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Abstract 38 

Tropical cyclones (TCs) are a threat to coastal regions in countries and areas situated in 39 

the tropics to, at times, mid-latitudes, and their threat is expected to escalate due to 40 

factors like global warming and urbanization. This emphasizes imperative need that 41 

warnings based on accurate and reliable forecasts be delivered to those who need 42 

them in order to prevent or mitigate TC impacts effectively. While conventional 43 

Numerical Weather Prediction (NWP) models have traditionally dominated TC 44 

forecasting at short to medium range lead times (i.e., up to two weeks), the 45 

emergence of Artificial Intelligence (AI) models, i.e., Machine Learning (ML) models 46 

trained on global reanalysis, has raised the possibility of such models competing and 47 

thus supplementing NWP models. Here, we examine the potential of ML models in 48 

operational TC forecasting, comparing them with conventional NWP models. The ML 49 

model used in this study is Pangu-Weather and TC forecasts by this ML model are 50 

compared with those from the operational global NWP model at the Japan 51 

Meteorological Agency, especially focusing on the track. All 64 named TCs for a period 52 

of 2021 to 2023 in the western North Pacific basin are verified. Results indicate that 53 

the ML forecasts exhibit smaller position errors compared to the NWP model, alleviate 54 

the westward bias around Japan, and retain its forecast accuracy for TCs with unusual 55 
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paths, offering potential operational utility. Another benefit would be the ability to 56 

deliver forecast results to forecasters quicker than before, since the ML model's 57 

forecast takes less than a minute. Meanwhile, challenges such as forecast bust cases 58 

and TC intensity, which are also present in NWP models, persist. A proposed way to 59 

utilize ML models at current operational systems would be to add ML-based track 60 

forecasts as one independent member of consensus forecasts.   61 

 62 

Keywords   tropical cyclone, tropical cyclone track, operational forecasting, artificial 63 

intelligence, machine learning 64 

 65 

1. Introduction 66 

Tropical cyclones (TCs) are among the most intense atmospheric phenomena, 67 

representing a significant threat, particularly to coastal regions in countries and areas 68 

situated in the tropics and extending into the mid-latitudes. They can cause great 69 

losses of life and property, and have intense social and economic impacts due to 70 

strong winds, heavy precipitation, and storm surge. The threat posed by TCs is 71 

expected to intensify due to global warming (e.g., Knutson et al. 2019, 2020, Lee et al. 72 
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2020), while urbanization, characterized by high concentration of population and 73 

wealth in urban areas (United Nations 2019), presents a significant challenge that the 74 

impact of TC landfall in such areas would become enormous (Blake et al. 2013, Normile 75 

2019). As exemplified by the Early Warnings for All initiative (EW4All, World 76 

Meteorological Organization [WMO] 2022) led by the United Nations, it is essential 77 

that warnings based on accurate and reliable forecasts be delivered in a timely manner 78 

to those who need them in order to prevent or mitigate the impacts of TCs.  79 

 80 

Among various aspects of TC forecasts, the track is particularly important or 81 

fundamental. Getting the winds, precipitation, and storm surge associated with TCs 82 

right requires a good track forecast. In general, the accuracy of TC track predictions by 83 

numerical weather prediction (NWP) models has improved across all TC basins 84 

worldwide, and this can be confirmed, for example, by the inter-comparison study 85 

conducted by the Working Group on Numerical Experimentations (WGNE) since 1991 86 

(Yamaguchi et al. 2017). The backgrounds of this improvement include the 87 

advancement in NWP systems including the development of NWP models and data 88 

assimilation systems, the enhancement of observational networks, and the use of 89 

advanced supercomputers. Meanwhile, recent studies such as Conroy et al. (2023) and 90 
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Landsea and Cangialosi (2018) point out that the rate of improvement in the accuracy 91 

of TC track predictions appears to be slowing down, at least for shorter lead times, 92 

where we may be approaching theoretical limits. 93 

 94 

In the context of diminishing improvement rate in the accuracy of TC track predictions, 95 

a new innovation of weather forecasting by Artificial Intelligence (AI) models, which 96 

are Machine Learning (ML) models trained on global reanalysis and often called data-97 

driven models, has emerged (e.g., Bi et al. 2022, 2023; Lam et al. 2022, 2023, Chen et 98 

al. 2023a,b). Predictions by ML models have been demonstrated to be as accurate as 99 

or more accurate than the state-of-the-art physics-based models (i.e., conventional 100 

