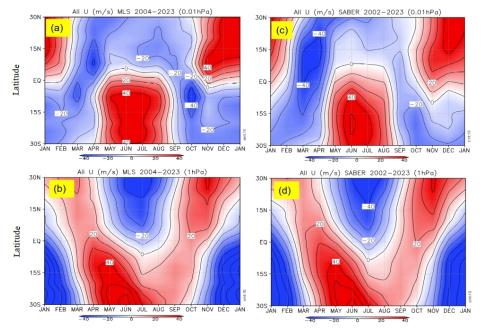


Fig. 3. Month-latitude cross sections of the climatological unfiltered zonal wind of MLS (a) at 0.01 hPa, (b) at 1 hPa, SABER (c) at 0.01 hPa, and (d) at 1 hPa between 30°S and 30°N. Contour interval is 10 ms⁻¹. Climatological annual mean is subtracted at each latitude.

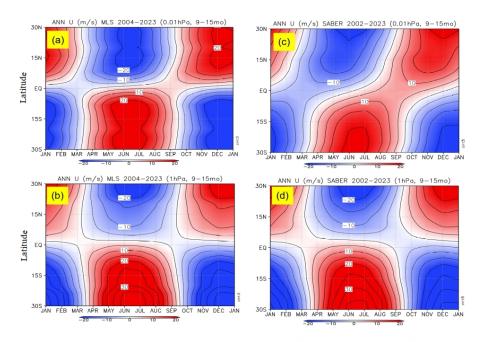


Fig. 4. Month-latitude cross sections of the climatological ANN zonal wind of MLS (a) at 0.01 hPa, (b) at 1 hPa, SABER (c) at 0.0 1hPa, and (d) at 1 hPa between 30° S and 30° N. Contour interval is 5 ms⁻¹.

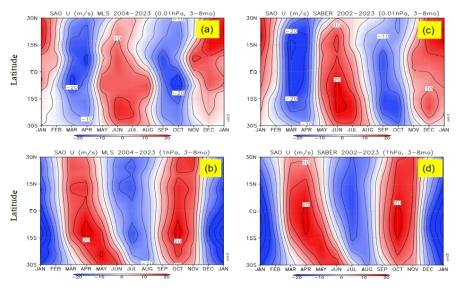


Fig. 5. Month-latitude cross sections of the SAO zonal wind of MLS (a) at 0.01 hPa, (b) at 1 hPa, SABER (c) at 0.01 hPa, and (d) at 1 hPa between 30°S and 30°N. Contour interval is 5 m s⁻¹.

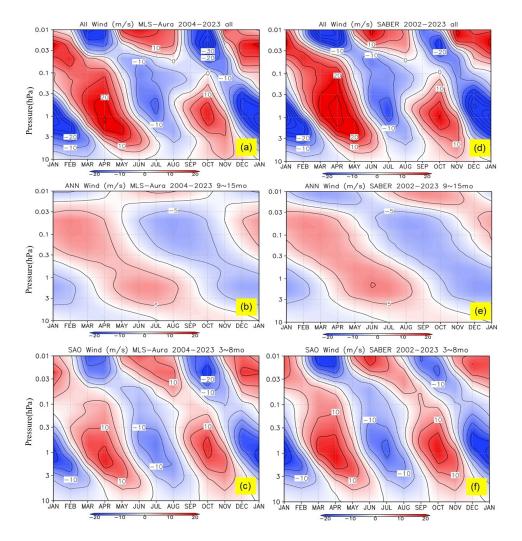


Fig. 6. Month-height cross sections of the MLS (a) unfiltered zonal wind, (b) ANN zonal wind, (c) SAO zonal wind, SABER (d) unfiltered zonal wind, (e) ANN zonal wind, and (f) SAO zonal wind, averaged between 10°S and 10°N, from 10 to 0.01 hPa. Contour interval is 5 m s⁻¹.

339x400mm (96 x 96 DPI)



Fig. 7. The seasonal cycles of the MLS (thin) and SABER (thick) zonal wind of (a) the MSAO at 0.01 hPa and (b) the SSAO at 1 hPa. Dots represent monthly values of MLS and solid lines display cubic spline fits.

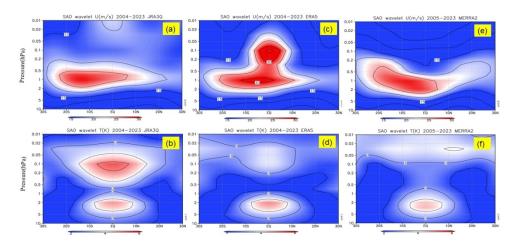


Fig. 8. Latitude-height cross sections of the SAO amplitudes of the JRA-3Q (a) zonal wind, (b) temperature, ERA5 (c) zonal wind, (d) temperature, MERRA2 (e) zonal wind, and (f) temperature. Contour intervals are 5 m s⁻¹ for zonal wind and 1K for temperature.

400x225mm (96 x 96 DPI)

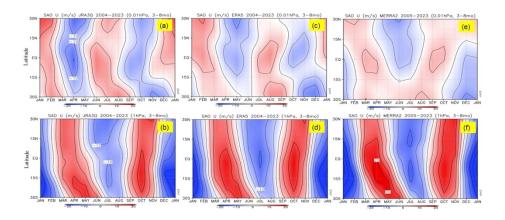
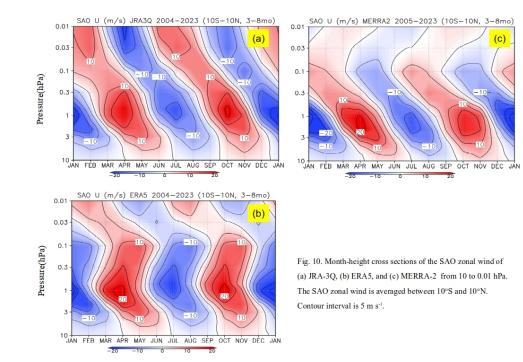



Fig. 9. Month-latitude cross sections of the SAO zonal wind of JRA-3Q (a) at 0.01 hPa, (b) at 1 hPa, ERA5 (c) at 0.01 hPa, (d) at 1 hPa, MERRA-2 (e) at 0.0 1hPa, and (f) at 1 hPa between 30° S and 30° N. Contour interval is 5 m s⁻¹.

