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31 Abstract

32

33 The objective of this study is to improve forecast accuracy by using low-precision 

34 floating-point arithmetic when performing ensemble weather forecasting. Low-precision 

35 floating-point arithmetic is reproduced using a software emulator developed to allow the 

36 mantissa bit length of floating-point numbers to be adjusted in one-bit increments. First, 

37 two different methods of generating an ensemble forecast using low-precision techniques 

38 were compared with a conventional ensemble-generation approach. For one, the 

39 precision of the initial conditions is reduced (called initial value ensemble), and for the 

40 other, the precision of the model calculations is reduced (called model ensemble). Then, 

41 it is found that the former technique is inadequate for generating sufficient ensemble 

42 spread, but the latter gives an ensemble spread comparable to the reference. In order to 

43 further evaluate the ensemble method using low-precision floating-point arithmetic in 

44 accordance with the model ensemble method, ensemble forecasting experiments were 

45 conducted in combination with the conventional ensemble method. As a result, the 

46 combined ensemble forecast had a higher spread evaluation index than the ensemble 

47 forecast using only the low-precision floating-point arithmetic and the conventional 

48 ensemble method. The reasons why the ensemble forecasts have higher index when 

49 incorporating low-precision floating-point ensemble methods are considered as follows: 

50 weather forecast models do not reproduce weather phenomena below the grid scale due 
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51 to their low spatio-temporal resolution, and some models incorporate statistical 

52 assumptions to reduce computational load, which suppress the random nature of weather 

53 phenomena rather than actual weather events. On the other hand, ensemble methods 

54 using low-precision floating-point arithmetic can compensate for this randomness, and 

55 thus are expected to have higher evaluation index. This suggests that low-precision 

56 floating-point arithmetic, implemented in hardware by using Field Programmable Gate-

57 Arrays (FPGAs) for example, may allow for faster operations without compromising 

58 forecast accuracy in ensemble forecasting.

59

60 Keywords  HPC; inexact computing; low-precision floating point numbers; ensemble 

61 weather forecasting
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63 1. Introduction

64 Recently, a numerical weather model is an application that requires both huge data and 

65 computational performance. Saving computational costs becomes a critical issue to the 

66 weather forecasting model. One of the methods for saving cost is to reduce the precision of 

67 a simulation, which is called inexact computing (Lingamneni et al. 2011). Prior research has 

68 investigated how to enable operations with reduced precision while taking into account bit 

69 errors associated with power savings and the errors caused by reducing the precision of 

70 operations. Inexact computing is essential for future high-performance computing (HPC) 

71 systems.

72 One of the methods of inexact computing is to reduce the precision of floating-point 

73 operations, i.e., to use low-precision floating-point numbers, such as single-precision 

74 floating-point numbers, to perform operations that are conventionally performed using 

75 double-precision floating-point numbers in numerical weather models. This method has 

76 already been used in various numerical weather models. For example, the Weather 

77 Research and Forecasting (WRF) model developed by the National Center for Atmospheric 

78 Research (NCAR) incorporates single-precision floating-point arithmetic into atmospheric 

79 model calculations. Mielikainen et al. (2012) switched to single-precision floating-point 

80 arithmetic when using a Graphic Processing Unit (GPU) accelerator and succeeded in 

81 accelerating the radiation model. Similarly, the Integrated Forecasting System (IFS) 

82 developed by the European Centre for Medium-Range Weather Forecasts (ECMWF) has 
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83 changed almost all variables used in weather forecasting from double-precision floating-

84 point numbers to single-precision floating-point numbers, improving total wall clock time by 

85 40% while not significantly degrading forecast accuracy (Vàňa et al. 2017). The Non-

86 hydrostatic Icosahederal Atmospheric Model (NICAM) also performs single-precision 

87 floating-point calculations to improve computational speed with little impact on 

88 computational accuracy (Nakano et al. 2018). In addition to other numerical models, an 

89 ocean model can also perform single-precision floating-point operations (Yamagishi and 

90 Matsumura 2016). They succeeded in using a GPU to perform mixed-precision calculations 

91 for ocean models, and achieved a 4.7-time improvement in execution speed over using only 

92 a CPU.

93 Previous studies have used complex models such as those used for weather forecasting, 

94 and it was unclear how much error could be introduced into these single-precision floating-

95 point calculations. Yamaura et al. (2019) theoretically calculated the magnitude of the 

96 rounding error that enters when the precision of floating-point operations is reduced and 

97 demonstrated it in a shallow water model. The point of that paper is that the rounding error 

98 behaves like a stochastic forcing term in the difference equation. This is an error that must 

99 occur in floating-point operations, and that if it accumulates, even mathematically stable 

100 solutions such as the geostrophic wind balance may diverge. Such errors may impact the 

101 numerical accuracy of a model simulation. But in the weather forecasting area, ensemble 

102 simulations provide an environment in which errors may be tolerated. Floating-point errors 
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103 may even be beneficial for the purposes of ensemble forecasting. According to the report of 

104 Japan Meteorological Agency (JMA), there are two ways to create ensemble members for 

105 ensemble forecasts (JMA 2016): one is to create individual ensemble members 

106 independently, and the other is to create ensemble members by giving perturbations (Table 

107 1). Each of these methods can be divided into three types: initial value ensemble, model 

108 ensemble, and boundary value ensemble, for a total of six methods. Give perturbations are 

109 mainly used for ensemble forecasting, especially for initial value ensemble methods. Local 

110 Ensemble Transform Kalman Filter (LETKF) is an extension of the Kalman filter, which 

111 combines observational data and model predictions to perform state estimation. It introduces 

112 initial perturbations according to the analysis error using a data assimilation method. 

