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Abstract8

Linear eigenvalue analysis of the primitive equations is performed to study9

atmospheric free oscillations under the influence of a zonal mean field. The10

model for the primitive equations is based on a three-dimensional spectral11

formulation, and the zonal mean field is produced by averaging reanalysis12

data over 10 years. The frequencies and latitudinal/vertical structures of13

the eigenmodes obtained by the analysis are compared with the results14

of the classical tidal theory and with those of the free oscillation modes15

detected from reanalysis data by a recent study. The frequencies and vertical16

structures of the eigenmodes obtained in the present study are consistent17

with those of the eigenmodes detected in the recent study, while the obtained18

latitudinal structures do not differ significantly from those of the classical19

tidal theory. It is shown that the deviation from the frequency obtained from20

the classical tidal theory is mainly due to the effect of the zonal mean flow,21

but partly also to the latitudinal variation of the temperature field. The22

present study also shows that the vertical phase structure of the obtained23

eigenmodes, which is inconsistent with the classical tidal theory, can be24

understood qualitatively by using the wave dispersion relation.25
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1. Introduction26

The study of the free oscillations of the Earth’s atmosphere has long27

been developed in a common framework with the study of atmospheric28

tides. The free oscillations are solutions of normal modes without forcing29

satisfying the rigid boundary condition at the bottom and the energy decay30

boundary condition at the top. When the primitive equations are linearized31

from a stationary atmosphere as the reference field, the system is separated32

into the horizontal structure equation, or Laplace’s tidal equation (LTE),33

and the vertical structure equation (VSE) if the temperature is a function34

of altitude only. The vertical structure of the normal mode solution has the35

same structure as that of the Lamb wave (Lamb, 1911) if the atmosphere is36

isothermal, and the corresponding equivalent depth h is given as h = γH,37

where γ is the heat capacity ratio and H is the scale height of the isother-38

mal atmosphere, and the latitudinal structure is determined by solving the39

LTE for the equivalent depth. For these details, including the historical40

background, see Chapman and Lindzen (1970).41

The Earth’s atmosphere is, of course, neither isothermal nor stationary,42

but Taylor (1929) estimated the equivalent depth to be about 10.4 km43

based on the propagation speed of pressure disturbances observed during44

the 1883 eruption of Krakatoa. Since then, the equivalent depth of the free45

oscillations of the Earth’s atmosphere has been considered to be about 1046
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km, and this has also been considered to be the only equivalent depth for the47

realistic vertical temperature profile of the Earth’s atmosphere. (However,48

there have recently been new studies on this subject, which will be discussed49

later in this section).50

Once the equivalent depth is determined, the eigenfrequencies and lati-51

tudinal structures of the normal modes can be determined by (numerically)52

solving the LTE according to the method of Longuet-Higgins (1968). Many53

studies have been carried out to detect the free oscillation modes of the at-54

mosphere determined in this way from observational data. For example, the55

global Rossby modes were detected from satellite observations of the upper56

stratosphere by Hirota and Hirooka (1984). However, these studies were57

limited to relatively long period modes, and the detection of short period58

free oscillation modes had to wait for Sakazaki and Hamilton (2020) (for a59

detailed review of the history of attempts to detect free oscillation modes,60

see the description therein).61

In Sakazaki and Hamilton (2020), it was shown that free oscillation62

modes with periods not only of several days but also of as short as about63

2 hours could be comprehensively detected by spectral analysis of 38 years64

of hourly global reanalysis data, although not the observational data, and65

there the frequency, vertical structure, and latitudinal structure of the de-66

tected modes were compared with those of the LTE solutions for a stationary67
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atmosphere. As a result, it was shown that the frequency of the detected68

modes was most consistent with that of the LTE solution when the equiv-69

alent depth was set to 10 km, but there were some differences from the70

classical tidal theory in the frequency and latitudinal/vertical structure, re-71

flecting the fact that the real atmosphere has a non-zero zonal wind field and72

a latitudinally dependent temperature field, and that the bottom boundary73

is not horizontally uniform.74

How the normal modes of free oscillations vary with the background field75

was studied by Geisler and Dickinson (1976), Schoeberl and Clark (1980),76

and Salby (1981a, b). In particular, in Salby (1981a, b), realistic lati-77

tudinal/vertical structures of zonally uniform zonal wind and temperature78

fields were given and a periodic external forcing was applied to the linearized79

primitive equations with respect to the given basic field to extract modes80

showing amplitude increase near resonance. He showed that the frequencies81

of the Rossby and Rossby-gravity modes were consistent with those of the82

modes detected in the observational studies. However, since the method83

used there was to study the response to periodic forcings to the linearized84

equations, the individual eigenmodes were not considered to be completely85

separated, and the modes considered there were also limited to those with86

relatively long periods. On the other hand, Kasahara (1980) performed a87

linear eigenvalue analysis using a linearized shallow water equation by set-88
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ting the zonal flow profile at the 500 hPa surface and the balanced height89

field to it as the basic field. There, the eigenmodes were obtained com-90

prehensively, including not only Rossby and Rossby-gravity modes but also91

Kelvin and gravity modes. The eigenfrequencies and latitudinal structures92

of the modes were studied in relation to the LTE solution, to clarify how93

they vary with the zonal flow profile (and the height field balanced by the94

zonal flow). However, this calculation was performed only for a barotropic95

atmosphere, and it was not possible to investigate how the baroclinicity of96

the zonal flow affects the normal modes.97

Based on the above research background, in the present study, we extend98

the research of Kasahara (1980) to a baroclinic atmosphere by performing a99

direct eigenvalue analysis of the three-dimensional primitive equations lin-100

earized with respect to a basic field in which the latitudinal/vertical struc-101

tures of a realistic zonally uniform zonal wind field and temperature field102

are specified. We investigate how the frequencies and latitudinal/vertical103

structures of the normal mode solutions are affected by the background104

field. By performing a direct eigenvalue analysis, all types of Lamb modes105

are treated comprehensively and compared with the modes detected by106

Sakazaki and Hamilton (2020) in order to clarify to what extent the effect107

of the background field can explain the difference in characteristics between108

the modes detected by Sakazaki and Hamilton (2020) and the normal mode109
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solutions for a stationary atmosphere. In the present study, modes with110

vertical structures corresponding to Lamb waves are referred to as Lamb111

modes, including when they are deformed by the background field.112

Before closing this section, the possible existence of free oscillation modes113

with equivalent depths smaller than about 10 km should also be mentioned.114

As mentioned above, the equivalent depth has only one value in the case115

of an isothermal atmosphere, but the temperature of the real atmosphere116

varies significantly in the vertical direction. Depending on the vertical pro-117

file of the temperature, there may be several equivalent depths for which118

there exist solutions satisfying the lower and upper boundary conditions119

for the VSE. In fact, Pekeris (1937) showed that, by assuming unrealisti-120

cally high temperatures for the stratopause, an equivalent depth mode of121

about 8 km could exist, in addition to about 10 km. However, in Salby122

(1979), using a more realistic temperature profile, U.S. Standard Atmo-123

sphere, 1976, the equivalent depths obtained (although the mode was not124

completely evanescent at the top, since the very high temperature thermo-125

sphere was also taken into account there) were shown to be 9.6 km and 5.8126

km. The latter corresponds to the mode predicted by Pekeris (1937), the re-127

ality of which was first demonstrated in Watanabe et al. (2022), which first128

detected the predicted mode from an analysis of satellite brightness tem-129

perature data during the 2022 eruption of the Hunga Tonga-Hunga Ha’apai130
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volcano. There, not only the Lamb wave propagating at a phase velocity131

corresponding to about 10.1 km equivalent depth was detected, but also132

a wave packet propagating at a phase velocity corresponding to about 6.1133

km equivalent depth, and the latter was named the Pekeris wave in Watan-134

abe et al. (2022). This equivalent depth of 6.1 km differs from the 5.8 km135

obtained by Salby (1979), but Ishioka (2023) pointed out a problem with136

the accuracy of the calculation in Salby (1979) and showed that the cor-137

responding equivalent depth was 6.6 km when calculated correctly using138

the temperature profile of U.S. Standard Atmosphere, 1976. Furthermore,139

Ishizaki et al. (2023) showed that the equivalent depth of the Pekeris wave140

was about 6.5 km, even using the vertical profile of the average temperature141

in the tropics at the time of the 2022 eruption of the Hunga Tonga-Hunga142

Ha’apai volcano, which corresponds better to the position of the spectral143

peak of the Kelvin wave in the spectral analysis of the reanalysis data in144

Watanabe et al. (2022). The term atmospheric free oscillation usually refers145

to Lamb modes, but considering the recent studies mentioned above, those146

with vertical structures corresponding to the Pekeris wave should also be147

considered and are referred to as Pekeris modes. However, in the present148

study, we do not consider Pekeris modes not only because we intend to focus149

mainly on the comparison with the Sakazaki and Hamilton (2020) results,150

but also because in order to properly extract Pekeris modes as eigenmodes,151
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more vertical expansion degrees of freedom are required, as described in the152

next section, which makes the numerical calculations more difficult.153

The remainder of the present study is organized as follows. In Section154

2, we describe the method of the eigenvalue analysis of free oscillation in-155

cluding the effect of a zonal mean field which is determined by averaging156

reanalysis data. The results of the eigenvalue analysis are presented in Sec-157

tion 3. Discussion is presented in Section 4, along with additional analyses158

to interpret the results of the eigenvalue analysis. Summary is given in159

Section 5.160

2. Methods and data161

In the present study, we perform a linear eigenvalue-eigenvector analy-162

sis for the case of a perturbation applied to a zonally uniform field, using163

a system of primitive equations in σ-coordinates on a rotating sphere as164

the governing equations. We follow the formulation of Ishioka et al. (2022)165

and use the completely non-dimensionalized primitive equations, where the166

length scale, the temperature scale, and the time scale are nondimensional-167

ized by using the radius of the sphere (a∗), the reference temperature (T0∗),168

and a∗/
√
R∗T0∗, respectively. Here, R∗ is the gas constant for the dry atmo-169

sphere. The full nonlinear primitive equations are omitted here (see Ishioka170

et al., 2022) because it would be redundant, but the linearized equations,171
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given an infinitesimally small perturbation to a zonally uniform basic field,172

can be written as follows.173

∂ζ̃

∂t
=− 1√

1− µ2

∂Ã

∂λ
− ∂

∂µ
(
√

1− µ2B̃) +Dζ̃ , (1)

