

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is DOI:10.2151/jmsj.2025-018 J-STAGE Advance published date: February 27, 2025 The final manuscript after publication will replace the preliminary version at the above DOI once it is available.

1	Tropical cyclone track and intensity predictions in the western North Pacific basin
2	using Pangu-Weather and JMA initial conditions
3	
4	
5	
6	
7	
8	
9	Munehiko Yamaguchi ^{1,2*} , Yasutaka Ikuta ¹ , Kosuke Ito ^{2,3} , and Masaki Satoh ^{2, 4}
10	
11	
12	
13	1: Meteorological Research Institute, Japan Meteorological Agency
14	2: Typhoon Science and Technology Research Center, Yokohama National University
15	3: Disaster Prevention Research Institute, Kyoto University
16	4: Atmosphere and Ocean Research Institute, The University of Tokyo
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	* Corresponding author address: Munehiko Yamaguchi, Department of Applied
34	Meteorology Research, Meteorological Research Institute, Japan Meteorological
35	Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan, Email: <u>myamagu@mri-</u>
36	<u>jma.go.jp</u> , Tel: +81-1-29-853-8627, Fax: +81-1-29-855-7240

38 Abstract

39 Tropical cyclones (TCs) are a threat to coastal regions in countries and areas situated in 40 the tropics to, at times, mid-latitudes, and their threat is expected to escalate due to 41 factors like global warming and urbanization. This emphasizes imperative need that warnings based on accurate and reliable forecasts be delivered to those who need 42 43 them in order to prevent or mitigate TC impacts effectively. While conventional Numerical Weather Prediction (NWP) models have traditionally dominated TC 44 45 forecasting at short to medium range lead times (i.e., up to two weeks), the 46 emergence of Artificial Intelligence (AI) models, i.e., Machine Learning (ML) models 47 trained on global reanalysis, has raised the possibility of such models competing and 48 thus supplementing NWP models. Here, we examine the potential of ML models in 49 operational TC forecasting, comparing them with conventional NWP models. The ML 50 model used in this study is Pangu-Weather and TC forecasts by this ML model are 51 compared with those from the operational global NWP model at the Japan 52 Meteorological Agency, especially focusing on the track. All 64 named TCs for a period 53 of 2021 to 2023 in the western North Pacific basin are verified. Results indicate that the ML forecasts exhibit smaller position errors compared to the NWP model, alleviate 54 55 the westward bias around Japan, and retain its forecast accuracy for TCs with unusual

56	paths, offering potential operational utility. Another benefit would be the ability to
57	deliver forecast results to forecasters quicker than before, since the ML model's
58	forecast takes less than a minute. Meanwhile, challenges such as forecast bust cases
59	and TC intensity, which are also present in NWP models, persist. A proposed way to
60	utilize ML models at current operational systems would be to add ML-based track
61	forecasts as one independent member of consensus forecasts.
62	
63	Keywords tropical cyclone, tropical cyclone track, operational forecasting, artificial
64	intelligence, machine learning
65	
66	1. Introduction
67	Tropical cyclones (TCs) are among the most intense atmospheric phenomena,
68	representing a significant threat, particularly to coastal regions in countries and areas
69	situated in the tropics and extending into the mid-latitudes. They can cause great
70	losses of life and property, and have intense social and economic impacts due to
71	strong winds, heavy precipitation, and storm surge. The threat posed by TCs is
72	expected to intensify due to global warming (e.g., Knutson et al. 2019, 2020, Lee et al.

73	2020), while urbanization, characterized by high concentration of population and
74	wealth in urban areas (United Nations 2019), presents a significant challenge that the
75	impact of TC landfall in such areas would become enormous (Blake et al. 2013, Normile
76	2019). As exemplified by the Early Warnings for All initiative (EW4All, World
77	Meteorological Organization [WMO] 2022) led by the United Nations, it is essential
78	that warnings based on accurate and reliable forecasts be delivered in a timely manner
79	to those who need them in order to prevent or mitigate the impacts of TCs.
80	
81	Among various aspects of TC forecasts, the track is particularly important or
82	fundamental. Getting the winds, precipitation, and storm surge associated with TCs
83	right requires a good track forecast. In general, the accuracy of TC track predictions by
84	numerical weather prediction (NWP) models has improved across all TC basins
85	worldwide, and this can be confirmed, for example, by the inter-comparison study
86	conducted by the Working Group on Numerical Experimentations (WGNE) since 1991
87	(Yamaguchi et al. 2017). The backgrounds of this improvement include the
88	advancement in NWP systems including the development of NWP models and data
89	assimilation systems, the enhancement of observational networks, and the use of
90	advanced supercomputers. Meanwhile, recent studies such as Conroy et al. (2023) and

Landsea and Cangialosi (2018) point out that the rate of improvement in the accuracy
of TC track predictions appears to be slowing down, at least for shorter lead times,
where we may be approaching theoretical limits.

