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31 Abstract 

32

33 The earliest attempts to study the global normal mode oscillations of the atmosphere 

34 used time series of barometric in situ observations, but such approach is limited by the 

35 spatial and temporal inhomogeneity of meteorological station data. A major advance on 

36 the subject was recently made by applying a zonal-time spectral analysis to the surface 

37 pressure field in hourly gridded ERA5 reanalysis data, which disclosed an array of 

38 spectral peaks at theoretically predicted zonal wavenumber-frequency pairs, including 

39 many peaks with periods between 2 and 12 hours. However, this result relies on 

40 adequate representation of the modes in ERA5, which (i) ingests data sources that 

41 cannot explicitly resolve high frequency modes (e.g., radiosondes and polar satellite 

42 observations), and (ii) employs a numerical forward model that potentially introduces 

43 spurious effects. The present study provides “ground truth” for the reanalysis by a simple 

44 analysis of hourly barometric observations taken at ~3800 stations over the globe. For 

45 each putative global mode, a time series of its index is computed by filtering the hourly 

46 ERA5 pressure fields. This index is then regressed onto the station data, revealing, for 

47 each mode, a characteristic, globally coherent spatial pattern of regression coefficients. 

48 The meridional structures of the regression patterns agree fairly well with the 

49 corresponding Hough functions, not only for low-frequency Rossby and Rossby-gravity 

50 modes, but also for high-frequency modes such as Kelvin and inertia-gravity modes. 
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51 Even the Pekeris resonance is identified for a couple of Kelvin modes. These findings 

52 both solidify the evidence for a rich spectrum of global normal modes in the real 

53 atmosphere and also lend credence to their representation in ERA5. It is impressive that 

54 ERA5, by combining a numerical model with scattered meteorological observations, 

55 even reproduces the tiny (~0.1–1 Pa amplitude) pressure signals of the high-frequency 

56 global normal modes.  

57

58 Keywords normal mode, sea level pressure, ISD, buoy, ERA5, reanalysis, Lamb, Pekeris
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60 1. Introduction

61   This study aims at confirming the presence of the recently reported array of normal modes 

62 (Sakazaki and Hamilton 2020; hereinafter SH20) through a simple analysis of raw 

63 barometric observations taken at many individual stations over the globe. 

64 In common with other natural systems, the global atmosphere displays normal mode 

65 (also called resonant or free) oscillations, occurring at discrete frequencies and each 

66 associated with its own horizontal and vertical structure. Resonant mode solutions are 

67 predicted by classical tidal theory that considers the inviscid primitive equations for an 

68 atmosphere above a rotating, smooth, spherical Earth. These equations are linearized about 

69 a motionless mean state with temperature assumed to be a function only of the vertical 

70 coordinate (e.g., Chapman and Lindzen, 1970).  Within the approximations of classical tidal 

71 theory, the governing equations can be combined into a single second-order partial 

72 differential equation for, e.g., the geopotential perturbation. That equation is separable into 

73 ordinary differential equations for the time, zonal, meridional, and vertical domains. The 

74 solutions in time and the zonal direction are simple Fourier harmonics, while the meridional 

75 equation is the Laplace tidal equation (LTE) with known Hough function solutions (Longuet-

76 Higgins, 1968; Kasahara, 1976). The vertical structure equation (VSE) is a second-order 

77 equation that requires boundary conditions at the Earth’s surface and a specified “top of the 

78 atmosphere”. The normal mode oscillations correspond to the homogeneous solutions in 

79 this system (i.e., the eigen solutions in case of no external forcing) and the geopotential 
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80 perturbation for each mode is expressed as

81 Φ𝑚
𝑘,𝑛 = 𝑍𝑚(𝑧)Θ𝑚

𝑘,𝑛(θ)exp{i 𝑘λ ― ω𝑚
𝑘,𝑛𝑡 }         (1)

82 where 𝑧 is altitude, θ is latitude, 𝑘 is zonal wavenumber, λ is longitude and 𝑡 is time. 

83 Here, each vertical mode (𝑚: vertical mode index) is characterized by the equivalent depth 

84 (ℎ𝑚) and the vertical structure function (𝑍𝑚(𝑧)) that are obtained as the eigenvalue and 

85 eigenfunction of the VSE, respectively. For each vertical solution (ℎ𝑚,𝑍𝑚(𝑧)), there is an 

86 associated complete set of horizontal modes (i.e., LTE solutions), describing linear shallow-

87 water waves with a specific zonal wavenumber (𝑘) component in a fluid with depth ℎ𝑚 on a 

88 rotating sphere. The LTE solutions are associated with infinite sets of eigen-frequencies 

89 (ω𝑚
𝑘,𝑛) and meridional structure functions (Hough function Θ𝑚

𝑘,𝑛(θ)).

90 Because the atmosphere is unbounded at its upper limits, only one or two eigen 

91 solutions(s) are theoretically predicted for the VSE (i.e., m =  1, 2), at least for a realistic 

92 vertical mean temperature profile (Salby, 1979; Ishioka 2023; Ishizaki et al., 2023). The more 

93 robust solution is the so-called “Lamb resonance” (𝑚 = 1, ℎ1 ~ 10 km), characterized by a 

94 Lamb wave structure in 𝑍 and energy trapped near the surface (Lamb, 1932). The other 

95 solution is “Pekeris resonance” (𝑚 = 2, ℎ2 ~ 6.5 km) with its energy trapped both around the 

96 stratopause and the surface (Pekeris, 1937). The Lamb wave solution satisfies the 

97 physically reasonable “top of the atmosphere” boundary condition and is robust to changes 

98 in the assumed mean temperature profile. By contrast, the existence of Pekeris resonance 

99 depends on the detailed mean temperature profile assumed. Ishioka (2023; see his Figure 
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100 2) showed that the Pekeris solution does not exactly satisfy the upper and lower boundary 

101 conditions and so may correspond to a mode that would actually leak some energy rather 

102 than act as a perfect resonance. The relevance of the Pekeris mode in real atmospheric flow 

103 has been doubted (e.g., Salby, 1980) and clear observational evidence for the presence of 

104 this mode has only recently been obtained (see below). 