∂δ̃

∂t
=

1√
1− µ2

∂B̃

∂λ
− ∂

∂µ
(
√
1− µ2Ã)−∇2(Φ̃ + Uũ) +Dδ̃, (2)

∂τ̃

∂t
=− U

1√
1− µ2

∂τ̃

∂λ
− ṽ
√

1− µ2
∂T

∂µ
− σ̇

∂T

∂σ

+

(
C̃ +

σ̇

σ
+

∫ 0

1

(C̃ + δ̃)dσ

)
κT +Dτ̃ , (3)

∂s̃

∂t
=

∫ 0

1

(C̃ + δ̃)dσ, (4)

Ã =

(
2Ωµ− ∂

∂µ
(
√

1− µ2U)

)
ũ+ Uζ̃ + T

√
1− µ2

∂s̃

∂µ
, (5)

B̃ =

(
2Ωµ− ∂

∂µ
(
√

1− µ2U)

)
ṽ − σ̇

∂U

∂σ
− T

1√
1− µ2

∂s̃

∂λ
, (6)

C̃ =U
1√

1− µ2

∂s̃

∂λ
, (7)

σ̇ =

∫ 0

σ

(C̃(λ, µ, σ′, t) + δ̃(λ, µ, σ′, t))dσ′ − σ

∫ 0

1

(C̃ + δ̃)dσ, (8)

Φ̃ =−
∫ σ

1

τ̃(λ, µ, σ′, t)

σ′ dσ′. (9)

ũ =
1√

1− µ2

∂χ̃

∂λ
−
√
1− µ2

∂ψ̃

∂µ
(10)

ṽ =
1√

1− µ2

∂ψ̃

∂λ
+
√

1− µ2
∂χ̃

∂µ
, (11)

ζ̃ =∇2ψ̃, (12)

δ̃ =∇2χ̃, (13)
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∇2 =
1

1− µ2

∂2

∂λ2
+

∂

∂µ

[
(1− µ2)

∂

∂µ

]
. (14)

Here, Ω is angular velocity of the sphere, κ = R∗/Cp∗, where Cp∗ is spe-174

cific heat at constant pressure, t is time, λ is longitude, µ = sinφ, where175

φ is latitude, σ = p∗/p0∗, where p∗ is pressure and p0∗ is surface pres-176

sure of the basic state. Note that since the effect of the µ dependence of177

p0∗ is considered to be small, as shown by Ishizaki et al. (2023) in calcu-178

lating the equivalent depths of the Lamb and Pekeris modes, we assume179

here for simplicity that p0∗ is uniform in the µ direction. The tempera-180

ture field and the eastward wind field of the basic state are represented by181

T (µ, σ) and U(µ, σ), respectively. The variable s̃ is defined as p̃s∗/p0∗, where182

p̃s∗(λ, µ, t) is the surface pressure perturbation, Φ̃(λ, µ, σ, t) is the geopo-183

tential perturbation, τ̃(λ, µ, σ, t) is the temperature perturbation, and the184

variables δ̃(λ, µ, σ, t) and ζ̃(λ, µ, σ, t) are the perturbations of the horizontal185

divergence and the vertical component of the vorticity, respectively. The186

rightmost terms (Dζ̃ , Dδ̃, Dτ̃ ) in (1)–(3) are dissipation terms which will be187

defined later. The variable χ̃ is the velocity potential perturbation, and ψ̃188

is the stream function perturbation. Note that the above parameters and189

variables without the subscript “∗” are inherently dimensionless, or have190

been nondimensionalized as described above.191

As a preparation for deriving the eigenvalue calculation form of a ma-192

trix, we assume the following wave-like solution for the longitude-time de-193
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pendence of the field of each perturbation,194

ζ̃(λ, µ, σ, t) = Re(ζ̂(µ, σ)ei(mλ−ωt)), (15)

δ̃(λ, µ, σ, t) = Re(iδ̂(µ, σ)ei(mλ−ωt)), (16)

τ̃(λ, µ, σ, t) = Re(τ̂(µ, σ)ei(mλ−ωt)), (17)

s̃(λ, µ, t) = Re(ŝ(µ)ei(mλ−ωt)), (18)

ψ̃(λ, µ, σ, t) = Re(ψ̂(µ, σ)ei(mλ−ωt)), (19)

χ̃(λ, µ, σ, t) = Re(iχ̂(µ, σ)ei(mλ−ωt)), (20)

ũ(λ, µ, σ, t) = Re(û(µ, σ)ei(mλ−ωt)), (21)

ṽ(λ, µ, σ, t) = Re(iv̂(µ, σ)ei(mλ−ωt)), (22)

Φ̃(λ, µ, σ, t) = Re(Φ̂(µ, σ)ei(mλ−ωt)), (23)

σ̇(λ, µ, σ, t) = Re(iˆ̇σ(µ, σ)ei(mλ−ωt)), (24)

Ã(λ, µ, σ, t) = Re(Â(µ, σ)ei(mλ−ωt)), (25)

B̃(λ, µ, σ, t) = Re(iB̂(µ, σ)ei(mλ−ωt)), (26)

C̃(λ, µ, σ, t) = Re(iĈ(µ, σ)ei(mλ−ωt)), (27)

Dζ̃(λ, µ, σ, t) = Re(Dζ̂(µ, σ)e
i(mλ−ωt)), (28)

Dδ̃(λ, µ, σ, t) = Re(iDδ̂(µ, σ)e
i(mλ−ωt)), (29)

Dτ̃ (λ, µ, σ, t) = Re(Dτ̂ (µ, σ)e
i(mλ−ωt)). (30)

Here, Re(·) means to take real parts and i =
√
−1. Note that the reason195

why the imaginary unit is attached differently depending on the type of196

11



perturbation is to ensure that the final matrix for the eigenvalue calculation197

is a real matrix (when dissipative effects are not considered). Substituting198

the expression (15)–(30) into (1)–(14), we obtain the following equations.199

ωζ̂ =
1√

1− µ2
mÂ+

∂

∂µ
(
√

1− µ2B̂) + iDζ̂ , (31)

ωδ̂ =− 1√
1− µ2

mB̂ − ∂

∂µ
(
√

1− µ2Â)− ∇̂2(Φ̂ + Uû) + iDδ̂, (32)

ωτ̂ =U
1√

1− µ2
mτ̂ + v̂

√
1− µ2

∂T

∂µ
+ ˆ̇σ

∂T

∂σ

−

(
Ĉ +

ˆ̇σ

σ
+

∫ 0

1

(Ĉ + δ̂)dσ

)
κT + iDτ̂ , (33)

ωŝ =−
∫ 0

1

(Ĉ + δ̂)dσ, (34)

Â =

(
2Ωµ− ∂

∂µ
(
√

1− µ2U)

)
û+ Uζ̂ + T

√
1− µ2

∂ŝ

∂µ
, (35)

B̂ =

(
2Ωµ− ∂

∂µ
(
√

1− µ2U)

)
v̂ − ˆ̇σ

∂U

∂σ
− T

1√
1− µ2

mŝ, (36)

Ĉ =U
1√

1− µ2
mŝ, (37)

ˆ̇σ =

∫ 0

σ

(Ĉ(λ, µ, σ′, t) + δ̂(λ, µ, σ′, t))dσ′ − σ

∫ 0

1

(Ĉ + δ̂)dσ, (38)

Φ̂ =−
∫ σ

1

τ̂(λ, µ, σ′, t)

σ′ dσ′. (39)

û =− 1√
1− µ2

mχ̂−
√
1− µ2

∂ψ̂

∂µ
(40)

v̂ =
1√

1− µ2
mψ̂ +

√
1− µ2

∂χ̂

∂µ
, (41)

ζ̂ =∇̂2ψ̂, (42)
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δ̂ =∇̂2χ̂, (43)

∇̂2 =− m2

1− µ2
+

∂

∂µ

[
(1− µ2)

∂

∂µ

]
. (44)

Next, we expand ζ̂, δ̂, τ̂ , and ŝ in the µ direction by the associated Legendre200

functions and in the σ direction by the Legendre polynomials as follows.201

ζ̂(µ, σ) =
L∑
l=0

M∑
n=m

ζn,lPn,m(µ)Pl(1− 2σ), (45)

δ̂(µ, σ) =
L∑
l=0

M∑
n=m

δn,lPn,m(µ)Pl(1− 2σ), (46)

τ̂(µ, σ) = σ
L−1∑
l=0

M∑
n=m

τn,lPn,m(µ)Pl(1− 2σ), (47)

ŝ(µ) =
M∑

n=m

snPn,m(µ). (48)

Here, Pn,m(µ) is the associated Legendre function, which is defined as fol-202

lows,203

Pn,m(µ) =

√
(2n+ 1)

(n−m)!

(n+m)!