94

95 In the context of diminishing improvement rate in the accuracy of TC track predictions, 96 a new innovation of weather forecasting by Artificial Intelligence (AI) models, which 97 are Machine Learning (ML) models trained on global reanalysis and often called datadriven models, has emerged (e.g., Bi et al. 2022, 2023; Lam et al. 2022, 2023, Chen et 98 99 al. 2023a,b). Predictions by ML models have been demonstrated to be as accurate as 100 or more accurate than the state-of-the-art physics-based models (i.e., conventional 101 NWP models) such as the Integrated Forecasting System (IFS) of the European Centre 102 for Medium-Range Weather Forecasts (ECMWF). In the examination of TC forecasting, 103 ML models have also showed smaller position errors than those of IFS though the 104 predictions of TC intensity tend to be weaker than those of NWP models and the best 105 track (Bouallègue et al. 2024). TC track forecasts at operational centers are currently 106 based generally on the outputs from NWP models, but the recent improvement in TC 107 track predictions by ML models is remarkable. Therefore, it is important to conduct

forecast experiments using ML models and evaluations across numerous TC cases to
 determine how ML models can be utilized in operational TC forecasts in the future.

111	When considering the operational use of ML models for TC track forecasts, it is
112	insufficient to verify the forecast tracks for specific cases (i.e., case studies). Thus, in
113	this study, we conduct forecast experiments for many TC cases and compare the TC
114	track forecasts by an ML model with those of an NWP model. This enables us to
115	deepen our understanding of the characteristics of the track forecasts made by ML
116	models and to highlight the differences from predictions made by NWP models. In this
117	study, forecast experiments are conducted for TCs in the western North Pacific basin.
118	The TCs verified are all named TCs in 3 years from 2021 to 2023. The ML model used is
119	Pangu-Weather (Bi et al. 2022, 2023), and its forecast results are compared to those
120	from the Global Spectral Model of the Japan Meteorological Agency (JMA/GSM, JMA
121	2023, 2024). This study is characterized by its focus on TCs in the western North
122	Pacific, the verification conducted on a large number of cases covering all named TCs
123	in that basin over a three-year period, and the use of operational global NWP model
124	initial conditions instead of reanalysis data as the initial conditions for the ML model.

This paper is organized as follows. Section 2 describes the methodology and data used
in this study. Section 3 presents the results of the forecast experiments by the ML
model. Section 4 presents a summary of this study.

129

130 2 Methodology and data

131 This study compares two types of TC track forecasts; one is from Pangu-Weather initiated 132 with JMA/GSM initial conditions (hereafter referred to as PNG-W) and the other is from 133 the operational JMA/GSM (hereafter referred to as GSM). To explore the possibility of 134 utilizing ML-based TC forecasts at JMA, it is necessary to run the ML model from initial 135 conditions that are available in a stable and timely manner. Thus, we select the JMA/GSM 136 initial conditions, which are analysis fields created in real time for the initial conditions 137 of JMA/GSM rather than long-term reanalysis data, to initiate PNG-W in this study. 138 139 The PNG-W model used in this study is the pre-trained model available online

(https://github.com/198808xc/Pangu-Weather). It is trained on the ECMWF Reanalysis 5
(ERA5, Hersbach et al. 2020) dataset with a horizontal resolution of 0.25 x 0.25 degrees
in longitude and latitude, spanning the training period of 39 years from 1979 to 2017. It
should be noted that no fine-tuning of the PNG-W model involving the JMA/GSM

analysis fields or other data are applied. The initial conditions for PNG-W are 5 variables
(geopotential, temperature, specific humidity, zonal and meridional winds) at 13
pressure levels (1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, and 50 hPa)
and 4 surface variables (mean sea level pressure, temperature at 2 m, zonal and
meridional winds at 10 m) with the same horizontal resolution of 0.25 x 0.25 degrees in
longitude and latitude.

150

151 The GSM used in this study is an operational global NWP model at JMA. In 2021 and 152 2022, it utilized the spectral triangular truncation 959 with a reduced Gaussian grid 153 system (TL959), corresponding to 0.1875 x 0.1875 degrees in longitude and latitude (JMA 154 2023). In 2023, a quadratic and reduced Gaussian grid system (TQ959) was adopted, 155 corresponding to 0.125 x 0.125 degrees in longitude and latitude (JMA 2024). In the 156 vertical layers, 128 stretched sigma pressure hybrid levels are used with a model top of 157 0.01 hPa throughout the verification period in this study. The horizontal resolution of 158 PNG-W is 0.25 x 0.25 degrees in longitude and latitude, so the JMA/GSM fields are 159 interpolated horizontally using bilinear interpolation to match this resolution.

160

161 TC track data, i.e., TC position and intensity (minimum sea level pressure), are created

162	from the outputs of mean sea level pressure fields for both PNG-W and GSM. We adopt
163	a tracking method used in the WGNE inter-comparison study (Yamaguchi et al. 2017). A
164	minimum pressure location in the mean sea level pressure field is defined as the central
165	position of a TC. A surface-fitting technique is employed so that the central position is
166	not necessarily on a grid point of the mean sea level pressure fields. First, the locations
167	of pressure minimum points that could be the potential center of the TC are identified
168	from the mean sea level pressure field at each forecast time. The mean sea level pressure
169	at the minimum point must be at least 2 hPa lower than the average mean sea level
170	pressure within a circle of 1000 km radius centered at that point. Additionally, the mean
171	sea level pressure at the minimum point must be the lowest within a circle of 500 km
172	radius from that point. The initial TC central position is defined as the closest point within
173	a 500 km radius from the analyzed TC central position, based on the best-track data,
174	among the candidate points mentioned above. The TC central position at time T + 6 h is
175	defined within a 500 km radius from the initial TC central position. After this, the TC
176	central position is defined within a 500 km radius from the point that is determined by
177	linearly extrapolating the last two positions. The TC tracking ends when appropriate
178	candidate points do not exist.