NWP models) such as the Integrated Forecasting System (IFS) of the European Centre 101 

for Medium-Range Weather Forecasts (ECMWF). In the examination of TC forecasting, 102 

ML models have also showed smaller position errors than those of IFS though the 103 

predictions of TC intensity tend to be weaker than those of NWP models and the best 104 

track (Bouallègue et al. 2024). TC track forecasts at operational centers are currently 105 

based generally on the outputs from NWP models, but the recent improvement in TC 106 

track predictions by ML models is remarkable. Therefore, it is important to conduct 107 
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forecast experiments using ML models and evaluations across numerous TC cases to 108 

determine how ML models can be utilized in operational TC forecasts in the future. 109 

 110 

When considering the operational use of ML models for TC track forecasts, it is 111 

insufficient to verify the forecast tracks for specific cases (i.e., case studies). Thus, in 112 

this study, we conduct forecast experiments for many TC cases and compare the TC 113 

track forecasts by an ML model with those of an NWP model. This enables us to 114 

deepen our understanding of the characteristics of the track forecasts made by ML 115 

models and to highlight the differences from predictions made by NWP models. In this 116 

study, forecast experiments are conducted for TCs in the western North Pacific basin. 117 

The TCs verified are all named TCs in 3 years from 2021 to 2023. The ML model used is 118 

Pangu-Weather (Bi et al. 2022, 2023), and its forecast results are compared to those 119 

from the Global Spectral Model of the Japan Meteorological Agency (JMA/GSM, JMA 120 

2023, 2024). This study is characterized by its focus on TCs in the western North 121 

Pacific, the verification conducted on a large number of cases covering all named TCs 122 

in that basin over a three-year period, and the use of operational global NWP model 123 

initial conditions instead of reanalysis data as the initial conditions for the ML model. 124 

 125 
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This paper is organized as follows. Section 2 describes the methodology and data used 126 

in this study. Section 3 presents the results of the forecast experiments by the ML 127 

model. Section 4 presents a summary of this study. 128 

 129 

2 Methodology and data 130 

This study compares two types of TC track forecasts; one is from Pangu-Weather initiated 131 

with JMA/GSM initial conditions (hereafter referred to as PNG-W) and the other is from 132 

the operational JMA/GSM (hereafter referred to as GSM). To explore the possibility of 133 

utilizing ML-based TC forecasts at JMA, it is necessary to run the ML model from initial 134 

conditions that are available in a stable and timely manner. Thus, we select the JMA/GSM 135 

initial conditions, which are analysis fields created in real time for the initial conditions 136 

of JMA/GSM rather than long-term reanalysis data, to initiate PNG-W in this study.  137 

 138 

The PNG-W model used in this study is the pre-trained model available online 139 

(https://github.com/198808xc/Pangu-Weather). It is trained on the ECMWF Reanalysis 5 140 

(ERA5, Hersbach et al. 2020) dataset with a horizontal resolution of 0.25 x 0.25 degrees 141 

in longitude and latitude, spanning the training period of 39 years from 1979 to 2017. It 142 

should be noted that no fine-tuning of the PNG-W model involving the JMA/GSM 143 

https://github.com/198808xc/Pangu-Weather
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analysis fields or other data are applied. The initial conditions for PNG-W are 5 variables 144 

(geopotential, temperature, specific humidity, zonal and meridional winds) at 13 145 

pressure levels (1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, and 50 hPa) 146 

and 4 surface variables (mean sea level pressure, temperature at 2 m, zonal and 147 

meridional winds at 10 m) with the same horizontal resolution of 0.25 x 0.25 degrees in 148 

longitude and latitude.  149 

 150 

The GSM used in this study is an operational global NWP model at JMA. In 2021 and 151 

2022, it utilized the spectral triangular truncation 959 with a reduced Gaussian grid 152 

system (TL959), corresponding to 0.1875 x 0.1875 degrees in longitude and latitude (JMA 153 