1

2nn!
(1− µ2)m/2 d

n+m

dµn+m
(µ2 − 1)n (0 ≤ m ≤ n),

(49)

and the parameters M and L are the horizontal and vertical truncation204

wavenumber, respectively. The Legendre polynomial Pl(1 − 2σ) is defined205

as the case where n = l and m = 0 with µ = 1 − 2σ. Note that in (47)206

the right-hand side is multiplied by σ to eliminate the singularity of the207

function under integration on the right-hand side of (39) and that since ŝ208

does not depend on σ, so there is no expansion in the σ direction for (48).209
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Formally substituting (45)–(48) into (31)–(34) and multiplying both210

sides of (45) and (46) by Pn,m(µ)Pl(1−2σ), both sides of (47) by σPn,m(µ)Pl(1−211

2σ) and both sides of (48) by Pn,m(µ) and integrating both sides of (45)–(48)212

in the interval [−1, 1] for µ and in the interval [0, 1] for σ (i.e. applying the213

Galerkin method), we obtain a matrix eigenvalue problem for each zonal214

wavenumber m of the following form after several matrix operations (for215

details see Ishioka et al., 2022).216

Av = ωv. (50)

Here, v is an N -dimensional vector, where N = 3(M −m+ 1)(L+ 1), con-217

sisting of (ζm,0, . . . , ζM,L, δm,0, . . . , δM,L, τm,0, . . . , τM,L−1, sm, . . . , sM), and A218

is an N ×N matrix. This is a problem of finding the eigenvalues and eigen-219

vectors of the matrix, where the real part of ω is the eigenfrequency of the220

eigenmode and the imaginary part of ω is the growth rate of the eigenmode221

(if the imaginary part is negative, its absolute value is the decay rate).222

Note that the integration in [−1, 1] with respect to µ and the integration223

in [0, 1] with respect to σ required to derive (50) are done by multiplying the224

values in the Gaussian node by the Gaussian weight and summing, unless225

it is easy to do the integration analytically. That is, if F (µ) and G(σ) are226

the integration functions depending on µ and σ respectively, the numerical227
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integration is performed as follows.228 ∫ 1

−1

F (µ)dµ ≈
J∑

j=1

wjF (µj),

∫ 1

0

G(σ)dσ ≈ 1

2

K∑
k=1

WkG(σk). (51)

Here, (µj, wj) (j = 1, 2, . . . , J) and (σk,Wk) (k = 1, 2, . . . , K) are the (Gaus-229

sian nodes, Gaussian weights) for µ and σ spaces, respectively. For their230

definitions when setting the numbers of the Gaussian nodes J and K, please231

see Ishioka et al. (2022). In addition, in the derivation of (50), we need to232

mention how to treat the basic fields U(µ, σ) and T (µ, σ) and their partial233

derivatives. As we will see later, U and T are given by the grid values of234

reanalysis data, but the positions of the grid points in the µ and σ direc-235

tions are different from those of the Gaussian nodes above. First, for the236

µ direction, noting that µ = sinφ and using the given grid point data, we237

perform a discrete sine series expansion for U by the colatitude π/2 − φ238

and a discrete cosine series expansion for T , and then use the expansion239

to obtain their values and their µ partial derivatives at the Gaussian node240

µj(j = 1, 2, . . . , J) by interpolation. For the σ direction, the dimension-241

less logarithmic pressure coordinate z = − lnσ is introduced and the grid242

data are linearly interpolated to the values at zk = − lnσk(k = 1, 2, . . . , K)243

corresponding to the Gaussian nodes in the z coordinate. The σ partial244

differential values are calculated from the z partial differential values in the245

linearly interpolated interval.246

The basic framework of the eigenvalue analysis method in the present247
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study has been described above, but in order to extract the deformed Lamb248

modes as eigenmodes given a realistic basic field, several additional proce-249

dures are required, as described below. First of all, even in the implemen-250

tation of the 3D spectral method for the primitive equations that we are251

now using, the domain that extends infinitely in the vertical direction is252

calculated in the finite domain [0, 1] of σ. In the present study, as can be253

seen from (8), the boundary condition of σ̇ = 0 is imposed at the σ = 0254

surface, so energy cannot escape upwards. Due to the reflection of waves255

from such an upper boundary, when eigenvalue analysis is performed with-256

out dissipative terms, many spurious modes (which cannot naturally exist)257

will appear as eigenmodes satisfying the boundary conditions (e.g. Lindzen258

et al., 1968). Therefore, it is necessary to set up a region that acts as a259

sponge to suppress the effect of reflection from the upper boundary and to260

increase the damping rate of such spurious modes so that the Lamb modes,261

which are the natural free oscillation modes, can be separated from them.262

With this intention, the dissipation terms (Dζ̂ , Dδ̂, Dτ̂ ) are introduced as the263

following equations in the form of Rayleigh friction or Newtonian cooling:264

Dζ̂ = −α(σ)ζ̂ , Dδ̂ = −α(σ)δ̂, Dτ̂ = −α(σ)τ̂ . (52)

Here, we consider the following form as the σ dependence of α.265

α(σ) = αR
1

1 +
(

σ
σR

)2 , (53)
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where αR and σR are the parameters that determine the strength of the266

dissipation and the σ range in which it acts, respectively. The function267

form of this α is such that α → αR(σ → 0), but if σR ≪ 1 then α ≪ αR268

as σ → 1. In other words, the upper atmosphere that satisfies σ < σR269

has a sponge-like effect, while the dissipation becomes almost ineffective in270

the lower atmosphere where the energy of the Lamb mode is large. In the271

present study, we set σR = 1 × 10−3 and αR = αR∗ × (a∗/
√
R∗T0∗), where272

αR∗ = 1 × 10−5 s−1, not only to suppress the spurious modes sufficiently273

but also to keep the eigenfrequencies and the latitudinal/vertical structures274

of the eigenmodes to be as unaffected as possible by the dissipation. Figure275

1 shows the vertical profile of the relaxation time due to dissipation. The276

relaxation time is almost one day above 1 hPa, where the dissipative effect277

is strong, but it increases rapidly with decreasing altitude, reaching about278

100 days at 10 hPa and increasing further at lower altitudes, where the279

dissipative effect becomes negligible. Thus, the vertical structures of the280

eigenmodes obtained in the next section are affected by dissipation above281

about 10 hPa and should be treated with caution. The effect of this dissipa-282

tion parameter on the eigenfrequencies and the structure of the eigenmodes283

is discussed at the beginning of the next section. Fig. 1284

Even with the sponge layer set up as described above, the damping rates285

of spurious eigenmodes with vertical nodes are not sufficiently large, and it286
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is difficult to objectively distinguish them from Lamb modes deformed in287

the basic field only by the amplitude of the damping rate. Therefore, we288

consider the orthogonal relationship between the eigenmodes and the ver-289

tical phase structure to separate the modes. First, it is known that the290

latitudinal structure of the free oscillation modes for a stationary and hor-291

izontally isothermal atmosphere has the following orthogonal relationship292

for each zonal wavenumber m (Kasahara, 1976).293 ∫ 1

−1

{
ϕ̂kϕ̂

†
l −

1

ε
(χ̂k∇̂2χ̂†

l + ψ̂k∇̂2ψ̂†
l )

}
dµ = 0 (k ̸= l). (54)

Here, the superscript dagger denotes the complex conjugate and the sub-294

script denotes the eigenmode number, and ε is the Lamb parameter, which295

is defined as,296

ε =
4a2∗Ω

2
∗

g∗h∗
, (55)

where, Ω∗ is the (dimensional) angular velocity of the sphere, g∗ is the297

(dimensional) gravity acceleration, and h∗ is the (dimensional) equivalent298

depth of the free eigenmode. Also, ϕ̂ represents the zonal wavenumber m299

component of the (non-dimensionalized) geopotential perturbation in the p300

coordinate system, and is obtained from Φ̂ in the σ coordinate defined by301

(39) as follows.302

ϕ̂ = Φ̂ + T̄ ŝ, (56)
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where T̄ (σ) is the global mean of T (µ, σ).303

Using the formula (54) we can define the inner product taking into ac-304

count the latitudinal structure of the eigenmodes, but it is inconvenient to305

use it if the equivalent depth has not been determined beforehand, since the306

Lamb parameter ϵ is not determined until the equivalent depth has been307

determined. As an alternative, we use only the kinetic energy part of (54)308

and define a function F(σ) as,309

F(σ) = −
∫ 1

−1

{χ̂(µ, σ = 1)∇̂2χ̂†(µ, σ) + ψ̂(µ, σ = 1)∇̂2ψ̂†(µ, σ)}dµ, (57)

to examine the vertical phase structure of the eigenmodes obtained by solv-310

ing (50). This F(σ) will be a complex number for which arg(F(σ)) can be311

calculated to examine the global average phase structure of the eigenmode312

with respect to the σ = 1 surface. If arg(F(σ)) = θ, then this eigenmode313

is phase-shifted to the east by θ at the specified σ surface with respect to314

the σ = 1 surface. Since the Lamb modes for a stationary and horizontally315

isothermal atmosphere do not tilt in phase in the vertical direction, the fol-316

lowing criteria are imposed in order to extract the Lamb modes deformed317

by the fundamental field separately from the spurious eigenmodes.318

A1 | arg(F(σ))| < π/2 at any levels of σ.319

A2 Select those with eigenfrequencies greater than 1/2 cpd.320

Here, cpd is “cycle per day”, and the criterion A2 is imposed to remove the321
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slow “continuous” mode caused by advection by zonal wind. The value 1/2322

cpd is introduced by considering that the maximum period of the Kelvin323

mode is 33 hours. In the present study, when simply referring to the eigen-324

frequency, we will refer to the absolute value of the eigenfrequency. When325

it is necessary to refer to the sign, it will be indicated by stating whether326

the corresponding eigenmode is eastward or westward.327

With the A1 and A2 criteria set above, the high frequency Lamb modes328

can be extracted. However, for the low frequency Lamb modes, that is, the329

Rossby modes and the westward Rossby-gravity modes, the criterion A2330

should obviously not be imposed. Furthermore, for the low frequency modes331

with large zonal wavenumbers, when given a realistic background field, the332

westward tilt of the phase of these modes in the upper layer becomes large,333

and the A1 criterion becomes too strict to extract these modes. We therefore334

relax the criterion A1 a little and consider allowing a phase tilt in the upper335

atmosphere as | arg(F(σ))| < π/2 (σ > 0.1). However, when the criterion336

is relaxed in such a way, spurious modes whose latitudinal structure is far337

from the Rossby mode and the westward Rossby-gravity mode are also338

extracted. In order to extract the eigenmodes whose latitudinal structure339

is consistent with the Rossby mode and the westward Rossby-gravity mode340

in the stationary atmosphere, we introduce the following inner product and341
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scalar quantities induced by the inner product.342

ΘH = (ϕ̂H , χ̂H , ψ̂H), (58)

ΘM = (ϕ̂M , χ̂M , ψ̂M), (59)

(ΘH ,ΘM) =

∫ 1

−1

[
ϕ̂H ϕ̂

†
M − 1

ε
{χ̂H∇̂2χ̂†

M + ψ̂H∇̂2ψ̂†
M}
]
dµ, (60)

G =

√
|(ΘH ,ΘM)|2

(ΘH ,ΘH)(ΘM ,ΘM)
. (61)