180	The TCs verified in this study are named TCs in the western North Pacific basin from 2021
181	to 2023. The number of named TCs in 2021, 2022, and 2023 are 22, 25, and 17,
182	respectively, so the total number of TCs verified in this study is 64. For these 64 TCs, we
183	evaluate the forecast results up to 5-days ahead, using all forecasts initialized at 0000
184	and 1200 UTC. For the TC tracking and evaluation, the JMA best track data is used.
185	
186	3 Results
187	3.1 Mean position errors
188	Figure 1 shows the mean position errors of GSM and PNG-W and the number of
189	verification samples for 1- to 5-day forecasts. The mean position errors of PNG-W are
190	smaller than those of GSM throughout the forecast times considered and the
191	differences between them are statistically significant at all five forecast times based on
192	the two-sided 95 % confidence interval (Student's t-test). The improvement rate of the
193	1- to 5-day forecasts is 8, 19, 18, 15, and 9 %, respectively. As the rate of improvement
194	in operational TC track forecasting has been declining in recent years, especially for
195	short-term forecasts (Conroy et al. 2023, Landsea and Cangialosi 2018), the magnitude

of these improvements would be very attractive when considering utilizing them foroperational purposes.

198

199 **3.2 Forecast bust case**

200 The accuracy of the mean position errors of TCs is evident from the verification result 201 shown in Fig. 1. On the other hand, when examining individual forecast cases, there are instances characterized by large TC position errors, known as forecast bust. In this 202 203 subsection, we focus on cases where the track forecast errors from GSM is particularly 204 large and investigate how the ML model forecasts those particular cases. Typhoon No. 205 11 in 2023 (HAIKUI), which moved westward over the southern ocean of Japan and 206 made landfall over Taiwan, is a case where not only GSM, but also global NWP models 207 from ECMWF, the U.S. National Centers for Environmental Prediction (NCEP), and the 208 Met Office in the United Kingdom (UKMO) tended to forecast its track further 209 northward than observed. As JMA's operational TC track forecasts are primarily based 210 on a consensus of the track predictions by the 4 global NWP models mentioned above 211 (i.e., ECMWF, JMA, NCEP and UKMO), the average position error for JMA's 5-day track 212 forecast for Typhoon HAIKUI exceeded 1000 km.

214	Figure 2a shows the forecasts of GSM and PNG-W initialized at 1200 UTC on August 30,
215	2023. GSM forecasts a northwestward movement of HAIKUI, while PNG-W forecasts a
216	westward movement, more comparable to the best track. However, when looking at
217	the forecasts by PNG-W initialized 12 hours before and after (Figs. 2b,c), the
218	continuous westward motion is not forecast as in the forecast initialized at 1200 UTC
219	on August 30, 2023 (Fig. 2a). These results suggest that although there is an initial time
220	when PNG-W forecasts the westward movement of HAIKUI, it would be difficult for
221	forecasters at operation to consistently forecast the westward movement of HAIKUI
222	even if they use PNG-W's forecast results at operations because the forecasts change
223	significantly depending on the initial times. As shown in Fig. 1, the accuracy of the track
224	predictions using PNG-W is generally high; however, this does not imply that instances
225	of forecast bust, where the forecast track is significantly off, will disappear. Similar
226	"flip-flop" issue was also observed in a previous study working on Super Typhoon
227	SAOLA in 2023 (Chan et al. 2024).

3.3 Bias in forecast TC positions

230	What cases, then, does PNG-W improve the track forecasts over GSM? When we look
231	at each forecast case verified in this study, we notice that in many cases the slow bias
232	of GSM after recurvature has improved. Figures 3a,b show the examples of such cases.
233	Figure 4 is a mean bias map of the track forecasts of GSM and PNG-W. The figure
234	illustrates the average direction and magnitude of the errors in the forecast positions
235	relative to the observed positions. This is created using all 3-day forecasts of GSM and
236	PNG-W verified in this study (i.e., all 64 TCs are considered). The westward bias seen in
237	GSM around Japan, which would be associated with the slow bias after recurvature in
238	the context of the steering flow concept, generally improves in PNG-W. This reduction
239	in bias around Japan would be one of the valuable outcomes for forecasters who
240	closely monitor TCs approaching or making landfall over Japan.
241	
242	Then, we examine the position errors by separating them into along- and cross-track
243	directions to further understand the characteristics of the track forecasts of GSM and
244	PNG-W. Figure 5 shows the results of calculating the track forecast errors in the along-
245	and cross-track directions for GSM and PNG-W for every 24 hours from the 24- to 120-
246	hour forecasts. The along-track direction is calculated from the observed position at
247	the time of the verification and the 6 hours prior to the verification, and the cross-

248	track direction is orthogonal to that direction. Positive (negative) values in the along-
249	track direction verification indicate that the track forecasts have a fast (slow) bias, and
250	positive (negative) values in the cross-track direction verification indicate that they
251	have a bias to the right (left) relative to the along-track direction. The verification
252	results in the along-track direction show that the slow bias seen in GSM is improved in
253	PNG-W. However, looking at the 120-hour forecast, PNG-W has a rather fast bias. The
254	verification results in the cross-track direction show little difference between PNG-W
255	and GSM. These results are consistent with Liu et al. (2024) that showed that the
256	Pangu-Weather model gives the accuracy of predictions for largescale circulation and
257	TC tracks.
258	
259	Next, we examine the along- and cross-track directions by separating the verification
260	samples by TC motion directions, which we define to be given by the along-track
261	direction. Figure 6 shows the verification results when the direction of TC motion, $artheta$, is
262	in the first (0° \leq ϑ \leq 90°, hereafter referred to as Q1) and second (90° \leq ϑ \leq 180°, Q2)
263	quadrants, respectively. Note that $\vartheta = 0^\circ$, 90°, 180°, and 270° correspond to East,
264	North, West, and South directions, respectively. The number of verification samples