2023). In 2023, a quadratic and reduced Gaussian grid system (TQ959) was adopted, 154 

corresponding to 0.125 x 0.125 degrees in longitude and latitude (JMA 2024). In the 155 

vertical layers, 128 stretched sigma pressure hybrid levels are used with a model top of 156 

0.01 hPa throughout the verification period in this study. The horizontal resolution of 157 

PNG-W is 0.25 x 0.25 degrees in longitude and latitude, so the JMA/GSM fields are 158 

interpolated horizontally using bilinear interpolation to match this resolution. 159 

 160 

TC track data, i.e., TC position and intensity (minimum sea level pressure), are created 161 
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from the outputs of mean sea level pressure fields for both PNG-W and GSM. We adopt 162 

a tracking method used in the WGNE inter-comparison study (Yamaguchi et al. 2017). A 163 

minimum pressure location in the mean sea level pressure field is defined as the central 164 

position of a TC. A surface-fitting technique is employed so that the central position is 165 

not necessarily on a grid point of the mean sea level pressure fields. First, the locations 166 

of pressure minimum points that could be the potential center of the TC are identified 167 

from the mean sea level pressure field at each forecast time. The mean sea level pressure 168 

at the minimum point must be at least 2 hPa lower than the average mean sea level 169 

pressure within a circle of 1000 km radius centered at that point. Additionally, the mean 170 

sea level pressure at the minimum point must be the lowest within a circle of 500 km 171 

radius from that point. The initial TC central position is defined as the closest point within 172 

a 500 km radius from the analyzed TC central position, based on the best-track data, 173 

among the candidate points mentioned above. The TC central position at time T + 6 h is 174 

defined within a 500 km radius from the initial TC central position. After this, the TC 175 

central position is defined within a 500 km radius from the point that is determined by 176 

linearly extrapolating the last two positions. The TC tracking ends when appropriate 177 

candidate points do not exist. 178 

 179 
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The TCs verified in this study are named TCs in the western North Pacific basin from 2021 180 

to 2023. The number of named TCs in 2021, 2022, and 2023 are 22, 25, and 17, 181 

respectively, so the total number of TCs verified in this study is 64. For these 64 TCs, we 182 

evaluate the forecast results up to 5-days ahead, using all forecasts initialized at 0000 183 

and 1200 UTC. For the TC tracking and evaluation, the JMA best track data is used. 184 

 185 

3 Results 186 

3.1 Mean position errors 187 

Figure 1 shows the mean position errors of GSM and PNG-W and the number of 188 

verification samples for 1- to 5-day forecasts. The mean position errors of PNG-W are 189 

smaller than those of GSM throughout the forecast times considered and the 190 

differences between them are statistically significant at all five forecast times based on 191 

the two-sided 95 % confidence interval (Student’s t-test). The improvement rate of the 192 

1- to 5-day forecasts is 8, 19, 18, 15, and 9 %, respectively. As the rate of improvement 193 

in operational TC track forecasting has been declining in recent years, especially for 194 

short-term forecasts (Conroy et al. 2023, Landsea and Cangialosi 2018), the magnitude 195 
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of these improvements would be very attractive when considering utilizing them for 196 

operational purposes.  197 

 198 

3.2 Forecast bust case 199 

The accuracy of the mean position errors of TCs is evident from the verification result 200 

shown in Fig. 1. On the other hand, when examining individual forecast cases, there 201 

are instances characterized by large TC position errors, known as forecast bust. In this 202 

subsection, we focus on cases where the track forecast errors from GSM is particularly 203 

large and investigate how the ML model forecasts those particular cases. Typhoon No. 204 

11 in 2023 (HAIKUI), which moved westward over the southern ocean of Japan and 205 

made landfall over Taiwan, is a case where not only GSM, but also global NWP models 206 

from ECMWF, the U.S. National Centers for Environmental Prediction (NCEP), and the 207 

Met Office in the United Kingdom (UKMO) tended to forecast its track further 208 

northward than observed. As JMA’s operational TC track forecasts are primarily based 209 

on a consensus of the track predictions by the 4 global NWP models mentioned above 210 

(i.e., ECMWF, JMA, NCEP and UKMO), the average position error for JMA's 5-day track 211 

forecast for Typhoon HAIKUI exceeded 1000 km.  212 
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 213 