105 Figure 1 shows the theoretical dispersion curves for Lamb (ℎ = 10 km; closed circles) 

106 and Pekeris (ℎ = 6.5 km; open circles) resonance. The modes are further classified into 

107 Rossby (blue), Rossby-gravity (orange), Kelvin (red), and inertia-gravity (magenta) modes 

108 (Matsuno, 1966). Note that eastward components in Rossby-gravity modes are sometimes 

109 classified into inertia-gravity modes (“n = 0 eastward inertia-gravity modes”, e.g., Kiladis et 

110 al., 1999), but this study refers to both westward and eastward components as Rossby-

111 gravity modes.  

112 Most previous attempts to find observational evidence for various modes in the real 

113 atmosphere considered low-frequency modes, mostly Rossby or Rossby-gravity modes 

114 (see SH20 and references therein). Because of the “red” nature of the power spectrum, 

115 these modes have relatively large amplitudes and thus are easier to detect. In their 

116 pioneering work on the westward propagating 5-day wave, Madden and Julian (1972, 1973) 

117 found a westward propagating signal with a period of ~5 days by performing a cross-spectral 

118 analysis of surface pressure data from world-wide stations. Along with the composite 

119 analysis, they showed that its meridional structure agreed closely with the Hough function 

Fig. 1
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120 of the corresponding normal mode. Later studies often used geopotential height data from 

121 global data assimilation products (i.e., analyses or reanalyses) and satellite measurement 

122 data to identify several Rossby and Rossby-gravity modes, such as those referred to as the 

123 4-day wave, 10-day wave, and 16-day wave (e.g., Ahlquist, 1982; Hirota and Hirooka, 1984; 

124 Madden, 2007; Sassi et al., 2012; Madden, 2019; Sekido et al., 2024). 

125 For high-frequency modes, Matsuno (1980) found a signal of k =  1 Kelvin mode 

126 using a cross-spectral analysis of barometric observations at a few tropical stations. This 

127 was later confirmed by extended analysis of surface pressure data by Hamilton (1984) and 

128 Matthews and Madden (2000), and it is now known as the “33-hr Kelvin wave”. Hamilton 

129 and Garcia (1986) applied spectrum analysis to an exceptionally long record of raw 

130 barometric data taken at Batavia (6°S). Several peaks were found in the high-frequency 

131 band ( ≾ 1 day), which the authors tentatively identified as theoretically predicted high-

132 frequency modes, including Kelvin and inertia-gravity modes. A few inertia-gravity modes 

133 have been also tentatively identified more recently by Shved et al. (2015) and Ermolenko et 

134 al. (2018). 

135 A much ampler array of free modes was discovered by SH20 based on zonal 

136 wavenumber-frequency spectral analysis of near equatorial surface pressure data from 

137 ERA5 at hourly temporal resolution. The SH20 result for the ratio of spectral power to the 

138 background noise for equatorially symmetric and anti-symmetric components is revisited in 

139 Fig.1 (color shading), using surface pressure data between 20°S and 20°N during 1980 to 
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140 2021 (See SH20 for the definition of background noise and other details). It is apparent that 

141 there are numerous isolated spectral peaks whose frequencies match the expected (slightly 

142 Doppler-shifted) normal mode frequencies of Lamb resonance (h1 = 10 km; Fig. 1). SH20 

143 found that the meridional and vertical structures also matched well those expected from 

144 classical theory (i.e., Hough function, Θ(𝜃), and vertical structure function, Z(z), 

145 respectively). 

146 All noted modes were identified as Lamb resonances (ℎ1  = 10 km; closed circles in Fig. 

147 1). Recently, by analyzing the pressure pulse forced by the volcano eruption at Tonga 

148 Hap’pai in 2022 and by reexamining the SH20 spectral results, Watanabe et al. (2022) 

149 discovered the other type of normal mode resonance, namely, Pekeris resonance (h2 = 6.5 

150 km). Indeed, one can see small spectral peaks of k =  1 and 𝑘 = 2 Kelvin modes for the 

151 Pekeris resonance in Fig. 1 (red open circles; see also Fig. 3).

152 The results by SH20 and Watanabe et al. (2022) appear to have provided solid evidence 

153 of the atmosphere “ringing” regularly at many resonant zonal wavenumber-frequency pairs. 

154 One might wonder, however, how accurately ERA5 (or, more generally, any atmospheric 

155 reanalysis) can represent such free oscillations, given potential structural errors in the 

156 numerical forecast model or a shortage of pertinent high-frequency observations in the data 

157 assimilation. One aspect of interest in this regard is the treatment of the upper boundary in 

158 the dynamical model, which has to be somewhat arbitrary. Any model boundary condition 

159 that acts to reflect energy back downward from the top model level could potentially 
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160 introduce spurious free oscillations (Lindzen et al., 1971; Kasahara and Shigehisa, 1983). 

161 This concern might be most relevant for the large-scale, high-frequency Kelvin, Rossby-

162 gravity, and inertia-gravity modes identified by SH20, as these should be least affected by 

163 various sources of mechanical damping in the model. Moreover, in regard to assimilation, 

164 two key data sources, namely twice-daily balloon-borne radiosondes and polar orbiting 

165 satellites, cannot by themselves adequately resolve waves with periods less than 12 hours, 

166 potentially leading to distortions of the high-frequency modes identified by SH20. Since free 

167 oscillations could be excited by various internal processes of the atmosphere such as 

168 cumulus convection and baroclinic activity (e.g., Miyoshi and Hirooka, 1999; Zurita-Gotor 

169 and Held, 2021), some of the normal mode signals in the ERA5 might be self-generated in 

170 the model, independent of the signals in the real atmosphere.

171 Whereas the accuracy of reanalyses is relatively clear in the case of low-frequency 

172 modes (e.g., Rossby and westward Rossby-gravity modes; see Sakazaki 2021), SH20 also 

173 made an argument for ERA5 to accurately depict high-frequency, global-scale atmospheric 

174 variability. In particular, SH20 noted that the principal lunar semidiurnal (L2) oscillation, as 

175 seen in sub-daily barometric observations at many individual stations throughout the world 

176 (e.g., Haurwitz and Cowley, 1969), has been previously shown to be well captured in the 

177 predecessor of ERA5 (Kohyama and Wallace, 2014; Schindelegger and Dobslaw, 2016, 

178 hereafter referred to SD16). Since the gravitational forcing is not included in the underlying 

179 dynamical model, any analyzed L2 signal must be introduced through the assimilation of real 
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180 data. This inference in turn implies that at least some portion of high-frequency normal 

181 modes (those with amplitudes of >0.1 hPa and periods of <12 hour) would be also 

182 realistically represented and constrained by observations.