265 for the Q1 (Q2) direction at 24, 48, 72, 96, and 120 hours is 160 (311), 137 (235), 112

266	(162), 84 (121), and 66 (84), respectively. The verification in the Q2 direction does not
267	reveal any major difference between GSM and PNG-W. On the other hand, the
268	verification in the Q1 direction shows that PNG-W has a reduced slow bias and a
269	reduced bias on the left side of the motion direction compared to GSM. The
270	verification of the Q1 direction is expected to include many cases where TCs move
271	eastward after recurvature in the western North Pacific basin, so the reduction of the
272	slow bias is consistent with the bias maps seen in Fig. 4.
273	
274	Finally, we perform the same verification, but for different motion speeds. Figure 7
275	shows the verification results when the TC motion speed, v, is v $<$ 10 km/h (slow
276	motion speed), $10 \leq v < 20$ km/h (medium motion speed), and $20 \leq v$ km/h (fast
277	motion speed). The number of verification samples for the slow (medium, fast) motion
278	speed at 24, 48, 72, 96, and 120 hours is 111 (214, 174), 92 (163, 135), 73 (119, 98), 63
279	(88, 63), and 47 (64, 45), respectively. The verification in the fast motion speed
280	subgroup shows that PNG-W has a reduced slow bias and a reduced bias on the left
281	side of the motion direction compared to GSM. The verification of the fast speed
282	motion is expected to include cases where TCs move along the westerly jet after

recurvature, so the reduction of the slow bias here is also consistent with the bias mapseen in Fig. 4.

285

286 **3.4 Forecasts for unique TC tracks**

Some may argue that NWP models are more accurate for TCs with peculiar paths (e.g., 287 288 TCs that suddenly change direction or take a looping path) because their forecasts are 289 based on the laws of dynamics and physics under any given circumstance. Then, we 290 examine the track forecasts for five TCs that took peculiar paths during the 3-year 291 period from 2021 to 2023. These five TCs are Typhoons No. 6 (IN-FA) and No. 8 292 (NEPARTAK) in 2021, No. 11 (HINNAMNOR) in 2022, and No. 6 (KHANUN) and No. 9 (SAOLA) in 2023. 293 294 295 Figures 8a,b,c,d,e show the track forecasts of GSM and PNG-W when the TCs suddenly 296 changed their motion direction or took a circular path during the forecast period. As 297 the figures clearly show, the ML model is generally able to capture abrupt changes in the track and the circular path as well as the NWP model. There is a case where the 298 299 abrupt changes in the track is not well forecast by the ML model as shown in Fig. 8b.

300	However, it is true with the NWP model and it does not seem that the ML model only
301	forecasts badly. To confirm that the ML model is at least not worse overall than the
302	NWP model for track predictions of TCs with unusual tracks, we conduct a verification
303	of position errors using the entire forecast tracks over the lifetimes of the five
304	individual TCs. As Fig. 9 shows, the ML model has smaller position errors than the NWP
305	model throughout the forecast times. Thus, it seems unlikely that ML models are less
306	proficient than NWP models for TCs that take an unusual path.
307	
308	3.5 Consistency of consecutive forecasts
308 309	3.5 Consistency of consecutive forecasts Forecasters issue TC forecasts on a routine basis when TCs are present in the area of
308 309 310	3.5 Consistency of consecutive forecasts Forecasters issue TC forecasts on a routine basis when TCs are present in the area of responsibility, and the forecast frequency increases when TCs approach or make
308 309 310 311	3.5 Consistency of consecutive forecasts Forecasters issue TC forecasts on a routine basis when TCs are present in the area of responsibility, and the forecast frequency increases when TCs approach or make landfall. The temporal consistency of the TC forecasts is one of the forecaster's
308 309 310 311 312	3.5 Consistency of consecutive forecasts Forecasters issue TC forecasts on a routine basis when TCs are present in the area of responsibility, and the forecast frequency increases when TCs approach or make landfall. The temporal consistency of the TC forecasts is one of the forecaster's concerns in the forecasting process. Thus, it is important to understand how much the
308 309 310 311 312 313	3.5 Consistency of consecutive forecasts Forecasters issue TC forecasts on a routine basis when TCs are present in the area of responsibility, and the forecast frequency increases when TCs approach or make landfall. The temporal consistency of the TC forecasts is one of the forecaster's concerns in the forecasting process. Thus, it is important to understand how much the forecast locations of TCs tend to change as the initial conditions change, whether in ML