Figure 2a shows the forecasts of GSM and PNG-W initialized at 1200 UTC on August 30, 214 

2023. GSM forecasts a northwestward movement of HAIKUI, while PNG-W forecasts a 215 

westward movement, more comparable to the best track. However, when looking at 216 

the forecasts by PNG-W initialized 12 hours before and after (Figs. 2b,c), the 217 

continuous westward motion is not forecast as in the forecast initialized at 1200 UTC 218 

on August 30, 2023 (Fig. 2a). These results suggest that although there is an initial time 219 

when PNG-W forecasts the westward movement of HAIKUI, it would be difficult for 220 

forecasters at operation to consistently forecast the westward movement of HAIKUI 221 

even if they use PNG-W's forecast results at operations because the forecasts change 222 

significantly depending on the initial times. As shown in Fig. 1, the accuracy of the track 223 

predictions using PNG-W is generally high; however, this does not imply that instances 224 

of forecast bust, where the forecast track is significantly off, will disappear. Similar 225 

“flip-flop” issue was also observed in a previous study working on Super Typhoon 226 

SAOLA in 2023 (Chan et al. 2024). 227 

 228 

3.3 Bias in forecast TC positions 229 
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What cases, then, does PNG-W improve the track forecasts over GSM? When we look 230 

at each forecast case verified in this study, we notice that in many cases the slow bias 231 

of GSM after recurvature has improved. Figures 3a,b show the examples of such cases. 232 

Figure 4 is a mean bias map of the track forecasts of GSM and PNG-W. The figure 233 

illustrates the average direction and magnitude of the errors in the forecast positions 234 

relative to the observed positions. This is created using all 3-day forecasts of GSM and 235 

PNG-W verified in this study (i.e., all 64 TCs are considered). The westward bias seen in 236 

GSM around Japan, which would be associated with the slow bias after recurvature in 237 

the context of the steering flow concept, generally improves in PNG-W. This reduction 238 

in bias around Japan would be one of the valuable outcomes for forecasters who 239 

closely monitor TCs approaching or making landfall over Japan. 240 

 241 

Then, we examine the position errors by separating them into along- and cross-track 242 

directions to further understand the characteristics of the track forecasts of GSM and 243 

PNG-W. Figure 5 shows the results of calculating the track forecast errors in the along- 244 

and cross-track directions for GSM and PNG-W for every 24 hours from the 24- to 120-245 

hour forecasts. The along-track direction is calculated from the observed position at 246 

the time of the verification and the 6 hours prior to the verification, and the cross-247 
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track direction is orthogonal to that direction. Positive (negative) values in the along-248 

track direction verification indicate that the track forecasts have a fast (slow) bias, and 249 

positive (negative) values in the cross-track direction verification indicate that they 250 

have a bias to the right (left) relative to the along-track direction. The verification 251 

results in the along-track direction show that the slow bias seen in GSM is improved in 252 

PNG-W. However, looking at the 120-hour forecast, PNG-W has a rather fast bias. The 253 

verification results in the cross-track direction show little difference between PNG-W 254 

and GSM. These results are consistent with Liu et al. (2024) that showed that the 255 

Pangu-Weather model gives the accuracy of predictions for largescale circulation and 256 

TC tracks. 257 

 258 

Next, we examine the along- and cross-track directions by separating the verification 259 

samples by TC motion directions, which we define to be given by the along-track 260 

direction. Figure 6 shows the verification results when the direction of TC motion, θ, is 261 

in the first (0°≦θ≦90°, hereafter referred to as Q1) and second (90°≦θ≦180°, Q2) 262 

quadrants, respectively. Note that θ ＝ 0°, 90°, 180°, and 270° correspond to East, 263 