113 Breeding Growth Mode (BGM) is given an appropriate disturbance in its initial state, and 

114 then allowed to evolve over time using the model. At this point, the growth of the perturbation 

115 is analyzed, and the perturbation is normalized at regular intervals to return the amplitude 

116 of the perturbation to its original size. This is then repeated to extract the main growth modes 

117 in the system. Singular Vector (SV) is a method for identifying the perturbation that causes 

118 the most efficient growth of the prediction error in the system. It analyzes how the initial 

119 perturbation evolves over time using linear approximation, and then adds the perturbation 

120 that grows the most. These methods create ensemble members by adding small 

121 disturbances to a certain initial state. On the other hand, there is also a method of adding 

122 perturbations during the time evolution of the model. Stochastically Perturbed 
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123 Parametrisation Tendencies (SPPT) aims to reflect the uncertainty of predictions by 

124 probabilistically representing the model errors associated with physical processes, and 

125 Stochastic Kinetic Energy Backscatter (SKEB) aims to reproduce the kinetic energy 

126 dissipated at the sub-grid scale. Sea Surface Temperature (SST) perturbation, a typical 

127 boundary value ensemble, is mainly used for long-term forecasts such as future climate 

128 predictions. It is less commonly used for short-term weather forecasting. When using 

129 floating-point arithmetic errors as an ensemble method, both initial value ensemble and 

130 model ensemble methods can be performed. In that case, which is more appropriate?

131 This study aims to answer the following two questions: (1) Is it possible to use the 

132 stochastic forcing that occurs when manipulating the mantissa bit length, as shown in 

133 Yamaura et al. (2019), in performing ensemble forecasting, and (2) if so, how can we use 

134 them efficiently? Reducing the precision of floating-point calculations is already being done 

135 at operational centers for weather forecasting (Rüdisühli et al. 2014, Lang et al. 2021), and 

136 this is done solely with the aim of reducing execution time. This research investigates the 

137 possibility of not only reducing execution time, but also improving the physical performance 

138 of ensemble forecasting. This paper is organized as follows. Section 2 describes the data 

139 used, numerical models, and experimental methods. Section 3 presents the experimental 

140 results. Section 4 describes a discussion of the results, and Section 5 presents a summary.

141

142 2. Data and Method
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143 This study adopts the regional model (RM) version 5.4.5 with the Scalable Computing for 

144 Advanced Library and Environment (SCALE), which is a weather infrastructure library 

145 developed and published by RIKEN (Nishizawa et al. 2015, Sato et al. 2015). SCALE-RM 

146 is a proven model that has already been used in many studies, not only for climate research 

147 applications but also as a weather forecasting model (Adachi et al. 2019, Honda et al. 2022a, 

148 b, Sueki et al. 2022, and Miyoshi et al. 2023). Initial values are created using the normal 

149 procedures implemented in SCALE-RM. SCALE-RM first reads in terrain and land use data 

150 from an external source (e.g., Global Land Cover Characteristics Data Base Version 2.0 

151 (GLCCv2) and Global 30 Arc-Second Elevation (GTOPO30) provided by U.S. Geological 

152 Survey) and interpolates it to the grid point coordinates in the computational domain. To 

153 create initial and boundary values, this topography and land use data is read in and the data 

154 set used for initial and boundary values is interpolated in the same way. Data that are 

155 important as forecast variables but not included in the objective analysis data set (e.g., 

156 atmospheric density) are calculated in the SCALE-RM initial value generation process using 

157 formulas that follow physics law. In the case of atmospheric density, calculations are 

158 performed assuming hydrostatic equilibrium.

159 To achieve arbitrary floating-point precision in this SCALE-RM, an emulator that rounds 

160 the bit length of the mantissa part was introduced. The emulator performs an operation to 

161 round the mantissa bits of floating-point numbers with sufficiently long mantissa bits to an 

162 arbitrary length for each operation. This rounding is based on the nearest-even rounding 

Page 8 of 40For Peer Review



8

163 specified in IEEE754, which can reproduce the floating-point arithmetic precision of the 

164 specified bit as long as the exponent bit does not overflow. This study uses this emulator to 

165 adjust the precision of floating-point operations at the software level. Specifically, the 

166 following is done: In the initial value ensemble method, the precision of the prognostic 

167 variables is reduced just before they are output to the file as initial and boundary data. On 

168 the other hand, in the case of the model ensemble method, the precision of the prognostic 

169 variables is reduced during the forecast calculation. SCALE-RM is divided into two modules: 

170 the dynamics module, which performs calculations based on geophysical fluid dynamics, 

171 and the physics module, which handles other physical processes. The physics module 

172 consists of six modules: turbulence closure, radiation, cloud microphysics, cumulus 

173 parameters, boundary layer, and surface modules. In each of these modules, an operation 

174 to shorten the mantissa bit lengths is implemented by overloading the operators and built-in 

175 functions for the prognostic variables so that the calculation does not break down by the 

176 emulation. And then, the precision of the calculation is reduced to an arbitrary level. Since 

177 this study is intended for short-term weather forecasting, the boundary value ensemble 

178 method is excluded.