316	Then, we investigate the extent to which forecast locations change relative to previous
317	forecasts. Figure 10 shows box plots evaluating how far the latest forecast position is
318	compared to the forecast position with the initial time ΔT hours ago for every 24
319	hours from the 24- to 120-hour forecasts, with $\varDelta T$ being verified at 12, 24, 36, and 48
320	hours.
321	Since this study uses 12-hourly forecasts (i.e., forecasts initialized at 0000 and 1200
322	UTC), for the verification of 3-day forecasts with ΔT = 12 hours, for example, the
323	distance between the 72-hour forecast position at a certain initial time and the 84-
324	hour forecast position with the initial time 12 hours earlier is calculated. Smaller values
325	on the Y-axis indicate less variation in the forecast TC positions across consecutive
326	forecasts.
327	
328	With the exception of ΔT = 12, the forecast positions of TCs in PNG-W tend to change
329	less than those in GSM. At ΔT = 24, 36, and 48, PNG-W shows statistically significant
330	continuity of forecast TC positions compared to GSM in the 24- and 48-hour forecasts.
331	These results suggest that ML models may provide more stable forecasts compared to
332	NWP models, especially at short lead times. On the other hand, at $\Delta T = 12$, the
333	forecast positions of TCs from GSM tend to show less variation compared to those

334	from PNG-W, but the tendency is not statistically significant. In order to be more
335	robust regarding the consistency of consecutive forecasts by ML and NWP models, it is
336	important to increase the number of verification cases and also to incorporate
337	verification using other ML models.

339 **3.6 Intensity forecasts**

340	Although the main fo	cus of this study i	is the verification o	of TC track forecasts,	we briefly
-----	----------------------	---------------------	-----------------------	------------------------	------------

- 341 discuss the verification results of the intensity forecasts. Figures 11a,b are the mean
- 342 absolute error and bias of the intensity forecasts in terms of the central pressure (hPa).
- 343 The intensity forecast errors of PNG-W are larger than those of GSM throughout the
- 344 forecast times, which is in consistent with previous studies such as Bouallègue et al.
- 345 (2024) and He and Chan (2024). The bias of PNG-W is highly positive, indicating weaker
- 346 TC intensity compared to GSM and to observations.
- 347

348 The effectiveness of PNG-W in forecasting TC tracks has been demonstrated in the	his
--	-----

- 349 study, but it has larger errors than GSM with respect to intensity forecasts. This would
- 350 be partly due to the limitations inherent in ERA5. ERA5 has a horizontal resolution of

0.25 x 0.25 degrees in longitude and latitude which is too coarse to resolve the inner
core structures of TCs. To more accurately predict TC intensity, there would be two
possible approaches: either using higher-resolution training data or developing
specialized ML models that can address the resolution limitations and mitigate the
intensity bias.

357	A possible approach to leverage the advantages of ML models for TC track forecasting
358	while mitigating intensity forecast bias could include the following method. Statistical
359	dynamical models such as the Statistical Hurricane Intensity Prediction Scheme (SHIPS,
360	DeMaria and Kaplan 1994, DeMaria et al. 2014) and the Typhoon Intensity Forecasting
361	scheme based on SHIPS (TIFS, Yamaguchi et al. 2018) are implemented at operational
362	centers including the US National Hurricane Center and JMA. In such statistical
363	dynamical models, environmental parameters that are predictors for the models are
364	computed along the forecast track. Thus, by calculating environmental parameters
365	used in SHIPS and TIFS based on forecast fields from ML models, it would be expected
366	that the forecast accuracy of intensity forecasts improves (in this case, since outputs
367	from dynamical models are not used, the term "statistical-dynamical model" may not
368	be appropriate).

370 **3.7 Computational time**

- 371 ML models offer an advantage in terms of the production time as the computational
- 372 cost to run ML models is quite low. In JMA's operational system, for example, it takes
- about 19 minutes, with 484 Intel Xeon 8160 CPUs totaling 11616 physical cores, from
- the start of a GSM job to output the forecast results for the next 5 days (this time does
- 375 not include time for data assimilation or post-processing such as TC tracking).
- 376 Meanwhile, the computation of PNG-W up to 5-day ahead takes less than a minute
- 377 using a single NVIDIA A100. This indicates that the forecast results from the ML model
- 378 would be available about 18 minutes earlier than GSM. For forecasters busy with
- 379 operational work, this time difference may be valuable.

380

381 **4 Summary**

- 382 In this study, we evaluated the accuracy of TC track forecasts using an ML model by
- 383 comparing its predictions with those from an NWP model. Using Pangu-Weather as the
- 384 ML model, forecast experiments were conducted for all 64 named TCs in the western
- North Pacific basin from 2021 to 2023, and the results were compared with those of

JMA/GSM, a conventional global NWP model operated at JMA. The JMA/GSM initial
 conditions are used to initiate the ML and the NWP models.

388

389 First, the accuracy of the track forecasts by the ML model exceeds that of the NWP 390 model. The improvement rates of the ML model over the NWP model for the 1- to 5-day forecasts are 9, 19, 18, 15, and 9 %, respectively. Considering the decrease in the 391 392 improvement rates of track forecasts by NWP models, these values are not insignificant. 393 In addition, the ML model is found to be as good as or better than the NWP model at 394 forecasting TCs with unusual paths. However, these results do not imply that the ML 395 model is a panacea, and cases of forecast busts, such as that observed with Typhoon No. 396 11 in 2023 (HAIKUI), can still occur in the ML model. 397 Second, the ML improves track forecasts over the NWP model by reducing the slow bias, 398 particularly after recurvature, corresponding to a reduction in the westward bias around 399 400 Japan. When examining the position errors in the along- and cross-track directions, the 401 ML shows improvements in the along-track direction, especially for TCs moving 402 eastward or at fast speeds. The ML has the advantage that it has an implicit bias-403 correction as it had the chance to correct the model when comparing to the true state