183 Although encouraging, the SD16 “ground truth” study applies directly only to L2. In the 

184 present paper we report on a somewhat similar effort to obtain direct evidence of normal 

185 modes in raw measurements, specifically globally-distributed, hourly pressure observations. 

186 However, there are difficulties in extracting the normal mode signal exclusively from raw 

187 barometric data at individual stations, even when decades-long records are available 

188 (Hamilton and Garcia, 1986). One problem is that the mode amplitudes are generally small 

189 compared to the background noise, while also the frequencies of some modes are too close 

190 together to be separated well enough (c.f., Fig. 3 of Hamilton and Garcia, 1986). In this 

191 regard, cross-spectral analysis or zonal wavenumber-frequency spectrum, as was done by 

192 SH20, would be desirable; however, such a procedure is challenging due to the 

193 inhomogeneity of raw barometric data, both in time and space (see Fig. 2). 

194 Here, we pursue a different approach to obtain ground-based evidence for the wide 

195 variety of global normal modes. Specifically, we create a “pacemaker index” of normal mode 

196 signals from ERA5 surface pressures. By regressing raw barometric data onto this putative 

197 mode index time series, we can condense these data to any fluctuations synchronized with 

198 the normal modes in ERA5. A key advantage of our method is that, at individual stations, 

199 we can calculate the regression coefficient even for irregularly sampled observations. By 
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200 examining the horizontal distribution of the regression coefficients, it is also possible to 

201 delineate the mode structure. Of course, this approach would work only if the normal mode 

202 variations in ERA5 are realistic, but it will be demonstrated that the extracted signals have 

203 a clear global wave structure that closely matches theoretical predictions.

204 The remainder of the manuscript is organized as follows. Section 2 describes the 

205 datasets, while Section 3 explains the analysis procedure, underpinned by step-by-step 

206 examples. Section 4 presents the meridional structure for various normal modes. Finally, 

207 Section 5 summarizes the main findings and discusses some implications.

208

209 2. Data

210 2.1 Barometric observations

211 Following SD16, we mainly analyze data from the International Surface Database (ISD, 

212 Smith, 2011). This dataset contains surface meteorological observations taken at nearly 

213 20,000 stations over more than 100 years (1900 to present). For the work at hand, we 

214 consider sea level pressure data over 42 years, between 1980 and 2021 (i.e. restricted to 

215 the period in which satellite data are routinely assimilated into atmospheric reanalyses). 

216 Sampling times and intervals vary by station, and sometimes even change at a given station 

217 over the observation period. As an approach to quality control, we focus on the lunar 

218 semidiurnal tide (L2). Compared to synoptic observations, L2 signals are quite small, about 

219 5 Pa in amplitude, and hence their representation serves as an indication for the data quality 
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220 at a given station. We therefore subset the ISD to ~4,100 stations that were considered to 

221 feature realistic L2 signals in the analysis of SD16. 

222 Since the equatorial region is rather sparsely covered by the ISD stations, 

223 meteorological buoy data with a sampling of 10 minutes from the Global Tropical Moored 

224 Buoy Array (GTMBA) Program at 43 stations are also analyzed. The GTMBA program 

225 consists of three subsets: (i) the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy 

226 Network (TAO/TRITON) over the Pacific (McPhaden et al., 1998), (ii) the Prediction and 

227 Research Moore Array (PIRATA) over the Atlantic (Bourles et al., 2008), and (iii) the 

228 Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction 

229 (RAMA) over the Indian (McPhaden et al., 2009). Note that portions of these datasets were 

230 previously used to detect small L2 signals over the ocean (SD16; Sakazaki and Hamilton, 

231 2018). 

232 We additionally consider data at 43 stations during 1980–2015 from the International 

233 Surface Pressure Data bank (ISPD v4) (Compo et al., 2019) that were again found to have 

234 a good representation of L2 signals by SD16.  

235 For further quality control, we only analyze data from stations at altitudes <1,000 m and 

236 with records including at least 10,000 individual observations. (we confirmed that eliminating 

237 the criterion for the altitude does not significantly change the results). In total, 3,734 stations 

238 from ISD, 42 buoys and 21 ISPD stations are used; see Figure 2 for their location across 

239 the globe. As mentioned above, the data distribution is far from uniform in either latitude or 

Fig. 2
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240 longitude: ISD/ISPD stations are densely concentrated in Europe, Eastern Asia, North 

241 America, and Australia, while there are few over the tropical regions of the African and South 

242 American continents or over the ocean. Tropical buoys are distributed somewhat uniformly 

243 in the zonal direction, filling gaps in the ISD/ISPD spatial coverage over the tropical ocean. 

244 In any case, the inhomogeneity in distribution should be borne in mind as a possible 

245 limitation of our analysis, especially for the Southern Hemisphere and for high-order normal 

246 modes characterized by shorter length scales. Hereafter, we refer to our final compilation as 

247 “ISD/Buoy” data. Note that most of these data are assimilated in ERA5 (Hersbach et al., 

248 2016).

249

250 2.2 ERA5

251 ERA5 (Hersbach et al., 2020), the latest atmospheric reanalysis by the European Centre 

252 for Medium-Range Weather Forecasts (ECMWF), is used for creating the normal mode 

253 index, as well as for examining the horizontal mode structure that will be compared to that 

254 deduced from ISD/Buoy data. Similar to other atmospheric reanalysis, ERA5 was 

255 constructed by adjusting the forward-integrated state of a numerical weather model to agree, 

256 within specified uncertainties, with available in situ and remote-sensing observations. We 

257 analyze hourly ERA5 diagnostics for surface pressure and mean sea-level pressure at a 

258 grid spacing of 1° over the period 1980–2021 (Hersbach et al., 2023).   

259
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260 3. Analysis methods

261 The working hypothesis of our analysis is that ERA5 represents normal mode oscillations 

262 in a realistic manner. Using the ERA5 surface pressure data, we create single time series 

263 that depict the magnitude and phase of each mode. In short, individual time series of 

264 ISD/Buoy data are then regressed onto this ERA5-based index. If the global pattern of 

265 regression coefficients agrees with the theoretical mode structure, we can conclude that our 

266 working hypothesis is true and that the raw barometric (ISD/Buoy) data contain global 

267 normal-mode signals that are consistent with those evident in ERA5. 