North, West, and South directions, respectively. The number of verification samples 264 

for the Q1 (Q2) direction at 24, 48, 72, 96, and 120 hours is 160 (311), 137 (235), 112 265 
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(162), 84 (121), and 66 (84), respectively. The verification in the Q2 direction does not 266 

reveal any major difference between GSM and PNG-W. On the other hand, the 267 

verification in the Q1 direction shows that PNG-W has a reduced slow bias and a 268 

reduced bias on the left side of the motion direction compared to GSM. The 269 

verification of the Q1 direction is expected to include many cases where TCs move 270 

eastward after recurvature in the western North Pacific basin, so the reduction of the 271 

slow bias is consistent with the bias maps seen in Fig. 4. 272 

 273 

Finally, we perform the same verification, but for different motion speeds. Figure 7 274 

shows the verification results when the TC motion speed, v, is v＜10 km/h (slow 275 

motion speed), 10≦v＜20 km/h (medium motion speed), and 20≦v km/h (fast 276 

motion speed). The number of verification samples for the slow (medium, fast) motion 277 

speed at 24, 48, 72, 96, and 120 hours is 111 (214, 174), 92 (163, 135), 73 (119, 98), 63 278 

(88, 63), and 47 (64, 45), respectively. The verification in the fast motion speed 279 

subgroup shows that PNG-W has a reduced slow bias and a reduced bias on the left 280 

side of the motion direction compared to GSM. The verification of the fast speed 281 

motion is expected to include cases where TCs move along the westerly jet after 282 
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recurvature, so the reduction of the slow bias here is also consistent with the bias map 283 

seen in Fig. 4. 284 

 285 

3.4 Forecasts for unique TC tracks 286 

Some may argue that NWP models are more accurate for TCs with peculiar paths (e.g., 287 

TCs that suddenly change direction or take a looping path) because their forecasts are 288 

based on the laws of dynamics and physics under any given circumstance. Then, we 289 

examine the track forecasts for five TCs that took peculiar paths during the 3-year 290 

period from 2021 to 2023. These five TCs are Typhoons No. 6 (IN-FA) and No. 8 291 

(NEPARTAK) in 2021, No. 11 (HINNAMNOR) in 2022, and No. 6 (KHANUN) and No. 9 292 

(SAOLA) in 2023. 293 

 294 

Figures 8a,b,c,d,e show the track forecasts of GSM and PNG-W when the TCs suddenly 295 

changed their motion direction or took a circular path during the forecast period. As 296 

the figures clearly show, the ML model is generally able to capture abrupt changes in 297 

the track and the circular path as well as the NWP model. There is a case where the 298 

abrupt changes in the track is not well forecast by the ML model as shown in Fig. 8b. 299 
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However, it is true with the NWP model and it does not seem that the ML model only 300 

forecasts badly. To confirm that the ML model is at least not worse overall than the 301 

NWP model for track predictions of TCs with unusual tracks, we conduct a verification 302 

of position errors using the entire forecast tracks over the lifetimes of the five 303 

individual TCs. As Fig. 9 shows, the ML model has smaller position errors than the NWP 304 

model throughout the forecast times. Thus, it seems unlikely that ML models are less 305 

proficient than NWP models for TCs that take an unusual path. 306 

 307 

3.5 Consistency of consecutive forecasts 308 

Forecasters issue TC forecasts on a routine basis when TCs are present in the area of 309 

responsibility, and the forecast frequency increases when TCs approach or make 310 

landfall. The temporal consistency of the TC forecasts is one of the forecaster's 311 

concerns in the forecasting process. Thus, it is important to understand how much the 312 

forecast locations of TCs tend to change as the initial conditions change, whether in ML 313 

or NWP models. 314 

 315 
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Then, we investigate the extent to which forecast locations change relative to previous 316 

forecasts. Figure 10 shows box plots evaluating how far the latest forecast position is 317 

compared to the forecast position with the initial time ΔT hours ago for every 24 318 

hours from the 24- to 120-hour forecasts, with ΔT being verified at 12, 24, 36, and 48 319 

hours. 320 

Since this study uses 12-hourly forecasts (i.e., forecasts initialized at 0000 and 1200 321 

UTC), for the verification of 3-day forecasts with ΔT = 12 hours, for example, the 322 

distance between the 72-hour forecast position at a certain initial time and the 84-323 

hour forecast position with the initial time 12 hours earlier is calculated. Smaller values 324 

on the Y-axis indicate less variation in the forecast TC positions across consecutive 325 

forecasts. 326 

 327 

With the exception of ΔT = 12, the forecast positions of TCs in PNG-W tend to change 328 

less than those in GSM. At ΔT = 24, 36, and 48, PNG-W shows statistically significant 329 

continuity of forecast TC positions compared to GSM in the 24- and 48-hour forecasts. 330 