404	(i.e., analysis fields) during the model training period. As a result, it would be able to
405	effectively reduce the bias. Regarding the temporal consistency of TC forecast positions,
406	the ML model generally provides more stable forecasts compared to the NWP model,
407	especially at shorter lead times, though further verification with additional cases and ML
408	models is necessary to confirm the robustness of these results.
409	
410	Although the main focus of this study was TC track forecasting, we also examined the
411	intensity forecasts. We observed that the intensity forecasts by the ML model were
412	weaker than the NWP model and the best track, as shown in Bouallègue et al. (2024).
413	This would be primarily due to the limitations inherent in ERA5 whose horizontal
414	resolution is too coarse to resolve the inner core structures of TCs.
415	
416	A proposed way to utilize ML models at current operational systems would be to add
417	the ML-based track forecasts as one independent member of the consensus forecasts.
418	In the consensus, one might take advantage of the ML model's good performance and
419	put a larger weight on it. Alternatively, one could consider putting a larger weight on the
420	ML model in the post-recurvature track forecasts, taking into account its ability to
421	reduce slow bias. The creation of optimal consensus forecasts is a topic of our next study.

422	Another advantage may be that forecasts from ML models are available earlier than
423	from NWP models. In the framework of this study, the ML-based forecasts are available
424	approximately 20 minutes earlier. This availability advantage will be significant when it
425	comes to ensemble forecasts.
426	
427	It is typical for operational centers to produce their TC track forecasts with a consensus
428	approach using multiple NWP models (Conroy et al. 2023). This means that all agencies
429	tend to have similar forecast results since NWP model results are basically available via
430	the Global Telecommunication System known as GTS, the Internet, etc. The new
431	innovation of ML-based forecasting has the potential to change this international
432	standard of adopting the consensus of major NWP model outputs, and it is likely that
433	each operational center will have its own characteristics in the future depending on how
434	it utilizes ML-based forecasts.
435	
436	Finally, while we evaluated the potential of ML models for operational TC forecasting in
437	this study, we do not intend to claim that the existence of NWP models or their
438	development is unnecessary. Rather, the opposite is true. Reanalysis data are still needed

to train ML models, and this is where NWP models and related techniques such as data

assimilation are essential. Thus, further development of NWP systems will be important
to improve overall forecast accuracy and to improve forecast accuracy on a continuous
basis.

443

444 Acknowledgments

- This work was supported by JSPS KAKENHI Grant Number 23K26359 and 24K00703. This
- 446 study was also supported in part by the Moonshot R&D Grant JPMJMS2282-02 from the
- 447 Japan Science and Technology Agency and JSPS Core-to-Core Program (grant number:
- 448 JPJSCCA20220001). We used the pre-trained Pangu-Weather model available at
- 449 https://github.com/198808xc/Pangu-Weather
- 450 (https://doi.org/10.5281/zenodo.7678849). The authors thank Dr. Hao-Yan Liu for
- 451 discussions of initial phase of this study.

452

453 Data availability

- 454 The Pangu-Weather model is available at <u>https://github.com/198808xc/Pangu-Weather</u>.
- 455 The datasets of JMA/GSM are operationally provided via the Japan Meteorological
- 456 Business Support Center (http://www.jmbsc.or.jp/en/index-e.html) and are freely

457 available for research purposes.

458 **References**

- 459 1. Bi, K., L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, 2022: Pangu-Weather: A 3D
- 460 High-Resolution Model for Fast and Accurate Global Weather Forecast, preprint at
- 461 arXiv:2211.02556.
- 462 2. Bi, K., L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, 2023: Accurate medium-range
- 463 global weather forecasting with 3D neural networks, *Nature*, **619**, 533–538.
- 464 3. Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven, 2013:
- 465 Tropical cyclone report hurricane sandy (AL182012) 22 29 October 2012,
- 466 *National Hurricane Center.*
- 467 4. Bouallègue, B. Z., and Coauthors, 2024: The rise of data-driven weather
- 468 forecasting: A first statistical assessment of machine learning-based weather
- 469 forecasts in an operational-like context. Bull. Amer. Meteor. Soc.,
- 470 https://doi.org/10.1175/BAMS-D-23-0162.1, in press.
- 471 5. Chan, P. W., Y. H. He, and Y. S. Lui, 2024: Forecasting Super Typhoon Saola and its
- 472 effects on Hong Kong, *Weather*. (In Print)
- 473 6. Chen, K., T. Han, J. Gong, L. Bai, F. Ling, J.-J. Luo, X. Chen, L. Ma, T. Zhang, R. Su, U.
- 474 Ci, B. Li, X. Yang, and W. Ouyang, 2023a:FengWu: Pushing the Skillful Global