268 The regression analysis is repeated for two versions of ERA5 sea level pressures: (1) a 

269 subset of the ERA5 data, sampled at times and locations of the ISD/Buoy stations (this is 

270 hereafter referred to as “Obs-sampled-ERA5”), and (2) the entire gridded, hourly dataset 

271 over 1980–2021 (referred to as “All-ERA5”). By comparing the two regression branches, we 

272 can evaluate how the results are affected by the inhomogeneous global distribution of the 

273 ISD/Buoy data.

274 In the following subsections, we explain the analysis strategy in more detail by showing 

275 two examples: Kelvin modes with 𝑘 = 1 and 5 (these are referred to as KL1 and KL5, 

276 respectively). Note that the former has been identified as the “33-hour Kelvin wave” in station 

277 barometric data (Matsuno, 1980; Hamilton, 1984), while the latter has only been identified 

278 so far through analysis of the ERA5 data (SH20).  

279
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280 3.1 Normal mode index based on ERA5

281 Following SH20 and Sakazaki (2021), we create the normal mode index (time series) 

282 from meridionally averaged ERA5 surface pressures, adopting the 20°S–20°N latitude band 

283 for the equatorially symmetric component, and the difference between 0°–20°N and 20°S–

284 0° (divided by a factor of 2) for the equatorially anti-symmetric component (note that the 

285 results do not change significantly when sea level pressure data, instead of surface pressure 

286 data, are used for producing the index). Figure 3 exemplarily shows the frequency spectrum 

287 of the equatorially symmetric, eastward-propagating 𝑘 = 1 and 2 components. The spectral 

288 peaks denoted by “L” correspond to those for Kelvin modes of Lamb resonance and are well 

289 approximated by the Lorentzian function; the red horizontal lines are estimates of the width 

290 of each resonance based on an objective Lorentzian fit (see below). The filtering is based 

291 on the two-dimensional Fourier transform, mapping space to the zonal wavenumber-

292 frequency domain: Only spectral coefficients with the corresponding zonal wavenumber k 

293 and within the frequency range (𝑓0 ―3𝑑,𝑓0 +3𝑑) are retained (the other Fourier components 

294 are simply set to zero) and are Fourier transformed back to the physical space. Here 𝑓0 

295 and d are the central frequency and spectral width, respectively, empirically determined by 

296 the fitting to the Lorentzian function (see Table 1 of SH20). Note that the Lorentzian function 

297 is defined such that it takes its maximum at 𝑓0 and decreases by a factor of 10-1 at 𝑓0 ± 3𝑑. 

298 For 𝑚 = 2 vertical modes (Pekeris resonance), two Kelvin modes (𝑘 = 1 and 2) are 

299 examined, as in Watanabe et al. (2022). This limited selection is understandable from Fig. 

Fig. 3
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300 1; the peaks for Pekeris modes (denoted by “P”) are well separated from those for Lamb 

301 modes (denoted by “L”) only for high-frequency modes (Kelvin or inertia-gravity modes). On 

302 the other hand, the peak amplitude is one order smaller than the Lamb series (𝑚 =  1) (c.f., 

303 Fig. 3), making it rather difficult to identify high-frequency modes such as Kelvin modes with 

304 large 𝑘 or inertia-gravity modes. Such a trade-off results in our study being confined to two 

305 isolated Pekeris resonance peaks. For the filtering, we set (𝑓0,𝑑) = (0.58,0.06) for 𝑘 =  1 

306 and (𝑓0,𝑑) = (1.165,0.115) for 𝑘 = 2 (see blue horizontal lines denoted with “P” in Fig. 3; 

307 these are subjectively determined instead of using Lorentzian fitting). 

308 The actual index time series is calculated every year, using the 365 (or 366 for leap 

309 years) ±  20 day data. The resultant pressure anomalies are a function of longitude and 

310 time. From these data, four time series at 0°E lagged by 𝑙𝜋/4 (𝑙 = 0, 1, 2, 3) are produced 

311 and used as normal mode indices after normalized by their standard deviation over time. 

312 Figure 4a and 4b illustrate the index time series for KL1 and KL5, respectively, over a week 

313 in early October 2010. It is evident that the index indeed oscillates with the characteristic 

314 periods (~32 hr for KL1 and ~7hr for KL5; see Fig. 1), while amplitudes change over a much 

315 longer time scale.

316

317 3.2 Regression analysis using raw barometric data

318 We regress the time series of raw barometric data from ISD/Buoy onto the normalized 

319 normal mode index, after first removing the annual and semiannual harmonics. For the 

Fig. 4
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320 actual calculation, the index is linearly interpolated to the times of observation at individual 

321 stations. Figures 4c and 4d show the global distribution of the regression coefficient (R) on 

322 the normal index time series with 𝑙 = 0 (lag zero) for KL1 and KL5 modes, respectively, as 

323 deduced from ISD/Buoy data, and corresponding coefficients from All-ERA5 data are 

324 depicted in Figs. 4e and 4f. We see that the regression pattern of ERA5 (Figs. 4e–f) exhibits 

325 a Kelvin mode structure with the expected wavenumbers (i.e.,  𝑘 =  1 for (e), and 𝑘 =  5 

326 (f)). Similar inferences can be made for ISD/Buoy (Figs. 4c–d), although data coverage in 

327 the tropics is too sparse to clearly delineate every modal trough and high. We emphasize 

328 that the results in Fig. 4 are obtained without any a priori assumption for the modes’ 

329 horizontal structure. 

330 Next, a zonal wavenumber (harmonic) fitting is performed for R to obtain the meridional 

331 structure in amplitude and phase of the target zonal wavenumber components (again, 𝑘 =  

332 1 (5) for KL1 (KL5)). The fitting is done using data binned in latitude bands with 5° width. 

333 The calculation is made only when there are at least 20 valid data points in longitude, after 

334 removing values exceeding the 3-σ level in each latitude band (σ: standard deviation in zonal 

335 direction). Figures 4g–j, for instance, show how the fitting works for latitude bands of 2.5°S–

336 2.5°N and 32.5–37.5°N, with the results based on two lagged indices (c.f., Sec. 3.1, Figs. 

337 4a–b). Again, the zonal distribution of R is clearly represented by a single harmonic, albeit 

338 modulated by noticeable short spatial scale variability in the extratropics. 