These results suggest that ML models may provide more stable forecasts compared to 331 

NWP models, especially at short lead times. On the other hand, at ΔT = 12, the 332 

forecast positions of TCs from GSM tend to show less variation compared to those 333 
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from PNG-W, but the tendency is not statistically significant. In order to be more 334 

robust regarding the consistency of consecutive forecasts by ML and NWP models, it is 335 

important to increase the number of verification cases and also to incorporate 336 

verification using other ML models. 337 

 338 

3.6 Intensity forecasts 339 

Although the main focus of this study is the verification of TC track forecasts, we briefly 340 

discuss the verification results of the intensity forecasts. Figures 11a,b are the mean 341 

absolute error and bias of the intensity forecasts in terms of the central pressure (hPa). 342 

The intensity forecast errors of PNG-W are larger than those of GSM throughout the 343 

forecast times, which is in consistent with previous studies such as Bouallègue et al. 344 

(2024) and He and Chan (2024). The bias of PNG-W is highly positive, indicating weaker 345 

TC intensity compared to GSM and to observations. 346 

 347 

The effectiveness of PNG-W in forecasting TC tracks has been demonstrated in this 348 

study, but it has larger errors than GSM with respect to intensity forecasts. This would 349 

be partly due to the limitations inherent in ERA5. ERA5 has a horizontal resolution of 350 
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0.25 x 0.25 degrees in longitude and latitude which is too coarse to resolve the inner 351 

core structures of TCs. To more accurately predict TC intensity, there would be two 352 

possible approaches: either using higher-resolution training data or developing 353 

specialized ML models that can address the resolution limitations and mitigate the 354 

intensity bias. 355 

 356 

A possible approach to leverage the advantages of ML models for TC track forecasting 357 

while mitigating intensity forecast bias could include the following method. Statistical 358 

dynamical models such as the Statistical Hurricane Intensity Prediction Scheme (SHIPS, 359 

DeMaria and Kaplan 1994, DeMaria et al. 2014) and the Typhoon Intensity Forecasting 360 

scheme based on SHIPS (TIFS, Yamaguchi et al. 2018) are implemented at operational 361 

centers including the US National Hurricane Center and JMA. In such statistical 362 

dynamical models, environmental parameters that are predictors for the models are 363 

computed along the forecast track. Thus, by calculating environmental parameters 364 

used in SHIPS and TIFS based on forecast fields from ML models, it would be expected 365 

that the forecast accuracy of intensity forecasts improves (in this case, since outputs 366 

from dynamical models are not used, the term "statistical-dynamical model" may not 367 

be appropriate). 368 
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 369 

3.7 Computational time 370 

ML models offer an advantage in terms of the production time as the computational 371 

cost to run ML models is quite low. In JMA's operational system, for example, it takes 372 

about 19 minutes, with 484 Intel Xeon 8160 CPUs totaling 11616 physical cores, from 373 

the start of a GSM job to output the forecast results for the next 5 days (this time does 374 

not include time for data assimilation or post-processing such as TC tracking). 375 

Meanwhile, the computation of PNG-W up to 5-day ahead takes less than a minute 376 

using a single NVIDIA A100. This indicates that the forecast results from the ML model 377 

would be available about 18 minutes earlier than GSM. For forecasters busy with 378 

operational work, this time difference may be valuable. 379 

 380 

4 Summary 381 

In this study, we evaluated the accuracy of TC track forecasts using an ML model by 382 

comparing its predictions with those from an NWP model. Using Pangu-Weather as the 383 

ML model, forecast experiments were conducted for all 64 named TCs in the western 384 

North Pacific basin from 2021 to 2023, and the results were compared with those of 385 



22 
 

JMA/GSM, a conventional global NWP model operated at JMA. The JMA/GSM initial 386 

conditions are used to initiate the ML and the NWP models. 387 

 388 

First, the accuracy of the track forecasts by the ML model exceeds that of the NWP 389 

model. The improvement rates of the ML model over the NWP model for the 1- to 5-day 390 

forecasts are 9, 19, 18, 15, and 9 %, respectively. Considering the decrease in the 391 

improvement rates of track forecasts by NWP models, these values are not insignificant. 392 