Here, ΘH is the reference solution corresponding to the Rossby or westward343

Rossby-gravity mode, which is calculated as an eigensolution of the LTE at344

the equivalent depth of 10 km. On the other hand, ΘM is the surface (at345

σ = 1) structure of the mode obtained from the eigenvalue analysis to be346

checked. Note that in (60), the Lamb parameter ε is calculated with h∗ = 10347

km. The scalar value G calculated by (61) takes values in the range [0, 1]. As348

the value approaches 1, the eigensolution under test ΘM gets closer to the349

reference solution ΘH . From the above, we introduce the following criteria350

for extracting the Rossby or westward Rossby-gravity modes.351

B1 | arg(F(σ))| < π/2 (σ > 0.1).352

B2 G > 0.7.353

B3 From the modes that satisfy the above two conditions, the one with the354

lowest damping rate is selected.355
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Here, the reference solutions used in criterion B2 are only those for the356

westward Rossby-gravity mode and the 1st Rossby mode with north-south357

symmetry of the geopotential perturbation field. This is because the ex-358

traction of free oscillation modes in the present study is mainly considered359

for comparison with Sakazaki and Hamilton (2020). In criterion B2, the360

number 0.7 is somewhat arbitrary, but if this value is too small, modes with361

latitudinal structures that differ significantly from the latitudinal structure362

of the mode to be extracted will be mixed in. If the value is too close to363

1, the target mode cannot be extracted because the latitudinal structure of364

the mode is distorted by the zonal mean field. Considering these factors, a365

figure of 0.7 is adopted, albeit empirically. The criterion of B3 is also im-366

posed because there are cases where the mode is not uniquely determined367

by the criteria of B1 and B2 alone.368

As a background field for the eigenvalue analysis, we use pressure-level369

(Hersbach et al., 2023) and model-level (Hersbach et al., 2017) zonal wind370

and temperature data in ERA5 (Hersbach et al., 2020), the latest atmo-371

spheric reanalysis dataset produced by the European Centre for Medium-372

Range Weather Forecasts (ECMWF). The model-level data are used to-373

gether because, as described in Ishizaki et al. (2023), the ERA5 pressure-374

level data are only available up to the 1 hPa surface, and the model-level375

data are used to compensate for the part above that. As described in376
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Ishizaki et al. (2023), model-level data are used at 71.1187 hPa and above,377

and pressure-level data at 100 hPa and below, which together are used as 81378

level data from 1000 hPa to 0.01 hPa. The longitude-latitude grid interval is379

1◦× 1◦ for both the model-level data and the pressure-level data. The tem-380

porally and zonally averaged background field of the data described above381

from 2011 to 2020 is used in this analysis. The reason for using 10-year382

averaged data for the background field in the present study is that Sakazaki383

and Hamilton (2020) performed a spectral analysis over a whole year and384

averaged it over 38 years, so it is appropriate to perform an eigenvalue anal-385

ysis of a climatological field averaged over a long period for comparison with386

Sakazaki and Hamilton (2020). It should therefore be noted that seasonal387

dependence is not considered in the present study. The distribution of this388

field is shown in Fig. 2. In Fig. 2, a strong eastward jet is observed in the Fig. 2389

tropical mesosphere. This is caused by the model specification as described390

in Shepherd et al. (2018), but for the Lamb mode, which is the focus of the391

present study, its energy is trapped near the ground surface and the influ-392

ence of this unrealistic jet is considered to be negligible, so this background393

field is used as it is.394

The parameters used in the numerical calculations are described below.395

Ω∗ = 7.29212 × 10−5 s−1, R∗ = 287 m2s−2 K−1, a∗ = 6.371229 × 106 m,396

κ = 2/7, g∗ = 9.80 ms−2, and p0∗ = 1000 hPa. The horizontal truncation397
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wavenumber M is 21, the number of latitudinal grid points J = 32. The398

vertical truncation wavenumber L is set to 85 and the number of vertical399

grid points K = 128. Then, the top of the vertical grid of the spectral400

method used for eigenvalue calculations is at 0.0875560 hPa.401

3. Results402

An eigenvalue analysis is first performed for the linear model used in the403

present study with a stationary isothermal background field to check the ac-404

curacy of the eigenvalue analysis and the effect of the introduced dissipation405

terms. The isothermal atmospheric temperature T∗ treated here is deter-406

mined such that the equivalent depth of the Lamb mode, h∗, determined by407

the following equation, is 10 km.408

h∗ =
γR∗T∗
g∗

.

Here, γ = 1/(1−κ) = 7/5. Hence, we set T∗ = 243.90 K. Table 1 shows the Table 1409

dependence of the eigenfrequencies of four representative modes of zonal410

wavenumber 1 on the two dissipation parameters (σR, αR∗). Note that since411

the phase tilt in the vertical direction is small in the case of a station-412

ary isothermal atmosphere, regardless of the parameters in the dissipation413

terms, all modes, including the Rossby and westward Rossby-gravity modes414

can be extracted using only the A1 criterion described in the previous sec-415
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tion. In Table 1, as σR or αR∗ becomes small, the deviation of the eigenfre-416

quency of each eigenmode from the LTE solution decreases and is within 1%417

relative error when σR = 1× 10−3 and αR∗ = 1× 10−5 s−1 (the default set-418

ting). Therefore, in the default case of dissipation introduced in the present419

study (D), we have confirmed that the difference from the eigenfrequencies420

without considering dissipation is small, and we will use this dissipation pa-421

rameter in the calculations including latitudinal/vertical structures of the422

zonal wind and temperature field based on the reanalysis data. However,423

there are cases where the relative error of 1% can be important, which will424

be discussed in subsection 4.3.425

The dependence of the vertical structures of the latitudinally averaged426

(|φ| < 20◦) geopotential fields for the corresponding four modes on the427

dissipation parameters is shown in Fig. 3. Note that for comparison with428

Sakazaki and Hamilton (2020), the amplitude at each level H(σ) is calcu-429

lated as follows,430

H(σ) =

∫ µ0

−µ0

|ϕ̂(µ, σ)|dµ, (62)

where µ0 = sin 20◦, and the phase at each level arg(I(σ)) is obtained by431

taking the argument of the complex number I(σ) as follows,432

I(σ) =
∫ µ0

−µ0

ϕ̂(µ, σ = 1)ϕ̂†(µ, σ)dµ. (63)

Similar to the eigenfrequency, as σR or αR∗ becomes small, the deviation433
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of the amplitude and phase profile of each eigenmode from the VSE solu-434

tion for the stationary isothermal atmosphere decreases, and the deviation435

does not become significant up to the 10 hPa level when σR = 1× 10−3 and436

αR∗ = 1×10−5 s−1 (the default setting). In case (A), where both dissipation437

parameters are large, the deviation of the amplitude and phase structure438

from the VSE solution is clearly seen from the level of 100 hPa, but still, in439

this isothermal stationary atmosphere, the phase tilt is very small compared440

to the cases of the eigenvalue analysis with the latitudinal/vertical struc-441

ture of the zonal wind and temperature fields obtained from the reanalysis442

data, which will be shown later. Nevertheless, referring again to Table 1,443

it can be seen that in case (A), the eigenfrequency is significantly smaller444

than that of the LTE solution, which can be interpreted as an effect of the445

introduction of a sponge layer with a strong dissipative effect in the upper446

layer of the atmosphere, which effectively reduces the equivalent depth since447

the dissipative effect limits the vertical extent of the Lamb mode. Fig. 3448

We now consider zonal mean zonal wind and temperature distributions449

based on the reanalysis data for the eigenvalue analysis. Figure 4 shows450

the difference between the eigenfrequencies obtained from the eigenvalue451

analysis for the zonal mean zonal wind and the zonal mean temperature field452

and those obtained from the LTE with the equivalent depth of 10 km. The453

reason for showing such deviations is to facilitate comparison with Sakazaki454
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and Hamilton (2020). Except for the Kelvin mode, where the deviation455

is close to zero, the deviations are positive for the eastward modes and456

negative for the westward modes, with one exception (Rossby mode with457

wavenumber 1). The zonal wavenumber dependence of the deviations for458

each mode obtained from the eigenvalue analysis of the present study is in459

good quantitative agreement with the results of the spectral analysis of the460

reanalysis data shown in Fig. 12(a, b) of Sakazaki and Hamilton (2020).461

As we will see in the next paragraph, this dependence can be understood462

to some extent as an effect of the Doppler shift due to the zonal flow.463

However, while the eastward modes, with the exception of the Kelvin modes,464

show an increase in deviation almost proportional to the zonal wavenumber,465

the westward modes show a dependence that is not linear, and for the 1st466

symmetric gravity and Rossby-gravity modes the wavenumber dependence467

is not even monotonic. Fig. 4468

Next, in order to clarify the cause of the zonal wavenumber dependence469

of the deviations shown in Fig. 4, we perform eigenvalue analysis by sep-470

arately assuming the latitudinal/vertical structure of the zonal mean wind471

and zonal mean temperature fields based on the reanalysis data. Figure 5472

shows the difference between the eigenfrequencies obtained from the eigen-473

value analysis for the zonal mean zonal wind but with the global mean474

temperature field and those obtained from the eigenvalue analysis without475
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the background wind but with the global mean temperature field. Similar476

to Fig. 4, the deviations are close to zero for Kelvin waves and, with one477

exception (westward 1st antisymmetric gravity mode with zonal wavenum-478

ber 1, the cause of which is discussed in subsection 4.1), positive for east-479

ward modes and negative for westward modes, which is considered to be480

an effect of the Doppler shift caused by mid-latitude westerly winds. The481

non-linear dependence of the deviation on the zonal wavenumber in the482

westward mode is also similar, although the value itself is different from483

the results in Fig. 4. However, there is a noticeable difference between the484

results shown in Fig. 5 and Fig. 4 in that in the former the deviation for485

the Rossby mode of wavenumber 1 is almost zero, so the positive deviation486

in the latter is not attributed to the zonal wind effect. Fig. 5487

The effect of the latitudinal/vertical structure of the zonal mean tem-488

perature field is shown in Fig. 6 without the effect of the zonal mean wind.489

Compared to Fig. 5, the deviations in Fig. 6 are small overall, indicating490

that the influence of the latitudinal variation of the temperature field is491

smaller than that of the zonal wind. From Fig. 6, it is clear that the lat-492

itudinal variation of the temperature field has the effect of increasing the493

eigenfrequencies of the Rossby modes, the cause of which will be discussed494

in subsection 4.2. Therefore, the deviation of the Rossby mode with zonal495

wavenumber 1 in Fig. 4 is positive because the effect of the latitudinal vari-496
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ation of the temperature field exceeds that of the zonal wind. Note that the497

deviations shown in Fig. 4 are roughly equal to the sum of those in Fig. 5498

and those in Fig. 6 for the Rossby and westward Rossby-gravity modes, but499

not for the other modes. The reason for this is discussed in subsection 4.3. Fig. 6500