339 A special treatment is necessary for the 𝑘 = 0 component for which R (ideally) takes the 
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340 same value at all longitudes, since it is the zonally symmetric component (in this case, zonal 

341 wavenumber fitting cannot determine the amplitude and phase). As shown in Figure 5a for 

342 𝑘 = 0 Rossby-gravity wave mode, the zonally averaged R changes with the lag for the index 

343 (𝑙). We thus determine its amplitude (𝐴) and phase (𝛿) by harmonic fitting to the zonal-mean 

344 R (at each latitude belt) as a function of lag, i.e., 𝐴cos( 𝑙𝜋
4

― 𝛿) as shown by red curve in Fig. 

345 5b.

346 The 95% confidence intervals for the calculated amplitude and phase are estimated 

347 using a bootstrap method. We iterate the calculation of amplitude and phase values for the 

348 zonal harmonic of interest 1,000 times with resampled datasets, where each resample is 

349 generated from the original data with random replacement. The 97.5 and 2.5 percentile 

350 values are obtained from the resulting distribution and taken as the upper and lower 

351 confidence bounds (see error bars in, e.g., Fig. 6). 

352

353 4. Results and Discussion

354 4.1 Lamb resonance (𝑚 =  1)

355 (a) Kelvin modes

356 Figure 6 shows the meridional structures for amplitude and phase of R for Kelvin modes, 

357 as obtained with ISD/Buoy (red circles) and All-ERA5 (gray curves for amplitude and gray 

358 open circles for phase). See Supplementary for the results including Obs-sampled-ERA5 

359 and also Table 1 for the difference between ISD/Buoy and Obs-sampled-ERA5. The results 

Fig. 6

Table 1 

1
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360 for 𝑘 =  1 and 𝑘 =  5 are of course identical to KL1 and KL5 as discussed in Section 3. 

361 Panels reading “Not shown” indicate that either that the spectral peaks are too close to 

362 diurnal harmonics or that the fitting to the Lorentzian function failed (see Fig. 9 of SH20 for 

363 details). Here, the amplitude has been multiplied by a factor of 2 so that it represents a 

364 typical wave amplitude (recall that the normal mode index is normalized by its standard 

365 deviation). 

366 Moreover, the depicted amplitudes and phases are the average of the four results 

367 obtained with the four lagged indices. Because the four indices and the resultant zonal 

368 distributions in R are lagged by a quarter cycle (e.g., Figs. 4g, i), R obtained from the index 

369 with lag of 𝑙𝜋/4 is shifted by 90𝑙/𝑘°E in zonal direction so that the four results are in phase; 

370 after that, the average for harmonic coefficients and, then their amplitude and phase, are 

371 calculated. The phase shown in Fig. 6 thus simply represents the lag from the variation at 

372 the equator (positive and negative values indicate the variation precedes and follows that at 

373 the equator, respectively). Additionally, as in SH20, the corresponding Hough functions are 

374 fitted to the All-ERA5 results to see how close the meridional structure is to the theoretical 

375 mode structure (green curves in upper panels). 

376 We find that both ISD/Buoy and ERA5 show a global Kelvin mode structure with 

377 maximum amplitudes at the equator and the phase being constant at almost all latitudes 

378 (note again that we did not assume any meridional structure). It is also discernible that the 

379 meridional extent in amplitude decreases with increasing zonal wavenumber. These 
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380 structures are largely consistent with the theoretical Hough functions, clearly indicating that 

381 the normal-mode signals in ERA5 do exist in the raw observation data, i.e., ISD/Buoy in our 

382 case. 

383 The extracted amplitude for KL1 is ~10 Pa, commensurate with the value reported in 

384 previous studies that spectrally analyzed barometric measurements at tropical stations 

385 (Hamilton, 1984; Matthews and Madden, 2000). On the other hand, the components of 

386 𝑘 ≥  3 have never been conclusively identified based on raw observation data, meaning 

387 that the present results are the first, ground-based evidence for these modes. Notably, their 

388 amplitude is fairly small (e.g., ~1 Pa for KL5), but they are well defined in that the amplitude 

389 and phase have meridionally systematic structures. It is impressive that ERA5, synthesizing 

390 a necessarily imperfect numerical model with noisy observations, captures such small-

391 amplitude, high-frequency pressure signals.

392 Despite the generally close correspondence between the two tested datasets, there are 

393 some differences, especially for larger zonal wavenumbers. In particular, the KL5 amplitudes 

394 deduced from ISD/Buoy are slightly smaller than those from ERA5 in the tropics. 

395 Considering the agreement between Obs-sampled-ERA5 and All-ERA5 (Fig. S1), this small 

396 discrepancy may not be attributable to the sampling inhomogeneity of the barometric 

397 network, but rather imperfections in ERA5.

398

399 (b) Inertia-gravity modes
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400 Figures 7 and 8 (see also Figs. S2–3) show the results for 1st gravest, equatorially 

401 symmetric and anti-symmetric inertia-gravity modes, respectively (note that these are 

402 sometimes called “n = 1 inertia-gravity mode” and “n = 2 inertia-gravity mode”, respectively; 

403 Kiladis et al., 1999). These modes have very small amplitudes (~1 Pa) and short periods, 

404 ranging from 12 hours (k = 1) down to 4 hours (k = 5). Nevertheless, our analysis method is 

405 well capable of extracting even these types of oscillations. For the 1st gravest symmetric 

406 modes (Fig. 7), for instance, the meridional structures in amplitudes and phases for the 

407 modes with 𝑘 = ―4, ― 3, ― 1, 1 show quantitatively good agreement between ISD/Buoy 

408 and ERA5 except for high latitudes. For the 𝑘 = 4 mode, while the amplitude in ISD/Buoy 

409 is smaller than that in ERA5 especially in the tropics, the phase structure agrees fairly well. 

410 As was the case for 𝑘 = 5 Kelvin mode (Fig. 6), the difference in amplitude is likely not due 

411 to the sampling inhomogeneity given the significant difference between ISD/Buoy and Obs-

412 sampled-ERA5 (Fig. S2). The anti-symmetric mode (Fig. 8) reveals good agreement for 

413 𝑘 = ―3, ― 2, ― 1, 0, 1, but for 𝑘 = ―5 the ISD/Buoy amplitudes are smaller in comparison 

414 to ERA5 by more than 50%.