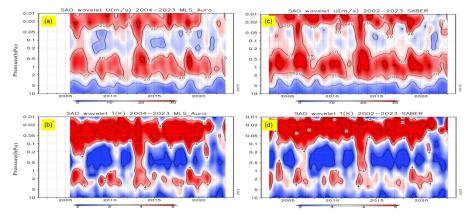


Fig. 11. Time series of the SAO amplitude of the MLS (a) zonal wind, (b) temperature, SABER (c) zonal wind, and (d) temperature from 10 to 0.01 hPa. The amplitudes are for wind and temperature averaged between 10^{*} S and 10^{*} N. Contour interval is 10 m s⁻¹ for wind and 5 K for temperature.

950x460mm (96 x 96 DPI)

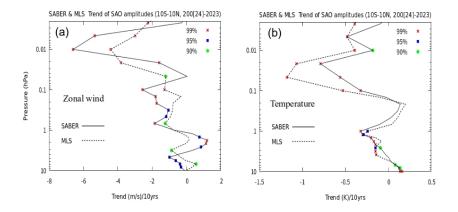


Fig. 12. Vertical profiles of the linear trends of the SAO amplitude of the SABER and MLS (a) zonal wind and (b) temperature averaged between 10°S and 10°N. Unit of the trend is m s⁻¹ (decade)⁻¹ for wind and K (decade)⁻¹ for temperature. Red crosses, blue squares, and green circles represent statistical significance higher than the 99%, 95%, and 90% levels, respectively.

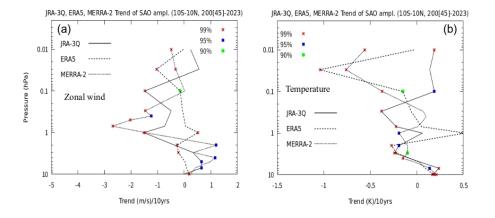


Fig. 13. Vertical profiles of the linear trends of the SAO amplitudes of the JRA-3Q, ERA5, and MERRA-2 (a) zonal wind and (b) temperature, averaged between 10°S and 10°N. Unit of the trend is m s¹ (decade)⁻¹ for wind and K (decade)⁻¹ for temperature. Red crosses, blue squares, and green circles represent statistical significance higher than the 99%, 95%, and 90% levels, respectively.

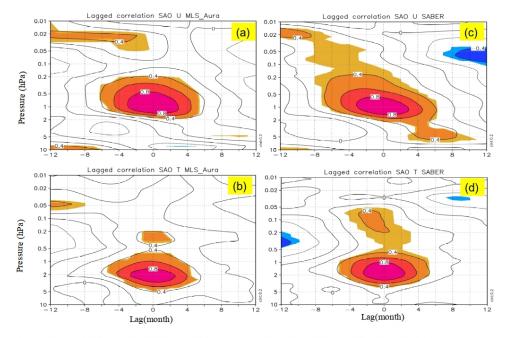


Fig. 14. Lag-height cross section of the lagged correlation coefficient of the detrended SAO amplitudes of the MLS (a) zonal wind, (b) temperature, SABER (c) zonal wind, and (d) temperature between a reference altitude and other altitudes. The reference altitude is 1 hPa for wind and 2 hPa for temperature. The amplitudes are calculated from zonal wind and temperature averaged between 10°S and 10°N. The abscissa is time-lag in months. Contour interval is 0.2, and color shading represents statistical significance higher than the 95% level.

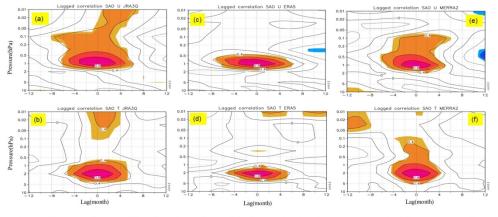


Fig. 15. Lag-height cross section of the lagged correlation coefficient of the detrended SAO amplitudes of the JRA-3Q (a) zonal wind, (b) temperature, ERA5 (c) zonal wind, (d) temperature, MERRA-2 (e) zonal wind, and (f) temperature between a reference altitude and other altitudes. The reference altitude is 1 hPa for wind and 2 hPa for temperature. The amplitudes are calculated from zonal wind and temperature averaged between 10° S and 10° N. The abscissa is time-lag in months. Contour interval is 0.2, and color shading represents statistical significance higher than the 95% level.

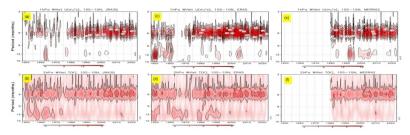


Fig. 16. Time-period cross section of the amplitudes over the periods from 3 to 15 months for the JRA-3Q (a) zonal wind, (b) temperature, ERA5 (c) zonal wind, (d) temperature, BRA5 (c) zonal wind, (d) temperature, BRA5 (c) zonal wind, (d) temperature at 2 hPa averaged between 10°S and 10°N.

451x300mm (96 x 96 DPI)