Since eigenvalue analysis provides not only the eigenfrequencies but also501

the structures of the eigenmodes, we will now examine the structures of the502

eigenmodes obtained. Figure 7 shows the latitudinal structure of the abso-503

lute value of the surface pressure field of each mode obtained by the eigen-504

value analysis with the zonal mean zonal wind and temperature field based505

on the reanalysis data with the corresponding Hough function structures506

underlaid. Except for the Rossby and westward Rossby-gravity modes with507

large zonal wavenumber, the latitudinal structures obtained by the eigen-508

value analysis are almost identical to the Hough function structure. For509

the Rossby and westward Rossby-gravity modes with large zonal wavenum-510

ber, there appears an equatorial asymmetry and the bimodal peaks become511

closer to the equator compared to the corresponding Hough modes. These512

features are different from those shown in Fig. 9 of Sakazaki and Hamil-513

ton (2020), where the latitudinal structures for not only the Rossby and514

westward Rossby-gravity modes but also several gravity modes differ signif-515

icantly from the corresponding Hough functions. Fig. 7516

Next, we examine the vertical structure of the eigenmodes obtained. Fig-517
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ure 8 shows the vertical structures of the latitudinally averaged (|φ| < 20◦)518

geopotential fields for the eigenmodes obtained from the eigenvalue analysis519

with the zonal mean zonal wind and temperature field based on the reanal-520

ysis data. Here, the vertical profiles of amplitude and phase of each mode521

are calculated by (62) and (63). For the Kelvin modes, the gravity modes, Fig. 8522

and the eastward Rossby-gravity modes, the amplitude profiles almost fol-523

low the Lamb mode structure from 100 hPa to 5 hPa, and the phase is also524

almost constant below the 10 hPa level. However, the amplification factor525

of the amplitude with decreasing pressure is smaller than the Lamb mode526

structure below the 100 hPa level, which is also the case for the Rossby and527

westward Rossby-gravity modes. On the other hand, for the Rossby and the528

westward Rossby-gravity modes with zonal wavenumbers 3 and above, the529

amplitude does not increase monotonically with decreasing pressure, and530

the phase is strongly tilted to the west above the 100 hPa level. Except531

above the 5 hPa level, where the dissipative effects are strong, the vertical532

structure for each eigenmode shown in Fig. 8 is very similar to that of each533

eigenmode shown in Fig. 10 of Sakazaki and Hamilton (2020).534
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4. Discussion and additional analysis535

4.1 Effect of relative vorticity on the eigenfrequency536

The effect of the zonal wind on the eigenfrequency of each eigenmode537

depends on the type of eigenmode and its zonal wavenumber, as shown in538

Fig. 5. Referring also to Fig. 7, for most of the eigenmodes with large am-539

plitudes in the mid-latitudes, the deviations are positive for eastward modes540

and negative for westward modes, and the main cause of the deviations in541

Fig. 5 seems to be due to the Doppler shift of the mid-latitude westerlies542

in the troposphere. The deviations for the Kelvin modes are close to zero,543

which is thought to be due to the large amplitude in the tropics; namely544

the effects of tropical easterlies cancels out that of extratropical westerlies.545

Similarly, for the westward 1st symmetric gravity and westward Rossby-546

gravity modes, as the zonal wavenumber increases, the latitudinal structure547

of the eigenmode becomes more confined to the low-latitude region, which548

is thought to lead to the reduced susceptibility to mid-latitude westerlies549

and the non-monotonic wavenumber dependence observed for these modes.550

However, the deviation of the westward 1st antisymmetric gravity mode551

with zonal wavenumber 1 is positive, and this deviation cannot be explained552

by the effect of the Doppler shift due to the zonal wind alone.553

Then, in addition to the effect of the Doppler shift, the effect of relative554
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vorticity due to zonal winds should be considered. To see the effect of the555

relative vorticity associated with the zonal flow, an eigenvalue analysis is556

performed for the case where the terms in which the relative vorticity as-557

sociated with the zonal flow explicitly appears as − ∂
∂µ
(
√

1− µ2U) in (35)558

and (36) are eliminated, and the results are shown in Fig. 9. Note that this Fig. 9559

analysis does not neglect all terms that include the µ partial derivative of560

the basic zonal wind field, but only the relative vorticity of the basic field561

that contributes to the absolute vorticity. In Fig. 9, the deviations for the562

eastward modes are positive and those for the westward modes are nega-563

tive except when the deviations are very small, and the deviation for the564

westward 1st antisymmetric gravity mode with zonal wavenumber 1 is also565

negative. The signs of these deviations are now explained by the Doppler566

shift of the zonal winds. In other words, comparing Fig. 5 and Fig. 9, it can567

be seen that not only the effect of the Doppler shift, but also the effect of568

the relative vorticity of the zonal winds changes the eigenfrequencies, which569

is particularly evident as the positive deviation of the westward antisym-570

metric 1st gravity mode of wavenumber 1 seen in Fig. 5. The change in571

the frequency of the gravity modes caused by the effect of relative vorticity572

may be due to the fact that the effective Colioris parameter is the planetary573

vorticity plus half the relative vorticity in the dispersion relation for inertial574

gravity waves, as pointed out by Kunze (1985) and Jones (2005).575
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4.2 Mechanism for the change of the eigenfrequency due to576

the latitudinal temperature gradient577

Let us now consider the reasons why the eigenfrequency deviation is as578

shown in Fig. 6, where the zonal wind field is ignored and the latitudinal579

structure of the temperature field is taken into account. The influence of the580

latitudinal structure of the temperature field of the background field on the581

wave motion is considered to be not only through the temperature itself but582

also through the distribution of the Brunt-Väisälä frequency and through583

the distribution of the potential vorticity. As an effect of the temperature584

profile itself, as shown in Fig. 2, the temperature in the lower troposphere is585

naturally higher in the equatorial region than in the global mean, and this586

leads to the equivalent depth in the equatorial region being locally greater587

than that given by the global mean vertical temperature profile (this can588

be seen by comparing the global mean with the tropical mean for the Lamb589

mode in column H of Table 1 in Ishizaki et al., 2023), which can lead to the590

deviation of frequency for the Kelvin mode seen in Fig. 6, since it has a large591

amplitude at the low latitude. On the other hand, the effects through the592

distribution of the Brunt-Väisälä frequency and through the distribution of593

the potential vorticity are considered on the basis of Fig. 10, which shows594

both fields for the case where the vertical distribution of the global mean595

temperature is given and where the latitudinal structure of the tempera-596
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ture field is considered. In Fig. 10, the Brunt-Väisälä frequency is larger597

at low latitudes for altitudes below 300 hPa when the latitudinal/vertical598

structure of the temperature field is considered than when the global mean599

altitude distribution is given. This difference in the distribution of the600

Brunt-Väisälä frequencies may explain the large deviations for the frequen-601

cies of gravity modes and eastward Rossby-gravity modes with large zonal602

wavenumbers shown in Fig. 6. The frequencies of these modes increase as603

the zonal wavenumber increases, so it is not surprising that the deviations604

when considering the latitudinal dependence of temperature are also larger605

for those with larger zonal wavenumbers. However, since the latitudinal606

structures of these modes concentrate at lower latitudes with increasing607

zonal wavenumber, as shown in Fig. 7, these modes are more affected by608

the enhanced Brunt-Väisälä frequency in the equatorial region due to the609

latitudinal dependence of temperature, and the frequency of these modes610

may increase through the increase in restoring force. In addition, the ab-611

solute value of the latitudinal derivative of the PV distribution is larger at612

altitudes from 300 hPa to 100 hPa in the extratropics for the case with613

the latitudinal/vertical structure of the temperature field than for the case614

with the global mean temperature distribution. This difference in the PV615

gradient is considered to be the reason for the positive deviation for the616

Rossby and westward Rossby gravity modes, which is particularly large for617
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small zonal wavenumbers in Fig. 6, since the restoring force for these modes618

is increased by the enhanced β-effect. Fig. 10619

4.3 Considerations on the effect of deviations in the value of620

equivalent depth621

The above discussion has been made on Fig. 5 and Fig. 6, which show622

the results of evaluating the deviation of the natural frequency separately623

for the zonal wind field and the effect of the temperature field, respectively,624

and it should be noted that Fig. 4, which shows the deviation from the625

theoretical solution when both the zonal wind field and the temperature field626

are considered, is not necessarily the sum of the results of Fig. 5 and Fig. 6.627

This is not so much because the eigenvalues of the matrix do not respond628

linearly to the linear combination of the matrix itself, but rather because629

in Fig. 4 the reference is the theoretical solution for an equivalent depth of630

10 km according to Fig 12(a, b) of Sakazaki and Hamilton (2020), whereas631

in Figs. 5 and 6 the reference is the stationary atmosphere given a vertical632

profile of the global mean temperature field. Figure 11 is a redraw of Fig. 4 Fig. 11633

as the deviation from the case where the vertical profile of the global mean634

temperature is given, instead of the deviation from the theoretical solution635

at the equivalent depth of 10 km. Comparing the deviations between Fig. 11636

and Fig. 4, we see that they are roughly consistent for the Rossby and637
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westward Rossby-gravity modes, but for the Kelvin, gravity and eastward638