415 Figures 9 and 10 (see also Figs. S4–5) show the 2nd gravest, equatorially symmetric and 

416 anti-symmetric modes (note that these are sometimes called “n = 3 inertia-gravity mode” 

417 and “n = 4 inertia-gravity mode”, respectively) . Amplitudes decrease to about 0.7 Pa or less, 

418 and the periods are ~1 hour shorter compared to the 1st gravest modes with the 

419 corresponding wavenumbers (c.f., Fig. 1); the meridional structures are more complicated 

Fig. 7

Fig. 8

Fig. 9

Fig. 

10
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420 with more nodes in latitude (see green curves in Figs. 9 and 10). Nevertheless, even these 

421 higher modes are detected in ISD/Buoy data, at least for the small zonal wavenumber 

422 components. For symmetric modes, we observe relatively tight agreement in both amplitude 

423 and phase for 𝑘 = ―2, ― 1, 0, while amplitudes in ISD/Buoy are somewhat smaller than 

424 those in ERA5 for 𝑘 = ―4, 2 (Fig. 9). Similarly, for anti-symmetric modes, good agreement 

425 is observed for 𝑘 = ―1 while for 𝑘 = ―3, 1, 4 amplitudes in ISD/buoy are too small, yet 

426 phases are in good agreement (Fig. 10). 

427 In summary, the signals extracted from ISD/buoy have a meridionally coherent structure 

428 that is consistent with the corresponding Hough function, although amplitudes tend to be 

429 smaller than those seen in ERA5 for some high zonal wavenumber (𝑘) components. We 

430 reiterate that no previous study has obtained robust inertia-gravity mode signals including 

431 their horizontal structures based on ground-based data. The present work thus provides 

432 solid evidence for the existence of high-frequency, global inertia-gravity modes. 

433

434 (c) Rossby and Rossby-gravity modes

435 Figures 11 and 12 (see also Figs. 6-7) show the results for the symmetric, gravest 

436 Rossby mode and antisymmetric Rossby-gravity mode (note again that the eastward 

437 components of the latter is sometimes called as “n = 0 eastward inertia-gravity mode”). As 

438 noted in the Introduction, Rossby and westward Rossby-gravity modes have relatively low 

439 frequencies (c.f., Fig. 1), and thus they can attain relatively large amplitudes. We indeed see 

Fig. 11

Fig. 12
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440 that these signals are clearly extracted from ISD/Buoy data and their amplitudes and phases 

441 closely correspond to those in Obs-sampled-ERA5. For the 𝑘 = ―1 Rossby mode (“5-day 

442 wave”), the maximum amplitude (~70 Pa) is consistent with that reported in previous studies 

443 (e.g., Madden and Julian, 1973). Eastward Rossby gravity modes are also clearly detected, 

444 though again for the weak modes (e.g., 𝑘 = 5) amplitudes in ISD/Buoy appear somewhat 

445 smaller than those in ERA5.

446 It is worth mentioning that the meridional structure as deduced from ISD/Buoy and ERA5 

447 is slightly different from the theoretical Hough function solutions for large, low-frequency k 

448 components. For example, the 𝑘 = ―3 and ―4 Rossby modes and 𝑘 = ―5 Rossby-

449 gravity modes exhibit a more compact structure in meridional direction (i.e., confined to 

450 equatorial region) in ISD/Buoy and ERA5, compared to the corresponding Hough function. 

451 These modes are more susceptible to background winds because of their slow phase speed 

452 (c.f., Fig. 1) and thus the meridional structure may deviate from the theoretical prediction 

453 obtained under the assumption of no background winds. Recently, Ishizaki et al. (submitted) 

454 generalized the classical linear theory to treat mean states with prescribed height-latitude 

455 distributions of zonal wind and temperature. By solving the resulting eigenvalue problem, 

456 they obtained the predicted frequencies and vertical and meridional structures of the normal 

457 mode oscillations. They showed that for a realistic mean state, the meridional structures of 

458 the Rossby and Rossby-gravity mode solutions differed somewhat from the corresponding 

459 classical theory solutions. Furthermore Ishizaki et al. determined that the deviation from 
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460 classical theory for these modes is mainly attributable to the vertical mean flow shear (rather 

461 than the horizontal shear considered by e.g. Kasahara, 1980). The Ishizaki et al. solutions 

462 allow the meridional structure of the modes to vary in the vertical and indeed the modes 

463 become more confined near the equator, being consistent with the present findings (Figs. 

464 11-12). This is likely related to the fact that the mode is confined near the equator at heights 

465 where Doppler-shifted frequency is reduced (in agreement with Lindzen, 1970, and other 

466 earlier studies of equatorial waves).

467

468

469 4.2 Pekeris resonance (m=2)

470 Figure 13 (see also Fig. S8) shows the extracted meridional structures for 𝑘 =   1 and 

471 2 Kelvin modes for the Pekeris resonance (𝑚 = 2). We observe clear signals in ISD/buoy 

472 data that follow a Kelvin mode structure and peak at equatorial amplitudes of ~5 Pa and ~3 

473 Pa for 𝑘 = 1 and 2, about 50% smaller than their counterparts with Lamb resonance (Fig. 

474 6). This constitutes the first robust evidence for the existence of Pekeris normal modes in 

475 the real atmosphere relying purely on raw ground-based measurements. Notably, unlike the 

476 Lamb series (𝑚 = 1), such internal modes (𝑚 = 2) might be expected to be more susceptible 

477 to the effects of top boundary of the model used in the reanalysis procedure. The close 

478 agreement in amplitude between ISD/Buoy and ERA5 shown in Fig. 13, however, indicates 

479 that such effects may be negligible at least for ERA5 data. Žagar et al. (2022), using the 

Fig. 13
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480 Hough-mode expansion technique, showed that the energy in Kelvin mode takes a 

481 maximum for the components having an equivalent depth of ~7 km. This may correspond in 

482 some part to the Pekeris resonance detected in this study, although Žagar et al. calculated 

483 the equivalent depths for a vertically bounded atmosphere and so their physical meaning 

484 was slightly different from our study. 

485

486 5. Concluding Remarks

487 Previous attempts to detect the global normal mode oscillations of the atmosphere only 

488 using station observations have had to cope with the limitations, particularly the irregular 

489 space-time distribution, of the available in situ data. Here we have adopted a simple 

490 regression analysis to extract globally coherent signals from barometric observations. The 

491 key point of our approach consists in regressing the raw pressure measurements (ISD/Buoy) 

492 onto a single modal index time series created by analysis of gridded reanalysis data. The 

493 method does not require homogeneity in temporal coverage and sampling among different 

494 stations, allowing records to differ in length and measurement frequency.