179 This paragraph describes the settings that are common throughout the experiment. The 

180 computational domain for the SCALE-RM is shown in Figure 1. The computational domain 

181 is large enough to capture general synoptic-scale meteorological phenomena near Japan. 

182 The horizontal resolution is 18 km, the vertical layer is 40 layers, the time interval of one 

Page 9 of 40 For Peer Review



9

183 model step is 30 seconds, and the integration period is 5 days. Ensemble member data 

184 (EPSW) included in the JMA grid point value (JMA-GPV) dataset was employed to conduct 

185 the ensemble forecast experiments. This three-dimensional data includes three layers of 

186 850, 500, and 300 hPa for geopotential height, temperature, zonal winds, meridional winds, 

187 and relative humidity. As this data was insufficient for the vertical layer, SCALE-RM could 

188 not be run properly. So objective analysis values provided by JMA for other layers were 

189 adopted for the same time period. The two-dimensional data include surface pressure, mean 

190 sea level pressure, 10-meter-high zonal winds, 10-meter-high meridional winds, 2-meter-

191 high temperature, and 2-meter-high relative humidity. A total of 27 members were distributed 

192 for these ensemble data, ranging from -13 to +13 based on 0. This was used to create the 

193 initial and boundary data for the ensemble experiments in SCALE-RM. In this study, the 

194 ensemble experiment using only this EPSW data is referred to as a conventional ensemble 

195 method and will be used as a comparison for evaluating ensemble methods with rounding 

196 errors. Other settings that vary from experiment to experiment are described in the later 

197 sections.

198

199 3. Results

200 In this section, ensemble experiments will be conducted using emulators with arbitrarily 

201 adjustable precision, and the potential application of rounding errors to ensemble 

202 experiments will be examined. There are two types of ensemble experiments conducted in 
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203 this study: first, a comparison is made between the initial value ensemble condition and the 

204 model ensemble condition.  Second, ensemble experiments with rounding errors in the 

205 dynamics and physics modules of SCALE-RM will be conducted.

206 3.1 Comparing Initial value ensemble method with model ensemble method

207 First, to ascertain the effect of rounding errors in the initial and model ensembles, the 

208 following two types of experiments are compared: an experiment in which calculations are 

209 performed using initial value data with reduced mantissa bit lengths (Init-run), and an 

210 experiment in which calculations are performed using the same initial value data with 

211 reduced mantissa bit lengths within the model calculations (FPN-run). Next, the ensemble 

212 forecast experiment to be performed is described. Ensemble member 0 performs the 

213 calculation using double-precision floating-point numbers (mantissa bit length: 52 bits) as is. 

214 Ensemble members 1 through 8 are double-precision floating-point numbers with reduced 

215 mantissa bit lengths of 45, 40, 35, 30, 25, 20, 15, and 10 bits. 10 bits corresponds to a half-

216 precision floating-point number. The reduction in precision is applied only to the initial 

217 conditions in the Init-run, and is performed during the model calculation in the FPN-run. For 

218 comparison, I also perform an experiment (EPSW-run) using ensemble members produced 

219 by the JMA. The JMA ensemble data uses SV as a method for creating initial perturbations, 

220 and it is mainly used to efficiently express the uncertainty of the model with a small number 

221 of members. The SV is a method for calculating perturbations with large linear growth rates 

222 in the specified evaluation time and area, and it is one of the effective initial perturbation 
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223 creation methods for ensemble forecasts. Let's represent the state of the atmosphere as an 

224 𝑛-dimensional column vector 𝑋. The components of this vector are things like the 

225 temperature and wind speed at each location. If we define the function 𝑀 as taking the 

226 initial value 𝑋0 at time 0 and outputting the forecast value 𝑋𝑡 at time t, then numerical 

227 weather prediction can be expressed formally as 𝑋𝑡 = 𝑀(𝑋0). In this equation, if we consider 

228 the change in the forecast value 𝑋′𝑡 for the initial perturbation 𝑋′0, the relationship between 

229 the two is as follows,

230 𝑋′𝑡 = 𝑀 𝑋0 + 𝑋′0 ―𝑀(𝑋0) ≃
∂𝑀
∂𝑋0

𝑋′0 ≡ 𝑀𝑋′0.