Rossby-gravity modes, the former is significantly larger than the latter. To639

consider the reasons for this discrepancy, let us examine the effect of setting640

the reference equivalent depth in Fig. 4 to 10 km. This 10 km setting follows641

Sakazaki and Hamilton (2020), which compared three reference equivalent642

depths of 9.5 km, 10.0 km and 10.5 km and concluded that the 10.0 km643

setting was most consistent with the results of the spectral analysis. It644

was also noted that for the Kelvin mode the deviation was close to zero645

when the reference equivalent depth was set to 10.0 km. However, the646

vertical profile of the global mean temperature used in the present study647

corresponds to that used to calculate the equivalent depth in the case of the648

long-term global average in column H of Table 1 of Ishizaki et al. (2023),649

and the equivalent depth for the Lamb mode calculated there was 9.91 km.650

Furthermore, as shown in column D of Table 1 of the present study, for the651

dissipation assumed here, the frequency of the Kelvin mode is about 1%652

lower than the theoretical value, even in an isothermal atmosphere, which653

can be regarded as the effective equivalent depth being slightly smaller due654

to dissipation. Taking these considerations into account, a comparison of655

the deviation of each mode in the case of a stationary atmosphere given the656

vertical profile of the global mean temperature with setting the reference657

equivalent depth for the LTE to 10 km and 9.8 km is shown in Fig. 12.658
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Figure 12 shows that the deviations for the Rossby modes and the westward659

Rossby-gravity modes are almost negligible whether the reference equivalent660

depth is set to 9.8 km or 10 km. However, for the high frequency modes, such661

as the Kelvin modes, the gravity modes and the eastward Rossby-gravity662

modes, the effect of changing the reference equivalent depth is large. Given663

the vertical profiles of the global mean temperature and the dissipation664

coefficients assumed in the present study, the effective equivalent depth is665

found to be about 9.8 km, because the deviation is close to zero even for666

these high frequency modes when the reference equivalent depth is set to667

9.8 km. From the above, it is clear that the difference between Fig. 11668

and Fig. 4 is caused by the fact that the effective equivalent depth in the669

present model is 9.8 km instead of 10 km, given the vertical profile of the670

global mean temperature. Since the effective equivalent depth can vary to671

some extent depending on the dissipation setting, the very good quantitative672

agreement between Fig. 4 in the present study and Fig. 12(a, b) of Sakazaki673

and Hamilton (2020) may mean that the dissipation used in the present674

study has the same degree of influence on the free oscillation modes as the675

dissipation in the model used in ERA5 and/or the dissipation existing in the676

real atmosphere. Note again that with respect to the Rossby and westward677

Rossby-gravity modes, the influence of the small differences in equivalent678

depth is negligible and does not interfere with the discussion already made679
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such that the effect of the latitudinal variation of the temperature field is680

larger than that of the zonal wind on the eigenfrequency of the Rossby mode681

with zonal wavenumber 1.682 Fig. 12

4.4 Mechanism for the distortion of vertical structures under683

the influence of background fields684

Let us now consider the determinants of the vertical structure of the685

eigenmodes. As shown in Fig. 8, the amplitude profiles of the Kelvin, grav-686

ity, and eastward Rossby-gravity modes almost follow the theoretical solu-687

tion of the Lamb mode under the assumption of an isothermal atmosphere.688

However, the rate of amplitude increase with increasing altitude is slightly689

lower in the upper levels above about 5 hPa where the dissipation of the690

model used in the present study is stronger, and in the lower levels below691

100 hPa. For these high-frequency modes, since they are relatively insen-692

sitive to zonal winds, the deviation of the vertical amplitude profile from693

the theoretical solution for an isothermal atmosphere can be approximately694

explained by the vertical temperature profile. In Ishizaki et al. (2023), the695

vertical structure equation in the absence of dissipation is solved by a shoot-696

ing method, given the same vertical profile of global mean temperature as697

used in the present study, to compute the equivalent depth and vertical698

structure for the Lamb and Pekeris modes, respectively. However, the ver-699
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tical structure shown there is the logarithmic pressure velocity scaled by700

the square root of the pressure, W , so to convert it to the geopotential701

perturbation profile corresponding to Fig. 8 in the present study, we should702

plot703 (
dW

dz
− W

2

)
ez/2 (64)

according to Eq. (4.2.6a) in Andrews et al. (1987), where z is the dimension-704

less logarithmic pressure coordinate as defined in section 2 of the present705

study. The resulting profile is shown in Fig. 13. Comparing Fig. 8 with706

Fig. 13, it can be seen that the feature of the vertical profiles of the ampli-707

tudes of the Kelvin, gravity, and eastward Rossby-gravity modes observed708

in Fig. 8, i.e., that they mostly follow the amplitude profile of the theoretical709

solution assuming an isothermal atmosphere, but that below the 100 hPa710

surface, the amplitude increase rate with height is smaller than that of the711

theoretical solution, is consistent with the solution obtained by the shooting712

method shown in Fig. 13. Note again, however, that the lower amplification713

rate above the 5 hPa surface seen in Fig. 8 is due to dissipation, which is714

not seen in the calculation of Fig. 13, which does not include dissipation,715

and should be compared with Fig. 2. Note also that in Fig. 13, the de-716

crease in the amplification rate above the 1 hPa surface is a reflection of717

the negative vertical temperature gradient, as is the case in the lower part718

below the 100 hPa surface. It can be understood that the amplification rate719
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with increasing altitude is smaller in regions where the vertical temperature720

gradient is negative, as follows. Considering equation (3) of Ishizaki et al.721

(2023) and (64), the amplification rate r of the geopotential disturbance722

with increasing dimensionless altitude z can be approximately expressed as,723

r =
1

2
−
√
−k2z (65)

where kz is the dimensionless complex vertical wavenumber, which is defined724

as,725

k2z =
1

g∗h∗

(
d(R∗T ∗)

dz
+ κR∗T ∗

)
− 1

4
, (66)

where T ∗(z) is the dimensional temperature of the background field. In726

(66), since g∗h∗ = γR∗T ∗ for an isothermal atmosphere, the amplification727

rate becomes728

r =
1

2
−
√

1

4
− κ

γ
=

1

2
−
√

1

4
− κ(1− κ) =

1

2
− 1

2
(1− 2κ) = κ. (67)

On the other hand, in regions where T ∗(z) is a decreasing function of z, the729

temperature gradient is found to have an effect in the direction of reducing730

the amplification rate.731 Fig. 13

Next, focusing on the vertical profile of the phase shown in Fig. 8, it is732

noticeable that for Rossby and Rossby-gravity modes at wavenumbers 3 and733

above, the phase is significantly tilted to the west with heights in the upper734

levels above 100 hPa. This large westward phase tilt is not observed in the735
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eigenvalue analysis performed to draw Fig. 6 when only the zonal wind is736

removed (not shown), so it is thought that the cause of this is mainly due737

to the latitudinal/vertical distribution of the zonal wind. In the following,738

we discuss qualitatively the effects of zonal flows on the phase structures739

of these modes. For simplicity, we follow Matsuno (1966) and assume that740

the dimensional eastward phase velocities of the 1st symmetric Rossby and741

Rossby-gravity modes in the equatorial beta-plane are expressed by the742

following equations, respectively.743

cR∗ = U∗(z)−
β∗

kx
2
∗

1

1 + 3
kx

2
∗lE

2
∗

, (68)

cRG∗ = U∗(z) +
1

2
β∗lE

2
∗

(
1−

√
1 +

4

(kx∗lE∗)2

)
, (69)

where kx∗ is the dimensional longitudinal wavenumber, β∗ = 2Ω∗/a∗, lE∗ =744

(g∗h∗)
1/4β

−1/2
∗ is the dimensional equatorial deformation radius, and U∗(z) is745

the background eastward wind speed, which we assume to be a function of z746

only. To be an eigenmode, the phase velocity must be constant independent747

of z, and since β∗ and kx∗ are constant, the local lE∗ must vary with z in748

the presence of the z-dependent background flow. Once the local lE∗ is749

determined in this way, the local g∗h∗ is obtained as g∗h∗ = lE
4
∗β

2
∗ , and then750

k2z is determined by (66). The vertical profile θ(z) of the phase relative to751

z = 0 for each mode is determined by numerically solving the following752
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initial value problem for the differential equation.753

∂θ

∂z
= Re(kz); θ(0) = 0, (70)

where Re(·) is the operation of taking the real part of a complex number. To754

determine kz from (66), we further assume that the structures of the modes755

we are now considering are sufficiently Lamb-mode-like at z = 0, and we set756

h∗ = 10 km at z = 0. Furthermore, if the right-hand side of (66) is positive,757

there remains some arbitrariness in how the sign of Re(kz) is determined, but758

we will adopt the negative sign as the solution where the energy propagates759

upwards. Figure 14 shows the vertical profiles of the Rossby and westward760

Rossby-gravity mode phases obtained in this way. Here, T ∗(z) and U∗(z)761

are given by averaging the reanalysis data 20◦N to 20◦S, and the numerical762

calculation of (70) is done by the classical 4th-order Runge-Kutta method763

with setting the increments of z as ∆z = − ln(10−3)/104. In Fig. 14, the764

phases are more tilted for larger zonal wavenumbers and for the westward765

Rossby-gravity mode than for the Rossby modes. The westward tilts are766

observed above 100 hPa, and this altitude coincides with the easterly region767

in the tropics shown in Fig. 2. These results are qualitatively consistent with768

Fig. 8 in the present study and Fig. 10 of Sakazaki and Hamilton (2020).769 Fig. 14