495 As a result, we have successfully identified the normal mode signals in the ISD/Buoy 

496 dataset not only for low-frequency modes such as Rossby and Rossby-gravity modes, but 

497 also for high-frequency modes such as Kelvin and inertia-gravity modes (even down to 2nd 

498 gravest modes). Despite not assuming any a priori horizontal dependence, a globally 

499 coherent, characteristic mode structure emerges from our computed regression coefficients, 

Page 25 of 49 For Peer Review



25

500 and the meridional structures obtained agree fairly well with the corresponding Hough 

501 functions. In addition, the same analysis was repeated for ERA5 itself (global data), yielding 

502 modal amplitudes and phases consistent with those in ISD/Buoy data.

503 These findings corroborate the evidence (SH20) for a spectrum of global normal modes 

504 in the real atmosphere that match the expectations from classical tidal theory. Also, the 

505 results of the regression analysis indicate that the signals in ERA5 are generally in phase 

506 with, and of the same magnitude as, those revealed by analysis of raw barometric data. The 

507 agreement underscores the validity and usefulness of ERA5 for normal mode detection and 

508 investigation. Although the results are generally consistent between ISD/Buoy and ERA5, 

509 we find a few minor differences. In particular, amplitudes derived from ISD/Buoy are smaller 

510 than those of ERA5 for some high-frequency, high zonal wavenumber modes (note that the 

511 phase mostly display good agreement, though). In addition, the meridional structure 

512 deduced from ISD/Buoy and ERA5 deviates somewhat from the theoretical Hough function 

513 for high zonal wavenumber Rossby and westward Rossby-gravity modes. It is likely that 

514 background zonal winds alter the mode structure given that higher wavenumber modes are 

515 associated with smaller phase speeds (c.f., Fig. 1).

516 Taken together, our results can be viewed as a unique evaluation of reanalysis data. As 

517 noted in the Introduction, it has been known that at least some reanalyses contain realistic 

518 depictions of the principal lunar air tide (~10 Pa). The present study shows that ERA5 

519 captures even much smaller global wave signals, e.g., ~1 Pa for some inertia-gravity modes. 
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520 Accurate representation of the pressure signal associated with the Pekeris internal 

521 resonance is particularly compelling and helps allay concerns about possible impacts of the 

522 upper boundary in the ERA5 product. Our simple technique that uses reanalyses to extract 

523 the signals from spatiotemporally inhomogeneous observations could be applied to any 

524 meteorological disturbances associated with identifiable spectral peaks such as equatorial 

525 waves. This may be a powerful tool to validate the detailed representation of other small-

526 magnitude fluctuations in atmospheric reanalyses.

527

528 Data Availability Statement

529 ISD data are obtained by National Centers for Environmental Information though the 

530 website: https://www.ncei.noaa.gov/data/global-hourly/. Tropical buoy data are provided by 

531 the GTMBA Project Office of NOAA/PMEL through the web site: 

532 https://www.pmel.noaa.gov/tao/drupal/disdel/. ISPD data are obtained by the NSF National 

533 Center for Atmospheric Research (NCAR) Research Data Archive (RDA) through the 

534 website https://rda.ucar.edu/datasets/d132002/. ERA5 data (Hersbach et al. 2023) were 

535 downloaded from the Climate Data Store 

536 (CDS)  (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

537 levels?tab=overview).
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540 Supplementary file contaions figures (Figs. S1-S8) showing the meridional structure of each 

541 normal mode as derived from (1) ISD/Buoy, (2) Obs-sampled-ERA5, and (3) All-ERA5 data, 

542 as well as the Hough mode fitting for (3). Note that the corresponding figures in the main 

543 text (Figs.6-13) do not include the results for (2).  

544
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673 Table 1: Root-mean-square-error (RMSE) for the meridional structure between ISD/Buoy 
674 and Obs-sampled-ERA5 data [RMSE in amplitude (unit: Pa) (RMSE in amplitude normalized 
675 by the maximum value)/RMSE in phase (unit: 𝜋―1 radian)]. For phase, only latitudes with 
676 amplitude larger than 0.1 Pa are considered for the calculation of RMSE. Modes with a long 
677 dash (–) are those well not defined or those too close to diurnal harmonics (see text for 
678 details).
679

Symmetric mode Anti–symmetric mode

Zonal wavenumber Rossby Kelvin 1st Gravity 2nd Gravity Kelvin (Pekeris) Rossby–Gravity 1st Gravity 2nd Gravity

–5 –(–)/– N.A. –(–)/– –(–)/– N.A. 0.21(0.02)/0.03 0.24(0.24)/0.09 –(–)/–

–4 0.41(0.01)/0.01 N.A. 0.14(0.09)/0.03 0.23(0.24)/0.08 N.A. 0.15(0.02)/0.06 –(–)/– –(–)/–

–3 0.18(0.01)/0.00 N.A. 0.14(0.08)/0.02 –(–)/– N.A. 0.20(0.03)/0.01 0.08(0.08)/0.05 0.17(0.18)/0.05

–2 0.33(0.01)/0.02 N.A. –(–)/– 0.11(0.11)/0.13 N.A. 0.09(0.01)/0.01 0.11(0.10)/0.06 –(–)/–

–1 0.35(0.00)/0.00 N.A. 0.11(0.04)/0.03 0.11(0.11)/0.03 N.A. 0.08(0.02)/0.01 0.06(0.05)/0.04 0.09(0.08)/0.02

0 N.A. N.A. –(–)/– 0.08(0.05)/0.03 N.A. 0.07(0.02)/0.04 0.09(0.05)/0.08 –(–)/–

1 N.A. 0.09(0.01)/0.01 0.09(0.07)/0.05 –(–)/– 0.18(0.04)/0.03 0.07(0.03)/0.06 0.09(0.08)/0.03 0.19(0.19)/0.07

2 N.A. 0.10(0.03)/0.02 –(–)/– 0.15(0.22)/0.09 0.10(0.03)/0.20 0.05(0.03)/0.01 –(–)/– –(–)/–

3 N.A. 0.12(0.03)/0.03 –(–)/– –(–)/– –(–)/– –(–)/– 0.10(0.15)/0.05 –(–)/–

4 N.A. –(–)/– 0.17(0.20)/0.22 –(–)/– –(–)/– 0.13(0.12)/0.02 –(–)/– 0.19(0.27)/0.38

5 N.A. 0.14(0.09)/0.06 –(–)/– –(–)/– –(–)/– 0.15(0.14)/0.04 –(–)/– –(–)/–

680
681
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682

683 Figure 1: Zonal wavenumber-frequency spectrum for equatorially (a–b) symmetric and (c–

684 d) anti-symmetric components calculated with ERA5 pressure data for 20°S–20°N 