231 Here, 𝑀 𝑋0 + 𝑋′0  is expanded in Taylor series and the higher-order terms of 𝑋′0 are 

232 ignored, and then 𝑋′𝑡 and 𝑋′0 are linearly connected. The ∂𝑀 ∂𝑋0 that appears in this 

233 formula is a square matrix of order 𝑛, which is composed of partial derivatives of the 

234 components of 𝑀 with respect to the components of 𝑋0, and is called a linear operator. 

235 This matrix is represented by 𝑴. The magnitude of the change in the initial and forecast 

236 values is defined by the norm, ‖𝑋′ ‖ = (𝑋′ ∙ 𝑋′), where the appropriate inner product is used, 

237 and the one with a large value of ‖𝑋′𝑡 ‖ ‖𝑋′0‖ is considered to be a change with high 

238 sensitivity. This maximum value problem is obtained by SV decomposition of the matrix 𝑴. 

239 The first SV, second SV, etc. are called in order of high sensitivity, and these correspond to 

240 the ensemble members.

241 The date of this initial condition is October 15, 2019 (Figure 2). At this time, there is a 

242 typical low-pressure system and front near Japan, which is a good sample for mid-latitude 
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243 weather forecasting. Compared to the EPSW-run results (Figs. 3a, d, and g), the Init-run 

244 results show very little variability even after 5 days of integration (Figs. 3b, e, and h). This 

245 indicates that even if rounding errors are mixed in the initial values, they have little effect on 

246 the ensemble forecast results. Although the precision of half-precision floating-point 

247 numbers has only about three decimal places, it suggests that even if the initial value 

248 contains this level of error, it will not result in an ensemble forecast with sufficient spread.

249 Why is there so little variation even if the initial value contains an error of the magnitude 

250 of a half-precision floating-point operation? It is due to the nature of rounding errors. Figure 

251 4 shows the frequency distribution of rounding error in the geostrophic wind equilibrium 

252 experiment conducted by Yamaura et al. (2019). They showed that the error grows even 

253 when given a geostrophic wind parameter that is mathematically in equilibrium. The 

254 frequency distribution of the rounding error was examined and found to be Gaussian. This 

255 can be explained by the central limit theorem, where the random variable follows a Gaussian 

256 distribution. It is shown that each rounding error is not determined by probability, but the set 

257 of errors behaves in a probabilistic manner. However, once an error with such a behavior is 

258 given as an initial value, it is not appropriate as an ensemble member. In a meteorological 

259 field, not just any wave will grow, but there are modes that are more likely to grow. For 

260 example, the BGM method, one of the initial value ensemble methods, creates ensemble 

261 members by inserting such growth-prone waves. To create a meaningful ensemble member 

262 with noise such as a Gaussian distribution requires a huge number of members. For this 
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263 reason, the application of rounding error to initial value ensemble would not be suitable.

264 On the other hand, the FPN-run results (Figs 3c, f, and i) show less variation than the 

265 results of the EPSW-run experiment, but more variation than the Init-run results. At the initial 

266 time, there is naturally no difference among the members of the FPN-run, since no operation 

267 is performed. After 2 days, there is a visible error, and after 5 days, the western edge of the 

268 Pacific High is still wavy. However, there are few contours that show large changes, and 

269 some of the fluctuations are small, suggesting that small rounding errors do not result in 

270 large fluctuations. To confirm this, the Root Mean Square Error (RMSE) of the geopotential 

271 height at 500 hPa at 5 days after the EPSW-run, Init-run, and FPN-run are shown for each 

272 member from 1 to 8 (Fig. 5). EPSW-run varies from member to member, but it is about 10 

273 gpm. The FPN-run is almost zero for members 1 to 6, about 2 gpm for member 7, and about 

274 14 gpm for member 8. This means that the RMSE of the FPN-run is about 20% of the EPSW-

275 run when the bit length of the mantissa part is limited to 15 bits, and the RMSE is about the 

276 same as the EPSW-run when the bit length is limited to 10 bits. This can be interpreted as 

277 the result of rounding errors added by floating-point arithmetic, which expanded the errors 

278 to the extent that they changed the geopotential height contours at 500 hPa. For the purpose 

279 of creating ensemble members by rounding errors, the model ensemble method is likely to 

280 be more suitable than the initial value ensemble method. Even from the perspective of 

281 calculation cost, the process of creating initial and boundary values is less demanding than 

282 the process of model prediction calculation. For this reason, FPN-run is likely to lead to a 
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283 reduction in calculation cost compared to Init-run. This FPN-run is examined in more detail 

284 in the next subsection. In addition, the temperature and water vapor at the 850 hPa and the 

285 wind in the upper levels were also investigated in the same way, but the conclusion is the 

286 same as for geopotential height (figure not shown).