In addition, the ML model is found to be as good as or better than the NWP model at 393 

forecasting TCs with unusual paths. However, these results do not imply that the ML 394 

model is a panacea, and cases of forecast busts, such as that observed with Typhoon No. 395 

11 in 2023 (HAIKUI), can still occur in the ML model.  396 

 397 

Second, the ML improves track forecasts over the NWP model by reducing the slow bias, 398 

particularly after recurvature, corresponding to a reduction in the westward bias around 399 

Japan. When examining the position errors in the along- and cross-track directions, the 400 

ML shows improvements in the along-track direction, especially for TCs moving 401 

eastward or at fast speeds. The ML has the advantage that it has an implicit bias-402 

correction as it had the chance to correct the model when comparing to the true state 403 
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(i.e., analysis fields) during the model training period. As a result, it would be able to 404 

effectively reduce the bias. Regarding the temporal consistency of TC forecast positions, 405 

the ML model generally provides more stable forecasts compared to the NWP model, 406 

especially at shorter lead times, though further verification with additional cases and ML 407 

models is necessary to confirm the robustness of these results. 408 

 409 

Although the main focus of this study was TC track forecasting, we also examined the 410 

intensity forecasts. We observed that the intensity forecasts by the ML model were 411 

weaker than the NWP model and the best track, as shown in Bouallègue et al. (2024). 412 

This would be primarily due to the limitations inherent in ERA5 whose horizontal 413 

resolution is too coarse to resolve the inner core structures of TCs. 414 

 415 

A proposed way to utilize ML models at current operational systems would be to add 416 

the ML-based track forecasts as one independent member of the consensus forecasts. 417 

In the consensus, one might take advantage of the ML model's good performance and 418 

put a larger weight on it. Alternatively, one could consider putting a larger weight on the 419 

ML model in the post-recurvature track forecasts, taking into account its ability to 420 

reduce slow bias. The creation of optimal consensus forecasts is a topic of our next study. 421 
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Another advantage may be that forecasts from ML models are available earlier than 422 

from NWP models. In the framework of this study, the ML-based forecasts are available 423 

approximately 20 minutes earlier. This availability advantage will be significant when it 424 

comes to ensemble forecasts. 425 

 426 

It is typical for operational centers to produce their TC track forecasts with a consensus 427 

approach using multiple NWP models (Conroy et al. 2023). This means that all agencies 428 

tend to have similar forecast results since NWP model results are basically available via 429 

the Global Telecommunication System known as GTS, the Internet, etc. The new 430 

innovation of ML-based forecasting has the potential to change this international 431 

standard of adopting the consensus of major NWP model outputs, and it is likely that 432 

each operational center will have its own characteristics in the future depending on how 433 

it utilizes ML-based forecasts. 434 

 435 

Finally, while we evaluated the potential of ML models for operational TC forecasting in 436 

this study, we do not intend to claim that the existence of NWP models or their 437 

development is unnecessary. Rather, the opposite is true. Reanalysis data are still needed 438 

to train ML models, and this is where NWP models and related techniques such as data 439 
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assimilation are essential. Thus, further development of NWP systems will be important 440 

to improve overall forecast accuracy and to improve forecast accuracy on a continuous 441 

basis. 442 
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 550 

 551 

Figure 1. Mean position error of track forecasts of GSM (blue) and PNG-W (red) (km, y-552 

axis on the left). Y-axis on the right represents the number of samples, shown by the 553 

black bars. X-axis is the forecast times from 24 to 120 hours. The TCs verified here are all 554 

named TCs from 2021 to 2023 (64 TCs in total). 555 

  556 
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 557 

 558 

Figure 2. Track forecasts by GSM (blue) and PNG-W (red) for Typhoon HAIKUI. The initial 559 

times of the forecast are (a) 1200 UTC of 30 August 2023, (b) 0000 UTC of 30 August 560 

2023, and (c) 0000 UTC of 31 August 2023, respectively. The best track is shown in black. 561 