685 during 1980–2021. The ratio of spectra to the background spectra are presented, with 

686 the color bar shown on the right. Panels (a) and (c) span the frequency range up to 12 

687 cycles day-1 (cpd), while panels (b) and (d) do so up to 2.5 cpd. Solid circles and open 

688 circles (only for panels (b) and (d)) are the theoretical dispersion curves for  ℎ1 = 10 km 

689 and ℎ2 = 6.5 km, respectively, with their colors representing the wave type: Blue, red, 

690 orange, and magenta are for Rossby, Kelvin, Rossby-gravity and inertia-gravity modes, 

691 respectively (note that eastward components in Rossby-gravity modes are sometimes 

692 classified into inertia-gravity modes (“n = 0 eastward inertia-gravity modes”). For Rossby 

693 and inertia-gravity modes, the first three gravest modes are shown. 
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694

695 Fig. 2 Distribution of ISD (blue circles), buoy (magenta triangles) and ISPD (light blue circles) 

696 stations used for normal mode analysis.

697
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698

699 Figure 3: Frequency spectrum for the equatorially symmetric, eastward-propagating zonal 

700 (black) wavenumber 1 (E1) and (gray) 2 (E2) components as deduced with surface 

701 pressure data between 20°S and 20°N in ERA5. The spectrum is calculated every year 

702 from 1980 to 2021 and the results over the 42 years are averaged. The E2 spectrum is 

703 multiplied by a factor of 10-1 for better presentation. The spectral peaks marked by “L” and 

704 “P” denote the Lamb (𝑚 = 1) and Pekeris (𝑚 = 2) resonance, respectively. Red and blue 

705 horizontal lines denote the frequency range used for the filtering for Lamb and Pekeris 

706 peaks, respectively: For the Lamb peaks, the range is determined objectively based on 

707 the fitting to the Lorentzian function (green solid curves; the fitting parameters are adopted 

708 from Table 1 of SH20), while it is determined subjectively for the Pekeris peaks; see the 

709 main text.    

710
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711
712 Fig. 4 Illustration of the procedure to extract normal mode signals from ISD/Buoy data for 
713 (left columns) KL1 and (right columns) KL5. (a-b) Normal mode index created with the 
714 filtered, normalized tropical surface pressure data from ERA5 at 0°E with different lags: 
715 (blue) 0 and (orange) 𝜋/2. (c–f) Regression coefficients on the normal index time series 
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716 with lag = 0 as deduced from (c–d) ISD/Buoy data and (e–f) All-ERA5 data (unit: Pa). 
717 Color bars are shown at the bottom of panels (e–f). (g–j) Zonal distribution of regression 
718 coefficients (unit: Pa) obtained for the index with  (g–h) lag = 0 and (i–j) lag = 𝜋/2, with 
719 the upper and bottom panels showing the results for 35°N (32.5°N–37.5°N) and 0°N 
720 (2.5°S–2.5°N) , respectively. Blue, closed circles are for ISD and ISPD data, magenta, 
721 triangles are for buoy data, gray curves are for gridded ERA5 data, and red solid curves 
722 are the harmonic fitting for 𝑘 = 1 (left) and 𝑘 = 5 (right) for observation (ISD/Buoy/ISPD) 
723 See text for details.
724
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725

726
727 Fig. 5: (a) Meridional structure of the zonally averaged regression coefficient (𝑅) (unit: Pa) 
728 calculated for normal mode index time series with the four different lags (x-axis) for 
729 Rossby-gravity wave mode 𝑘 = 0, as derived with ISD/Buoy data. (b) Zonally averaged 𝑅 
730 for 40°N (37.5°–42.5°N band) for the four different lags (black circles). Red curve shows 
731 the harmonic fit, wherein the gray, dashed vertical line denotes the phase determined with 
732 this fit (it is nearly zero in this case). 
733

Page 41 of 49 For Peer Review



41

734

735 Fig. 6. Meridional structure of (top) amplitude and (bottom) phase for Kelvin modes of 

736 Lamb resonance (𝑚 = 1) for (from left to right) 𝑘 = 1 to 5. Red circles denote the results 

737 from ISD/Buoy, with their vertical bars showing the 95% confidence level. The number in 

738 the parentheses at the top of each panel denotes the wave frequency (unit: CPD). Gray 

739 curves (for amplitude) and open circles (for phase) show the results for All-ERA5 data, 

740 while green curves for amplitude represent the Hough function fitted to the results for All-

741 ERA5 (gray curves). The phase represents the lag from the index time series and is drawn 

742 only if the amplitude is >0.1 Pa. “Not shown” indicates either that the spectral peaks are 

743 too close to diurnal harmonics or that the fitting to the Lorentzian function failed. See 

744 supplementary for the comparison with the results from Obs-sampled-ERA5.
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745
746 Figure 7: As in Fig. 6 but for the first gravest, equatorially symmetric inertia-gravity modes 
747 for 𝑚 = 1. 
748
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749
750
751 Figure 8: As in Fig. 6 but for the first gravest, equatorially anti-symmetric inertia-gravity 
752 modes with 𝑚 = 1. 
753
754
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755

756

757 Figure 9: As in Fig. 6 but for the second gravest, equatorially symmetric inertia-gravity modes 
758 with 𝑚 = 1. 
759
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760
761

762

763 Figure 10: As in Fig. 6 but for the second gravest, equatorially anti-symmetric inertia-gravity 
764 modes with 𝑚 = 1. 
765
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766

767

768 Figure 11: As in Fig. 6 but for the gravest, equatorially symmetric Rossby mode with 𝑚 = 1. 

769
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770

771

772 Figure 12: As in Fig. 6 but for the Rossby-gravity mode with 𝑚 = 1. Note that the eastward 

773 component of the latter is sometimes called as “n=0 eastward inertia-gravity mode”.

774
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775

776

777

778

779 Figure 13: As in Fig. 6 but for the Kelvin modes with 𝑚 = 2 (Pekeris resonance).

780

781
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