287 3.2 Pursuit of model ensemble method

288 The results of the previous subsection indicate that the model ensemble method may be 

289 more suitable than the initial value ensemble method for creating ensemble members using 

290 rounding errors. In this subsection, I will analyze this model ensemble method in more detail 

291 by conducting the following ensemble experiments: (1) Ensemble experiments using EPSW 

292 dataset (EPSW-run), (2) Ensemble experiments using rounding errors (FPN-run), and (3) 

293 Ensemble experiments combining (1) and (2) (Comb-run). Here, ensemble member 0 of the 

294 JMA EPSW is commonly used in all experiments, which are control experiments without 

295 adjusting the precision of the floating-point number operations. In (1), experiments are 

296 conducted using ensemble members from -12 to +12 of the EPSW ensemble members 

297 created by the JMA. There are also -13 and +13 members distributed, but I only use 

298 members -12 to +12 so that 24 members in total are considered, consistent with experiments 

299 (2) and (3). In (2), as in the previous section, an ensemble experiment is performed using 

300 only the rounding error from the model ensemble method. However, it was found that the 

301 rounding error is not very effective unless it is as large as a half-precision floating-point 

302 number, so the ensemble members were created as follows: Since SCALE-RM can be 
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303 roughly divided into six physical schemes, seven members are created with rounding errors 

304 in the dynamics scheme and in each of the six physical schemes. In addition, a member that 

305 introduces rounding errors in all of them is created. In total, 8 types of members are obtained. 

306 To further increase the number of ensemble members, three types of mantissa bits are set: 

307 11-bit, 10-bit, and 9-bit. In other words, this corresponds to conducting 24 different ensemble 

308 forecast experiments. All initial and boundary values are the same as for ensemble member 

309 0. The following is the basis for choosing this configuration. First, I calculated the RMSE 

310 using the same method as in Figure 5, and confirmed that the values were close to the 

311 results obtained by the EPSW-run model. When the number of bits in the mantissa was 11-, 

312 10-, and 9-bit, the RMSE obtained was 9.23, 14.04, and 25.71, respectively. Since the 

313 RMSE of EPSW-run is around 8, I judged that a sufficiently large disturbance was given. In 

314 the case where the operation of reducing the mantissa bit lengths was applied to each 

315 module individually, the average RMSE values were 2.34, 2.86, and 4.75 for 11-, 10-, and 

316 9-bit, respectively. The RMSE values tended to be smaller than when applied to all modules, 

317 but they were larger than or equal to the RMSE of member 7 in Figure 5. Therefore, it was 

318 judged that it could be adopted as an ensemble member. Experiment (3) combines the 

319 methods in (1) and (2) and uses different data for initial and boundary values for each 

320 ensemble member, as in EPSW-run. The combination experiments are conducted using the 

321 same 24 different settings that adjust mantissa bit lengths of the floating-point number 

322 mentioned above.
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323 Figure 6 shows the horizontal distribution of geopotential heights on the 500 hPa for the 

324 5-day integrated ensemble forecast experiment starting at 00 UTC on October 15, 2019. 

325 The contours show the results of the objective analysis values from JMA-GPV data at that 

326 time. The shading indicates the difference from the objective analysis value of the ensemble 

327 mean. At first glance, it can be seen that none of the figures deviate significantly from the 

328 objective analysis values, indicating that the calculations were successful. At the initial time 

329 (Figs 6a, b, and c), the RMSE of the ensemble mean from the objective analysis values is 

330 almost the same for the EPSW-run, FPN-run, and Comb-run, and the ensemble spread 

331 (SPRD), which is calculated as the RMS distance from the ensemble mean, is zero for the 

332 FPN-run only. This is not surprising for the FPN-run, where there is no variation at the initial 

333 time in the experimental setup. Two days after the start of time integration (Figs. 6d, e, f), 

334 RMSE does not differ significantly among the three experiments, while SPRD shows 

335 differences. In this experiment, the EPSW-run has the smallest SPRD, followed by the FPN-

336 run, and the Comb-run has the largest SPRD. This trend continues 5 days after the start of 

337 time integration (Figs. 6g, h, and i), with the EPSW-run having the smallest SPRD and the 

338 Comb-run having the largest SPRD. It is obvious that a small RMSE is desirable, but what 

339 about SPRD? According to Takano (2002), SPRD tends to be underestimated in ensemble 

340 forecasts of numerical weather forecast models. In other words, a large SPRD tends to be 

341 desirable for ensemble forecasting. Here, Comb-run is the most favorable result.

342 Figure 7 shows the horizontal distribution of temperature on the 850 hPa. As in Fig. 6, the 
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343 contours show the objective analysis values at that time, and the shading indicates the 

344 deviation of the ensemble mean from the objective analysis values. The temperature in the 

345 lower troposphere is qualitatively similar to the change in geopotential height on the 500 hPa, 

346 with a tendency for improved SPRD and slightly smaller RMSE for Comb-run compared to 

347 EPSW-run. This result indicates that the rounding error by Comb-run affects not only the 

348 mid-troposphere but also the lower troposphere.

349 Figure 8 shows the horizontal distribution of zonal wind speeds on the 300 hPa. As in 

350 Figs. 6 and 7, the contours indicate the objective analysis values at that time, and the 

351 shading indicates the deviation from the objective analysis values of the ensemble mean. In 

352 the three experiments, there is also little qualitative change in the upper tropospheric zonal 

353 wind speeds. However, there is a difference compared to Figs. 6 and 7. Compared to the 

354 EPSW-run, the FPN-run results show a smaller SPRD, meaning that the variation due to the 

355 growth of rounding errors is smaller than the variation due to the conventional ensemble 

356 method. This suggests that the growth of rounding errors is not necessarily larger than the 

357 variation by the conventional ensemble method, but depends on the experimental setting 

358 and other factors. On the other hand, Comb-run has a larger value of SPRD and a smaller 

359 value of RMSE than the other two. This indicates that in ensemble forecasts, rounding error 

360 works in the direction of improving the conventional ensemble method in all troposphere.