The triangles are plotted every 24 hours at the time of 1200 UTC. 562 

  563 
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   564 

Figure 3. Same as Figure 2, but (a) for Typhoon MALAKAS (Typhoon No. 1 in 2022), 565 

initialized at 1200 UTC of 10 April 2022, and (b) for Typhoon MAWAR (Typhoon No. 2 in 566 

2023), initialized at 1200 UTC of 28 May 2023. 567 

  568 
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 569 
 570 

Figure 4. Mean bias of track forecasts by GSM (left) and PNG-W (right). The forecast time 571 

verified is 72 hours. The arrow shows the direction of the bias and the length of the 572 

arrow shows the magnitude of the bias (see legend on the figures). The TCs verified here 573 

are all named TCs from 2021 to 2023 (64 TCs in total). 574 

  575 
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 576 

Figure 5. Mean position error of track forecasts in the (left) along- and (right) cross-track 577 

directions of GSM (blue) and PNG-W (red). X-axis is the forecast times from 24 to 120 578 

hours. The black triangles represent that the difference between GSM and PNG-W are 579 

statistically significant based on the 2-sided 95 % confidence interval (Student’s t-test). 580 

The TCs verified here are all named TCs from 2021 to 2023 (64 TCs in total). 581 

  582 
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 583 

 584 

Figure 6. Same as Fig.5, but (top left) and (top right) for the along- and cross-track 585 

direction errors when the direction of TC motion, θ, is in the first quadrant (0°≦θ≦90°), 586 

respectively, and (bottom left) and (bottom right) for the along- and cross-track 587 

direction errors when θ is in the second quadrant (90°≦θ≦180°), respectively. 588 

  589 
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 590 

 591 

 592 

Figure 7. Same as Fig.5, but (top left) and (top right) for the along- and cross-track 593 

direction errors when the TC motion speed, v, is v＜10 km/h, respectively, (middle left) 594 

and (middle right) for the along- and cross-track direction errors when 10≦v＜20 km/h, 595 

respectively, and (bottom left) and (bottom right) for the along- and cross-track 596 

direction errors when 20≦v km/h, respectively.  597 

  598 
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 599 

 600 

 601 

Figure 8. Same as Figure 2, but (a) for Typhoon IN-FA (Typhoon No. 6 in 2021), initialized 602 

at 0000 UTC of 20 July 2021, (b) for Typhoon NEPARTAK (Typhoon No. 8 in 2021), 603 
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initialized at 0000 UTC of 24 July 2021, (c) for Typhoon HINNAMNOR (Typhoon No. 11 in 604 

2022), initialized at 1200 UTC of 30 August 2022, (d) for Typhoon KHANUN (Typhoon No. 605 

6 in 2023), initialized at 1200 UTC of 31 July 2023, and (e) for Typhoon SAOLA (Typhoon 606 

No. 9 in 2023), initialized at 0000 UTC of 25 August 2023. 607 

  608 
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 609 

Figure 9. Same as Fig. 1, but the verification is based on the five TCs shown in Fig. 8 only. 610 

  611 
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 612 

 613 
 614 

Figure 10. Box plots that show how far the latest forecast TC position is compared to the 615 

forecast position with the initial time ΔT hours ago for every 24 hours from the 24- to 616 

120-hour forecasts, with ΔT being verified at (top left) 12, (top right) 24, (bottom left) 617 

36, and (bottom right) 48 hours, respectively. The five sets of the box plots correspond 618 

to the verification of 24 to 120 hours forecasts from left to right, with blue representing 619 

GSM and red representing PNG-W. The black triangles represent that the difference 620 

between GSM and PNG-W are statistically significant based on the 2-sided 95 % 621 

confidence interval (Student’s t-test). The TCs verified here are all named TCs from 2021 622 

to 2023 (64 TCs in total). 623 
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  624 

Figure 11. (Left) Mean absolute central pressure error of GSM (blue) and PNG-W (red) 625 

(hPa, y axis on the left). Y-axis on the right represents the number of samples, shown by 626 

the black bars. (Right) Central pressure bias of GSM (blue) and PNG-W (red) (hPa). X-axis 627 

is the forecast times from 24 to 120 hours. The TCs verified here are all named TCs from 628 

2021 to 2023 (64 TCs in total). 629 
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