The effect of the zonal wind on the phase tilt of the modes discussed in770

the previous paragraph can be seen more clearly in the eigenvalue analysis771

for the case of a rigid-body rotating wind. Figure 15 shows the vertical772
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structure of the latitudinally averaged (|φ| < 20◦) geopotential disturbances773

for the eigenmodes obtained by the eigenvalue analysis using the vertical774

profile of the global mean temperature based on the reanalysis data and a775

rigid-body rotation wind defined as follows,776

U(φ, z) = ±∆Uz cos(φ), (71)

where, we set ∆U = 1
γ
× 2.5 m s−1. This means that if we take a dimen-777

sional log-pressure height as z∗ = H∗z and set H∗ = 1
γ
× 10 km, the wind778

speed at the equator increases by 0.25 m s−1 per 1 km of the log-pressure779

height. Figure 15 shows that for westerly rigid-body rotating winds, the780

phases of these modes do not change much with altitude, while for easterly781

winds, they tilt to the west with altitude, and the tilt is more pronounced782

for the larger wavenumber modes. Comparing the westerly and easterly783

cases, even if k2z < 0 and the phase does not change with height at the lower784

level, the vertical structure of the mode becomes wavy as k2z > 0 when the785

easterly wind increases with height, which together with the dissipation ef-786

fect in the upper region of the model leads to the westward phase tilt. It can787

also be understood that the degree of westward tilt in the case of easterly788

winds differs depending on the type of mode and the zonal wavenumber,789

since the value of kz differs for the same background wind. In Fig. 15, not790

only the phase but also the amplitude deviates from the Lamb mode struc-791

ture. Particularly in the case of westerly winds, the amplitudes decrease792
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with height for modes with large zonal wavenumbers. This is because k2z793

becomes negative and has a large absolute value for westerly winds, and the794

amplification rate calculated by (65) becomes negative. Note again, how-795

ever, that the effect of dissipation is stronger above 10 hPa. To summarize796

what has been discussed above, particularly for the Rossby-gravity mode797

and at larger zonal wavenumbers, in the easterly wind regions, the phase is798

tilted to the west and the amplitude is vertically amplified more than in the799

Lamb mode structure, while in the westerly wind regions, the phase remains800

almost constant and the amplitude is more evanescent. In Fig. 8, for the801

Rossby and westward Rossby-gravity modes with zonal wavenumber 3 or802

more, the phase is tiled to the west above about 100 hPa, and the amplitude803

does not increase monotonically with decreasing pressure. Considering the804

above analysis, the westward phase tilt is due to the easterly winds in the805

stratospheric equatorial regions, while the amplitude decay with decreasing806

pressure may be due to the strong mid-latitude westerlies.807 Fig. 15

4.5 Mechanism for the distortion of latitudinal structures un-808

der the influence of background fields809

Before closing this section, let us discuss the difference between the810

latitudinal structures obtained by the eigenvalue analysis and the Hough811

function structures. The Rossby and westward Rossby-gravity modes with812
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large zonal wavenumbers have slow phase velocities and are sensitive to the813

zonal wind, which can lead to changes in the latitudinal structures in the814

same way as the vertical structure has changed. To investigate the effect815

of the latitudinal profile of the zonal wind on the latitudinal structures of816

the eigenmodes, the eigenvalue analysis for the zonal wind at the 500 hPa817

surface based on the reanalysis data with a constant mean depth of 10818

km using the barotropic atmospheric model is performed according to the819

method of Kasahara (1980). Figure 16 shows the latitudinal structures of820

the geopotential disturbance for the Rossby and westward Rossby-gravity821

modes obtained by the eigenvalue analysis of the barotropic atmospheric822

model. For both types of eigenmodes, the absolute values of the amplitudes823

are larger in the northern hemisphere with notable differences at larger zonal824

wavenumbers. The characteristics of the amplitudes being larger in the825

northern hemisphere at larger zonal wavenumbers is consistent with Fig. 7,826

but the peaks of the amplitude becoming closer to the equator cannot be827

observed. Therefore, it seems necessary to consider not only the latitudinal828

profile of the zonal winds but also the vertical structure of the zonal winds829

in order to understand the amplitude concentration near the equator in the830

case of large wavenumbers of these modes, as seen in Fig. 7.831 Fig. 16
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5. Summary832

Inspired by the comprehensive detection of atmospheric free oscillation833

modes using the ERA5 reanalysis data by Sakazaki and Hamilton (2020),834

in the present study a linear eigenvalue analysis of the primitive equations835

was performed with the zonal mean wind and temperature fields based on836

the ERA5 data as the basic fields to investigate the effect of background837

fields on the atmospheric free oscillations with a Lamb mode-like vertical838

structure. Specifically, the primitive equations in the sigma coordinate were839

discretized for a given basic field uniform in longitude using a discretiza-840

tion of the three-dimensional spectral method according to Ishioka et al.841

(2022), with spherical harmonic expansion in the horizontal direction and842

Legendre polynomial expansion in the sigma direction. The equations were843

solved numerically as a matrix eigenvalue problem for each zonal wavenum-844

ber, and the eigenfrequencies and eigenvectors were obtained. Since such an845

eigenvalue analysis provides not only Lamb modes deformed by the back-846

ground field but also spurious eigenmodes due to the finite model top, we847

introduced a dissipative term in the model for linear eigenvalue analysis,848

and focusing on the vertical phase structure, latitudinal structure, eigenfre-849

quency, and decay rate in the time direction of each eigenmode, we extracted850

Lamb-mode-like solutions from these eigenmodes. The zonal mean of the851

ERA5 reanalysis data from 2011 to 2020 was used as the basic field for the852
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eigenvalue analysis. In addition, to evaluate the influence of the latitudi-853

nal/vertical structure of the zonal wind and temperature fields, eigenvalue854

analyses were also performed for the cases where the zonal wind was set855

to zero and where the vertical structure of the global mean temperature856

field was given as the temperature field for comparison. The eigenfrequen-857

cies of the eigenmodes obtained by eigenvalue analysis for the zonal mean858

wind and temperature field were in good agreement with those obtained859

by spectral analysis in Sakazaki and Hamilton (2020), indicating that the860

deviations of the eigenfrequencies obtained by the spectral analysis from861

those obtained by Laplace’s tidal equation at the equivalent depth of 10862

km, which is thought to be the typical equivalent depth of the Lamb mode863

for the real atmosphere, are mainly due to the zonal wind and temperature864

variations in the latitudinal and vertical directions. The effect of the zonal865

wind on the eigenfrequencies of the obtained modes was larger than that866

of the latitudinal variation of the temperature field for most eigenmodes,867

but this was not the case for the Rossby mode with zonal wavenumber 1,868

and for this mode, the effect of the latitudinal temperature variation was869

dominant. This result was in agreement with that of the spectral analysis870

of Sakazaki and Hamilton (2020) and the linear eigenvalue analysis of the871

shallow water equations of Kasahara (1980). The eigenvalue analysis also872

showed that the effect of the zonal wind on the eigenfrequencies includes not873
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only the Doppler shift effect, but also the effect of the latitudinal derivative874

of the zonal wind, i.e. the vorticity.875

The vertical structures of the geopotential disturbances of the eigen-876

modes obtained by the eigenvalue analysis were also in good agreement877

with those obtained in Sakazaki and Hamilton (2020), especially in the878

sense that two types of differences from the theoretical vertical structure879

of the Lamb mode for a stationary isothermal atmosphere were observed.880

One of these differences was that for most of the eigenmodes obtained, the881

amplitude amplification rate with increasing altitude was smaller than that882

of the theoretical Lamb mode solution below 100 hPa. This is due to the883

negative vertical temperature gradient in the troposphere. The other dif-884

ference was that for the Rossby and westward Rossby-gravity modes with885

large zonal wavenumbers, the phase was strongly tilted to the west above886

100 hPa and the amplitude decay was also observed over a wide range of887

altitudes. This phase tilt was qualitatively explained using the dispersion888

relation of the corresponding equatorial wave modes with assuming that the889

phase speed of each eigenmode should be independent of the altitude. That890

is, these modes with slow phase speeds must have a wavy vertical structure891

in the presence of a certain strength of the background easterly wind, while892

they must have more evanescent vertical structures in the westerly wind893

regions than that for the theoretical Lamb mode solution for a stationary894
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isothermal atmosphere. The effect of the background wind direction on895

the vertical structure of the eigenmodes was similarly explained by Salby896

(1981a, b) using the refractive index of the waves, and the explanation here897

is not necessarily brand new, but it is unique in that the phase structure898

was specifically calculated using dispersion relations and compared with the899

results of the eigenvalue analysis.900

The latitudinal structures of the surface pressure fields of the eigen-901

modes obtained by the eigenvalue analysis in the present study were almost902

identical to the structures of the corresponding Hough functions for Kelvin903

modes, gravity modes and eastward propagating Rossby-gravity modes as-904

suming an isothermal stationary atmosphere. However, for the westward905

Rossby-gravity modes and Rossby modes with slow phase speeds, i.e. large906

zonal wave numbers, obtained in the present study, the latitudinal distri-907

bution of their amplitudes deviated from the theoretical Hough function908

structure, the equatorial symmetry was broken, and the peaks were shifted909

more equatorward than in the Hough function case. In Sakazaki and Hamil-910

ton (2020), the latitudinal structure of the amplitudes of the eigenmodes911

extracted from the spectral analysis of the ERA5 data also showed differ-912

ences from the theoretically obtained structure of the Hough modes. The913

fact that the differences were large for the westward Rossby-gravity and914

the Rossby modes with large zonal wavenumbers was consistent with the915
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results of the present study, but the differences from the Hough modes in916

Sakazaki and Hamilton (2020) were much larger than those obtained in the917

present study. Moreover, the tendency for the amplitudes in the equatorial918

regions to be larger than those of the corresponding Hough modes was ob-919

served for several gravity modes in Sakazaki and Hamilton (2020), but no920

such difference was observed for the gravity modes obtained in the present921

study, and in this respect, too, the results of the present study were incon-922

sistent with those of the spectral analysis of Sakazaki and Hamilton (2020).923

This discrepancy may be due to the limited duration of the time window924

analyzed by Sakazaki and Hamilton (2020), or to contamination from other925

eigenmodes when the latitudinal structure of each mode was determined by926

regression in Sakazaki and Hamilton (2020), as well as to the influence of927

the topography and sea-land distribution in the real atmosphere.928

Finally, let us describe the advantages and points to note of the method929

of the eigenvalue analysis of the free oscillation modes in the present study930

in comparison with previous studies. In a sense, the method of the present931

study is an extension of the two-dimensional eigenvalue analysis for the932

barotropic atmospheric model of Kasahara (1980) to the three-dimensional933

primitive equations. Compared to methods such as Geisler and Dickinson934

(1976), Schoeberl and Clark (1980), and Salby (1981a, b), which searched for935

resonant solutions by determining the frequency of the forcing, the present936
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method has the advantage that individual eigenmodes can be obtained di-937

rectly at once, and even if there are several modes with close eigenfre-938

quencies, they can be extracted separately. On the other hand, a point939

to note of the eigenvalue analysis performed in the present study is that940

the model used in the present study is based on the formulation of the941

three-dimensional spectral method of Ishioka et al. (2022), which results942

in a coarse grid spacing in the upper layers. It is therefore not suitable943

for investigating the structure of free oscillations in the upper layers of the944

atmosphere. In addition, a weak dissipation was introduced in the present945

study to suppress spurious modes due to the finite model top, but this is946

only for convenience and does not properly correspond to the dissipation947

in the real atmosphere. Therefore, our future task will be to perform the948

eigenvalue analysis in a revised three-dimensional model with narrow grid949

spacing also up to the mesosphere with realistic dissipation and to investi-950

gate the frequencies and latitudinal/vertical structures of the Lamb modes951

affected by a background field. Such an eigenvalue analysis using the model952

capable of adequately resolving the higher atmospheric regions would allow953

the analysis of the eigenmodes corresponding to the Pekeris modes detected954

in Watanabe et al. (2022). Furthermore, in the present study the 10-year955

averaged zonal wind and temperature fields were used as the basic fields,956

but more complex latitudinal/vertical structures of the Lamb modes are ex-957
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pected, especially at the solstice condition as shown by Salby (1981b), when958

the north-south asymmetry of the basic fields is significant. Given such a959

background field, where a strong easterly wind appears in the mesosphere,960

critical layers for Rossby and westward Rossby-gravity modes will appear.961

In such cases, the eigenmode extraction method as proposed in the present962

study may not work well. Therefore, as our future work, we should perform963

an eigenvalue analysis with taking into account the seasonal dependence964

of the background field and, if necessary, modify the eigenmode extraction965

method to investigate the seasonal characteristics of the Lamb modes and966

compare them with those obtained in observational studies. (e.g. Sekido et967

al., 2024).968
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Fig. 1. The vertical profile of dissipation relaxation times introduced into
the eigenvalue analysis model.