476		10.48550/arXiv.2304.02948.
477	7.	Chen, L., X. Zhong, F. Zhang, Y. Cheng, Y. Xu, Y. Qi, and H. Li, 2023b: FuXi: a cascade
478		machine learning forecasting system for 15-day global weather forecast, npj
479		Climate and Atmospheric Science, 6, 1–11.
480	8.	Conroy, A., H. Titley, R. Rivett, X. Feng, J. Methven, K. Hodges, A. Brammer, A.
481		Burton, P. Chakraborty, G. Chen, L. Cowan, J. Dunion, and A. Sarkar, 2023: Track
482		forecast: Operational capability and new techniques - Summary from the Tenth
483		International Workshop on Tropical Cyclones (IWTC-10), Tropical Cyclone Research
484		and Review, 12 , 64-80.
484 485	9.	and Review, 12 , 64-80. DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction
484 485 486	9.	<i>and Review</i> , 12 , 64-80. DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic Basin. <i>Weather and Forecasting</i> , 9 , 209-220.
484 485 486 487	9. 10.	and Review, 12 , 64-80. DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic Basin. <i>Weather and Forecasting</i> , 9 , 209-220. DeMaria, M., C. Sampson, J. Knaff, and K. Musgrave, 2014: Is Tropical Cyclone
484 485 486 487 488	9.	and Review, 12 , 64-80. DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic Basin. <i>Weather and Forecasting</i> , 9 , 209-220. DeMaria, M., C. Sampson, J. Knaff, and K. Musgrave, 2014: Is Tropical Cyclone Intensity Guidance Improving? <i>Bull. Amer. Meteor. Soc.</i> , 95 , 387–398.
484 485 486 487 488 488	9. 10. 11.	and Review, 12 , 64-80. DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic Basin. <i>Weather and Forecasting</i> , 9 , 209-220. DeMaria, M., C. Sampson, J. Knaff, and K. Musgrave, 2014: Is Tropical Cyclone Intensity Guidance Improving? <i>Bull. Amer. Meteor. Soc.</i> , 95 , 387–398. Dunion, J. P., C. Davis, H. Titley, H. Greatrex, M. Yamaguchi, J. Methven, R. Ashrit,
484 485 486 487 488 489 489	9. 10. 11.	and Review, 12 , 64-80. DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic Basin. <i>Weather and Forecasting</i> , 9 , 209-220. DeMaria, M., C. Sampson, J. Knaff, and K. Musgrave, 2014: Is Tropical Cyclone Intensity Guidance Improving? <i>Bull. Amer. Meteor. Soc.</i> , 95 , 387–398. Dunion, J. P., C. Davis, H. Titley, H. Greatrex, M. Yamaguchi, J. Methven, R. Ashrit, Z. Wang, H. Yu, AC. Fontan, A. Brammer, M. Kucas, M. Ford, P. Papin, F. Prates, C.

Medium-rangeWeather Forecast beyond 10 Days Lead, preprint at

- 492 Vigh, 2023: Recommendations for improved tropical cyclone formation and 493 position probabilistic Forecast products, Tropical Cyclone Research and Review, 12, 494 241-258. 495 12. He Y. H., and P. W. Chan, 2024: Challenges in the Forecasting of Severe Typhoon 496 Koinu in 2023, Atmosphere, 15, 31. 497 13. Hersbach H, and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol 498 Soc. 146, 1999–2049. 14. JMA, 2023: Outline of the operational numerical weather prediction at the Japan 499 500 Meteorological Agency. Appendix to WMO Numerical Weather Prediction 501 Progress Rep., Japan Meteorological Agency, Tokyo, Japan, 252 pp. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2023-502 503 nwp/index.htm] 504 15. JMA, 2024: Outline of the operational numerical weather prediction at the Japan 505 Meteorological Agency. Appendix to WMO Numerical Weather Prediction 506 Progress Rep., Japan Meteorological Agency, Tokyo, Japan, 262 pp. [Available
- 507 online at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2024-

508 nwp/index.htm]

509	16.	Knutson, T., S. J. Camargo, J. C. L. Chan, K. Emanuel, CH. Ho, J. Kossin, M.
510		Mohapatra, M. Satoh, M. Sugi, K. Walsh, and L. Wu. 2019: Tropical cyclones and
511		climate change assessment: Part I: Detection and attribution. Bull. Amer. Meteor.
512		<i>Soc.,</i> 100 , 1987–2007.
513	17.	Knutson, T., S. J. Camargo, J. C. L. Chan, K. Emanuel, CH. Ho, J. Kossin, M.
514		Mohapatra, M. Satoh, M. Sugi, K. Walsh, and L. Wu, 2020: Tropical cyclones and
515		climate change assessment: Part II: Projected response to anthropogenic warming.
516		Bull. Amer. Meteor. Soc., 101 , E303–E322.
517	18.	Lam, R., A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, A. Pritzel,
518		S. Ravuri, T. Ewalds, F. Alet, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G.
519		Holland, J. Stott, O. Vinyals, S. Mohamed, and P. Battaglia, 2022: GraphCast:
520		Learning skillful medium-range global weather forecasting, preprint at
521		10.48550/arXiv.2212.12794.
522	19.	Lam, R., A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet,
523		S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O.
524		Vinyals, J. Stott, A. Pritzel, S. Mohamed, and P. Battaglia, 2023: Learning skillful

525 medium-range global weather forecasting, *Science*, **382**, 1416–1421.