361 The results in Figures 6 through 8 are for only one case, starting on October 15, 2019; it 

362 is not clear if the general result is that the Comb-run results have a smaller RMSE and larger 
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363 SPRD than the EPSW-run. It is also clear that the closer the RMSE is to zero, the better the 

364 forecast performance, but it is not obvious what spread of SPRD is optimal. Therefore, we 

365 will increase the number of ensemble forecasting cases and introduce a measure that can 

366 objectively evaluate the spread of the ensemble spread from the set of forecast results. The 

367 Spread Evaluation Index (R) by Takano (2002) is as follows:

368 𝑅 =
(𝑀 + 1)⟨𝑆2⟩
(𝑀 ― 1)⟨𝐸2

𝑀⟩
 ,

369 where 𝑀 is the number of ensemble members, 𝑆 is the ensemble spread, 𝐸𝑀 is the 

370 ensemble mean of RMSE, and the angle brackets mean multiple-case average treatment. 

371 The closer 𝑅 is to 1, the more reasonable the size of the ensemble spread is; greater than 

372 1 means the ensemble spread is oversized, and less than 1 means the ensemble spread is 

373 undersized.

374   Figure 9 shows the time evolution of the Spread Evaluation Index evaluated in terms of 

375 geopotential height at 500 hPa from the start to the end of time integration for 24 cases with 

376 initial values at 00 UTC on the 1st and 15th of each month in 2019. The horizontal axis 

377 indicates elapsed time and the vertical axis indicates the magnitude of Spread Evaluation 

378 Index. In all cases, the magnitude of the Index is less than 1, indicating that the ensemble 

379 spread is underestimated. In general, ensemble spread tends to be underestimated in 

380 ensemble forecasts, and R becomes smaller than 1 (Takano 2002). Long-term weather 

381 forecasts by ECMWF underestimate the ensemble spread over several years, and short-

382 term weather forecasts by JMA intentionally overestimate the ensemble spread at the initial 

Page 19 of 40 For Peer Review



19

383 time in anticipation of the underestimation of the ensemble spread.

384   In both cases, the tendency of the weather forecast models to underestimate the 

385 ensemble spread remains unchanged, and is consistent with Fig. 9 in this study: for the 

386 EPSW-run, the magnitude of the index drops immediately after the start of time integration 

387 and reaches around 0.2 after 120 hours. For FPN-run, the ensemble spread is naturally zero 

388 at the initial time, and increases after the start of integration, and remains the same or higher 

389 than EPSW-run until 60 hours, after which it falls below EPSW-run. This suggests that 

390 although the size of the ensemble spread of FPN-run is similar to that of EPSW-run 

391 immediately after the start of integration, its growth rate is not very large, and the spread 

392 becomes worse than that of conventional ensemble methods when integrated over a long 

393 period of time. The Comb-run is equal to the EPSW-run at the initial time, and thereafter the 

394 size of the index is always larger than the EPSW-run until 120 hours later. This indicates 

395 that the conventional ensemble method is improved by incorporating rounding errors. This 

396 result is for the geopotential height at 500 hPa, but similar results can be obtained with 

397 Spread Evaluation index for other variables and altitudes (figure not shown).

398

399 4. Discussion

400 In the previous section, we found that ensemble experiments with large rounding errors 

401 during computation give RMSEs and ensemble spread variations that are close in 

402 magnitude to those of traditional initial value ensemble methods. Furthermore, it was found 
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403 that the combination of the methods can obtain a larger variance compared with the 

404 conventional initial value ensemble method. This section discusses three points: why adding 

405 rounding errors improves RMSE and ensemble spread variation, what the physical 

406 implications are when adding rounding errors, and what the advantages of rounding error 

407 ensemble methods are.

408 To understand why rounding errors improve ensemble forecast results, we first consider 

409 how rounding errors can be expressed. As shown in equation (1) in Yamaura et al. (2019), 

410 this can be expressed in the following form:

411 𝑝 = 𝑝(0) + 𝑝(𝜀) ,                              (1)

412 where 𝑝 is a variable expressed as a floating-point number on a computer, 𝑝(0) is the true 

413 value of the variable, and 𝑝(𝜀) is the rounding error. As can be seen from the equation, the 

414 floating-point number on the computer is expressed as the sum of the true value and the 

415 error. This is similar to the way random numbers are injected by the SPPT scheme; the 

416 format of SPPT is as follows:

417 𝑋𝑝 = (1 + 𝑟𝑋)𝑋𝑐 ,                              (2)

418 where 𝑋𝑝 is the variable given the perturbation, 𝑟𝑋 is a uniformly distributed random 

419 number in the range [-0.5:0.5], and 𝑋𝑐 is the variable before the perturbation. The SPPT 

420 scheme is related to the uncertainty in the existing parametrization scheme. This uncertainty 

421 is believed to be due to an underestimation of the subgrid-scale processes to be 

422 parametrized. Therefore, the SPPT scheme is a generalization of the existing subgrid-scale 
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423 parametrization output as a probability distribution (Palmer et al. 2009). Comparing equation 

424 (2) with equation (1), it is clear that they share the same process of adding random numbers. 