64



Fig. 2. Distribution of temporally and zonally averaged zonal wind (con-
tours) and temperature (color shading) of the ERA5 monthly averaged
data from 2011 to 2020. The contour interval is 8 m s−1 (that of thick
line is 16 m s−1) and the dashed lines show negative values (i.e. west-
ward wind).
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Fig. 3. Dependence of the vertical structures of the latitudinally averaged
(|φ| < 20◦) geopotential fields of the zonal wavenumber 1 eigenmodes
obtained from the eigenvalue analysis on the dissipation term param-
eter when a stationary isothermal atmosphere at 243.90 K is used as
the background field. The amplitude of each mode as a function of the
pressure is plotted as curves, and the longitudinal phase is indicated
by points. (a): Kelvin mode, (b): the gravest equatorially symmetric
Rossby mode, (c) the gravest equatorially symmetric eastward gravity
mode, and (d): the westward Rossby-gravity mode. The labels indi-
cating the dissipation parameter sets (A–E) are the same as in Table
1. The color legend is shown in the figure. The theoretical vertical am-
plitude structures obtained from the vertical structure equation (VSE)
for the stationary isothermal atmosphere are also shown in the figure.
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Fig. 4. Deviations (∆f : vertical axis) between the eigenfrequencies ob-
tained from the eigenvalue analysis for the zonal mean zonal wind and
the zonal mean temperature field (fModel) and those obtained from the
Laplace tidal equation (LTE) at the equivalent depth of 10 km (fTheory).
The horizontal axis is the zonal wavenumber, with positive values in-
dicating eastward modes and negative values westward modes. (a): for
equatorially symmetric modes (Kelvin mode, 1st gravity mode, and
the gravest Rossby mode). (b): for equatorially antisymmetric modes
(Rossby-gravity mode and 1st gravity mode). The color legend is shown
in the figure.
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Fig. 5. Same as Fig. 4 except that the deviation between the eigenfrequen-
cies obtained from the eigenvalue analysis for the zonal mean zonal
wind but with the global mean temperature field (fWind) and those ob-
tained from the eigenvalue analysis without the background wind but
with the global mean temperature field (f0) is shown.
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Fig. 6. Same as Fig. 5 except that the deviation between the eigenfrequen-
cies obtained from the eigenvalue analysis without the background wind
but with the zonal mean temperature field (fTemp) and those obtained
from the eigenvalue analysis without the background wind but with the
global mean temperature field (f0) is shown.
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Fig. 7. Latitudinal structure of the absolute value of the surface pressure
field of each mode obtained by the eigenvalue analysis with the zonal
mean zonal wind and temperature field based on the reanalysis data
(orange curve). The corresponding Hough function structures obtained
by solving the Laplace tidal equation (LTE) with the equivalent depth
of 10 km are also underlaid (blue curve). The vertical axis is the lati-
tude and the horizontal axis is the amplitude (normalized so that the
maximum is the unity). The zonal wavenumbers (m) are shown at the
top of the figure and the mode types are shown at the left of the fig-
ure. Here, (each row from the top to the bottom), “2nd G.(S)” denotes
the 2nd symmetric gravity modes, “1st G.(S)” denotes the 1st symmet-
ric gravity modes, “K.(S)” indicates the Kelvin modes, “R.(S)” denotes
the (gravest) symmetric Rossby modes, “2nd G.(A-S)” denotes the 2nd
antisymmetric gravity modes, “1st G.(A-S)” denotes the 1st antisym-
metric gravity modes, and “R.-G.(A-S)” denotes the Rossby-gravity
modes.
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Fig. 8. Vertical structures of the latitudinally averaged (|φ| < 20◦) geopo-
tential fields for the eigenmodes obtained from the eigenvalue analysis
with the the zonal mean zonal wind and temperature field based on
the reanalysis data. The amplitude of each mode as a function of the
pressure is plotted as curves, and the longitudinal phase is indicated
by points. The vertical amplitude structure obtained from the vertical
structure equation (VSE) for a stationary isothermal atmosphere at
243.90 K (Lamb mode structure) are also plotted (black lines). Note
that since we are now considering eigenmodes, the amplitude profile is
meaningful, but the absolute value itself is not, so the amplitude of the
Lamb mode is set much smaller than the amplitudes of the eigenmodes
obtained. The mode types are shown at the top of the each panel. The
zonal wavenumbers (m) are indicated by different colors, the legend of
which is shown in each panel.
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Fig. 9. Same as Fig. 5 except that fWind are obtained by the eigenvalue anal-
ysis for the zonal mean zonal wind and the global mean temperature
field with the basic field of relative vorticity set to zero.
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Fig. 10. Distribution of the Ertel’s potential vorticity (contours) and the
Brunt-Väisälä frequency (color shading) for the zonal mean field with
the zonal wind neglected. (a): the case where the global mean field
is used as the temperature field. (b): the case where the latitudinal
structure of the temperature field is taken into account. Note that the
unit of the potential vorticity is 0.5× 106 m2Ks−1kg−1 and the contour
intervals are not even.
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Fig. 11. Same as Fig. 4 except that the deviation between the eigenfrequen-
cies obtained from the eigenvalue analysis for the zonal mean zonal
wind and temperature field (fModel) and those obtained from the eigen-
value analysis without the background wind but with the global mean
temperature field (f0) is shown.
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Fig. 12. Same as Fig. 4 except that the deviation between the eigenfrequen-
cies obtained from the eigenvalue analysis without the background wind
but with the global mean temperature field (f0) and those obtained
from the Laplace tidal equation (LTE) at the equivalent depth (h) of
9.8 km (fTheory) are plotted (closed dots). The deviation for the case
where fTheory is obtained at the equivalent depth of 10 km is also plot-
ted (open circles). Note that the range of the vertical axis is different
from that in Fig. 4, 5, 6, 9, and 11.
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Fig. 13. The vertical amplitude structure of the geopotential of Lamb mode
obtained by solving the vertical structure equation (VSE) under the
global mean temperature field (blue curve). That obtained for the
isothermal atmosphere is also plotted (black curve). Similar to Fig. 8,
the absolute value itself is not meaningful, so the amplitude profile for
the case of isothermal atmosphere (black curve) is set much smaller
than that for the case of global mean temperature filed (blue curve).
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Fig. 14. The vertical structures of the phase for the (a) Rossby and (b)
westward Rossby-gravity modes calculated by assuming that the fre-
quencies at any level, determined by the respective dispersion relation
in the equatorial β-plain approximation, are equal and using the latitu-
dinally averaged (|φ| < 20◦) zonal wind and temperature based on the
reanalysis data. The zonal wavenumbers (m) are indicated by different
colors, the legend of which is shown in each panel.
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Fig. 15. Same as Fig. 8 except that the vertical structures of the geopotential
disturbances for the Rossby and westward Rossby-gravity modes are
obtained by the eigenvalue analysis with the vertical profile of the global
mean temperature based on the reanalysis data and the rigid-body
rotation wind defined by (71). (a) and (b): case for the easterly rigid-
body rotation wind. (c) and (d): case for the westerly rigid-body
rotation wind.
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Fig. 16. Same as Fig. 7 except that the latitudinal structures plotted by the
orange curve are those of the geopotential fields obtained the eigenvalue
analysis for the 500 hPa surface zonal wind based on the reanalysis
data with the constant mean depth of 10 km using the barotropic at-
mospheric model, and those for only the Rossby and westward Rossby-
gravity modes are plotted.
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Table 1. Dependence of the eigenfrequencies (cpd) of the zonal wavenumber
1 eigenmodes obtained from the eigenvalue analysis on the dissipation
term parameter when a stationary isothermal atmosphere at 243.90 K
is used as the background field. Each row corresponds to the Kelvin
mode, the gravest equatorially symmetric eastward gravity mode, the
westward Rossby-gravity mode and the gravest equatorially symmet-
ric Rossby mode. Columns A–E represent different combinations of
dissipative parameters. A: σR = 1 × 10−2, αR∗ = 1 × 10−4 s−1; B:
σR = 1× 10−2, αR∗ = 1× 10−5 s−1; C: σR = 1× 10−3, αR∗ = 1× 10−4

s−1; D (the default setting): σR = 1 × 10−3, αR∗ = 1 × 10−5 s−1; E:
σR = 1, αR∗ = 0. The rightmost column shows the eigenfrequencies ob-
tained from the Laplace tidal equation (LTE) with an equivalent depth
of 10 km.

A B C D E LTE

Kelvin 0.7085 0.7240 0.7277 0.7326 0.7389 0.7403
Eastward gravity 2.5042 2.5351 2.5419 2.5521 2.5649 2.5684
Westward Rossby-gravity 0.8291 0.8384 0.8398 0.8421 0.8441 0.8445
Rossby 0.1866 0.1946 0.1954 0.1974 0.1990 0.1992
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