526	20.	Landsea, C. W., and J. P. Cangialosi, 2018: Have We Reached the Limits of
527		Predictability for Tropical Cyclone Track Forecasting?. Bull. Amer. Meteor. Soc., 99,
528		2237–2243.
529	21.	Lee, TC., T. R. Knutson, T. Nakaegawa, M. Ying, E. J. Cha, 2020: Third assessment
530		on impacts of climate change on tropical cyclones in the Typhoon Committee
531		Region – Part I: Observed changes, detection and attribution, Tropical Cyclone
532		Research and Review, 9 , 1-22.
533	22.	Liu, HY., ZT. Tan, Y. Wang, J. Tang, M. Satoh, L. Lei, JF. Gu, GZ. Nie, and QZ.
534		Chen, 2024: A hybrid machine learning/physics-based modeling framework for
535		two-week extended prediction of tropical cyclones. J. Goephys. Res.: Machine
536		Learning and Computation. https://doi.org/10.1029/2024JH000207
537	23.	Normile, D., 2019: Deadly typhoon forces Japan to face its vulnerability to
538		increasingly powerful storms. Science, doi: 10.1126/science.aaz9495.
539	24.	United Nations, 2019: World urbanization prospects: the 2018 revision
540		(ST/ESA/SER.A/420), United Nations.
541	25.	World Meteorological Organization, 2022: EARLY WARNINGS FOR ALL, World
542		Meteorolgcal Organization, 55pp.

543	26. Yamaguchi, M., J. Ishida, H. Sato, and M. Nakagawa, 2017: WGNE intercomparison
544	of tropical cyclone forecasts by operational NWP models: A quarter-century and
545	beyond. <i>Bull. Amer. Meteor. Soc.,</i> 98 , 2337–2349.
546	27. Yamaguchi, M., H. Owada, U. Shimada, M. Sawada, T. Iriguchi, K. Musgrave, and
547	M. Demaria, 2018: Tropical cyclone intensity prediction in the western North
548	Pacific basin using SHIPS and JMA/GSM. SOLA, 14, 138-143.

Figure 2. Track forecasts by GSM (blue) and PNG-W (red) for Typhoon HAIKUI. The initial times of the forecast are (a) 1200 UTC of 30 August 2023, (b) 0000 UTC of 30 August 2023, and (c) 0000 UTC of 31 August 2023, respectively. The best track is shown in black. The triangles are plotted every 24 hours at the time of 1200 UTC.

565 Figure 3. Same as Figure 2, but (a) for Typhoon MALAKAS (Typhoon No. 1 in 2022),

566 initialized at 1200 UTC of 10 April 2022, and (b) for Typhoon MAWAR (Typhoon No. 2 in

567 2023), initialized at 1200 UTC of 28 May 2023.

Figure 4. Mean bias of track forecasts by GSM (left) and PNG-W (right). The forecast time 571 verified is 72 hours. The arrow shows the direction of the bias and the length of the 572 arrow shows the magnitude of the bias (see legend on the figures). The TCs verified here 573 are all named TCs from 2021 to 2023 (64 TCs in total). 574 575

Figure 5. Mean position error of track forecasts in the (left) along- and (right) cross-track
directions of GSM (blue) and PNG-W (red). X-axis is the forecast times from 24 to 120
hours. The black triangles represent that the difference between GSM and PNG-W are
statistically significant based on the 2-sided 95 % confidence interval (Student's t-test).
The TCs verified here are all named TCs from 2021 to 2023 (64 TCs in total).

588 direction errors when ϑ is in the second quadrant (90° $\leq \vartheta \leq$ 180°), respectively.

Figure 7. Same as Fig.5, but (top left) and (top right) for the along- and cross-track direction errors when the TC motion speed, v, is v < 10 km/h, respectively, (middle left) and (middle right) for the along- and cross-track direction errors when $10 \le v < 20$ km/h, respectively, and (bottom left) and (bottom right) for the along- and cross-track direction errors when $20 \le v$ km/h, respectively.

Figure 8. Same as Figure 2, but (a) for Typhoon IN-FA (Typhoon No. 6 in 2021), initialized
at 0000 UTC of 20 July 2021, (b) for Typhoon NEPARTAK (Typhoon No. 8 in 2021),

- 604 initialized at 0000 UTC of 24 July 2021, (c) for Typhoon HINNAMNOR (Typhoon No. 11 in
- 605 2022), initialized at 1200 UTC of 30 August 2022, (d) for Typhoon KHANUN (Typhoon No.
- 606 6 in 2023), initialized at 1200 UTC of 31 July 2023, and (e) for Typhoon SAOLA (Typhoon
- 607 No. 9 in 2023), initialized at 0000 UTC of 25 August 2023.
- 608

Figure 9. Same as Fig. 1, but the verification is based on the five TCs shown in Fig. 8 only.

Figure 10. Box plots that show how far the latest forecast TC position is compared to the 615 616 forecast position with the initial time ΔT hours ago for every 24 hours from the 24- to 617 120-hour forecasts, with ΔT being verified at (top left) 12, (top right) 24, (bottom left) 618 36, and (bottom right) 48 hours, respectively. The five sets of the box plots correspond 619 to the verification of 24 to 120 hours forecasts from left to right, with blue representing 620 GSM and red representing PNG-W. The black triangles represent that the difference 621 between GSM and PNG-W are statistically significant based on the 2-sided 95 % 622 confidence interval (Student's t-test). The TCs verified here are all named TCs from 2021 623 to 2023 (64 TCs in total).

Figure 11. (Left) Mean absolute central pressure error of GSM (blue) and PNG-W (red) (hPa, y axis on the left). Y-axis on the right represents the number of samples, shown by the black bars. (Right) Central pressure bias of GSM (blue) and PNG-W (red) (hPa). X-axis is the forecast times from 24 to 120 hours. The TCs verified here are all named TCs from 2021 to 2023 (64 TCs in total).