425 Also, 𝑝(𝜀) is correlated with the magnitude of 𝑝(0), and can be regarded as one of the 

426 variables that multiplies 𝑝(0) by a random number. In other words, the insertion of rounding 

427 errors can be considered a type of SPPT, and since the ensemble method with rounding 

428 errors works to compensate for the effects of subgrid-scale weather phenomena, it can be 

429 combined with conventional model ensemble methods to improve forecast results.

430 Considering the insertion of rounding errors as a kind of SPPT scheme, it is easy to 

431 imagine that the physical implications also follow. In other words, the discretized 

432 representation of weather phenomena on computer grid points reduces the information 

433 about the original phenomena somewhat, which leads to uncertainty. Corrections with 

434 random numbers have been introduced to mitigate such subgrid-scale effects. For example, 

435 the Reynolds-Averaged Navier-Stokes equations commonly used in meteorological 

436 calculations to calculate turbulence separate the flow field into mean flow and Reynolds 

437 stress, which is the turbulence from the mean flow. In order to represent the Reynolds stress, 

438 some approximation must be made, and this approximation operation results in missing 

439 information. It is thought that the introduction of a high-resolution and high-precision scheme 

440 will reduce the missing information, but it will not be possible to prevent it completely as long 

441 as the computational resources of computers are finite. This missing information leads to an 

442 underestimation of the ensemble spread of weather calculations compared to the expected 
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443 spread, and the correction by random numbers works to mitigate this. The same is true for 

444 other schemes besides turbulence.

445 This ensemble method of introducing rounding errors uses random numbers to introduce 

446 the effects of subgrid-scale weather phenomena. On the other hand, the method does not 

447 necessarily have to involve rounding errors. For example, you can achieve the same effect 

448 using pseudo-random numbers generated by software, but using a pseudo-random number 

449 generator requires additional computational costs. Using random numbers generated by a 

450 hardware random number generator would be less expensive, but in this case, it would be 

451 difficult to obtain reproducibility of random numbers. If the random numbers are not 

452 reproducible, it may hinder the investigation of the cause of a problem in the model. 

453 Therefore, the use of hardware random number generators is not a desirable choice. Based 

454 on these considerations, rounding errors have virtually no cost because they are generated 

455 automatically and they are reproducible. Low-precision floating-point arithmetic is also cost-

456 effective and thus provides numerical advantages. As a result of this study, ensemble 

457 forecast calculations using mixed precision calculations with double-, single-, and half-

458 precision are also meaningful, even if they are not arbitrary precision. In particular, the 

459 possibility of actively adopting half-precision calculations, which are often adjusted for 

460 artificial intelligence calculations, is considered to be very useful for future HPC systems. 

461 Furthermore, field programmable gate arrays (FPGAs) and other devices can be used to 

462 perform floating-point operations of various precision without loss. Rounding errors are only 
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463 noise in the pursuit of deterministic solutions, but they do not interfere with numerical 

464 calculations that require probabilistic interpretation, such as ensemble forecasting, and can 

465 contribute to improved and faster calculations if used properly.

466

467 5. Summary

468 The purpose of this study is to determine whether the rounding errors generated by low-

469 precision floating-point arithmetic can be used for ensemble members when making 

470 ensemble forecasts, and if so, how best to use them. Low-precision floating-point operations 

471 were reproduced using a software emulator developed to allow adjustment of the mantissa 

472 bits of floating-point numbers in one-bit increments. First, we evaluated ensemble methods 

473 based on rounding errors in accordance with both the initial value ensemble method and the 

474 model ensemble method. The rounding error ensemble method was found to be unsuitable 

475 for the initial value ensemble method because it acts like Gaussian noise and does not 

476 increase the ensemble spread very much. On the other hand, it was confirmed that the 

477 model ensemble method widens the ensemble spread to the same extent as the 

478 conventional ensemble method. This indicates that the model ensemble method is more 

479 suitable for treating rounding errors as ensemble members.

480 In order to further evaluate the ensemble method with rounding errors, I conducted an 

481 ensemble forecast experiment combining it with the conventional ensemble method. The 

482 results showed that the spread evaluation index was higher for the combined ensemble 
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483 forecast than for the ensemble forecast using either the conventional ensemble method or 

484 the ensemble method with rounding errors alone. This suggests that the accuracy of 

485 ensemble forecasts can be improved by incorporating model ensemble methods as well as 

486 conventional ensemble methods.

487 The following are possible reasons why incorporating ensemble methods with low-

488 precision floating-point arithmetic can result in higher ensemble forecast evaluation values. 

489 Weather forecast models have a lower spatio-temporal resolution than in reality, and thus 

490 are not able to reproduce weather phenomena below the grid scale. Some models 

491 incorporate statistical assumptions to reduce the computational burden, which suppress the 

492 random nature of weather phenomena more than actual weather events. On the other hand, 

493 model ensemble methods with rounding errors can compensate for this randomness. 

494 Therefore, it is expected to receive a higher rating by the Spread Evaluation Index.

495 The validation of this study was performed on a software emulator. This suggests that 

496 FPGAs can also be used to implement low-precision floating-point arithmetic on hardware, 

497 which may allow for faster operations in ensemble forecasts without compromising forecast 

498 accuracy. On the other hand, the problem is that it is not yet widespread to actually use an 

499 FPGA to program. When using OpenCL to use an FPGA, it is necessary to use C/C++ rather 

500 than Fortran, which has long been used in the field of fluid dynamics. That is, it is not possible 

501 to use the existing libraries for meteorological programs as they are. Therefore, the barrier 

502 to actually creating a meteorological model using an FPGA is high, and how much it can be 
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503 sped up will be a future issue.

504

505 Data Availability Statement

506 Scalable computing for Advanced Library and Environment (SCALE) and its regional 

507 model (RM) are distributed with open-source license (https://scale.riken.jp/). However, the 

508 experimental data is very large in file size and not suitable for distribution, so contact the 

509 corresponding author.
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Fig. 1  Computational domain where SCALE-RM was performed in this study (shaded). 

279x215mm (100 x 100 DPI) 

Page 31 of 40 For Peer Review



 

Fig. 2  Surface weather map around Japan at Oct 15, 2019. 
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Fig. 3  Geopotential height at 500 hPa for the 5-day integration ensemble forecast experiment starting at 00 
UTC on October 15, 2019. Contour intervals are 100 gpm; top row (a, b, c) represent initial time, middle 

row (d, e, f) represent 2 days after the start of integration, and bottom row (g, h, i) represent results from 
ensemble members 0 to 8 after 5 days of integration. The left column (a, d, g) shows the results of the 

EPSW-run, the middle column (b, e, h) the Init-run, and the right column (c, f, i) the FPN-run. 
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Fig. 4  Frequency distribution of the magnitude of rounding errors that occur during geostrophic wind 
equilibrium experiments based on Yamaura et al. (2019). The vertical axis shows the number of pieces and 

the horizontal axis shows the magnitude of the rounding error normalized by the standard deviation. 
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Fig. 5  RMSE with respect to ensemble member 0 after 5 days in a 5-day integration experiment starting at 
00 UTC on October 15, 2019. The vertical axis represents the magnitude of the RMSE and the horizontal 
axis represents the member number. Solid lines indicate the results of the EPSW-run, dotted lines the 

results of the Init-run, and dashed lines the results of the FPN-run. 
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Fig. 6  Geopotential heights at 500 hPa for the 5-day integrated ensemble forecast experiment starting at 00 
UTC on October 15, 2019. The contours show the results of objective analysis values from JMA-GPV at that 

time and are common in all figures. The contour interval is 100 gpm, and the shading indicates the 
difference of the ensemble mean from the objective analysis values. The top row (a, b, c) represents the 

initial time, the middle row (d, e, f) represents 2 days after the start of integration, and the bottom row (g, 
h, i) represents 5 days after the start of integration. The left columns (a, d, g) show the results of the 
EPSW-run, the middle columns (b, e, h) the FPN-run, and the right columns (c, f, i) the Comb-run. The 

RMSE and ensemble spread in each figure are listed at the top of the figure. 

279x215mm (100 x 100 DPI) 

Page 36 of 40For Peer Review



 

Fig. 7  Same as Figure 6, but for temperature at 850 hPa. The contour interval is 5 K. 
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Fig. 8  Same as Figure 6, but for zonal winds at 300 hPa. The contour interval is 10 ms-1. 
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Fig. 9  Spread Evaluation Index (see text) evaluated in terms of geopotential height at 500 hPa from the 
start to the end of time integration for 24 cases with initial values at 00 UTC on the 1st and 15th of each 
month in 2019. The horizontal axis indicates elapsed time and the vertical axis indicates the magnitude of 
Spread Evaluation Index. Solid lines indicate results for the EPSW-run, dotted lines for the FPN-run, and 

dashed lines for the Comb-run. 
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Table 1  Often using ensemble type for weather forecasting simulations (Japan Meteorological Agency 2016). 
Their respective abbreviations are as follows: Lagged-Average Forecasting (LAF), Random Parameter 

scheme (RP), Ensemble Kalman Filter (EnKF), Local Ensemble Transform Kalman Filter (LETKF), Empirical 
Orthogonal Function (EOF), Local Ensemble Transform (Local ET), Breeding Growth Mode (BGM), Singular 

Vector (SV), Stochastically Perturbed Parametrisation Tendencies (SPPT), Stochastic Kinetic Energy 
Backscatter (SKEB), Stochastic Total Tendency Perturbation (STTP). 
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