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31 Abstract

32

33 This study reports the correction methods of a newly introduced upper-air radiosonde 

34 instrument, “Storm Tracker” (ST), with more than one thousand co-launches of ST and 

35 Vaisala RS41-SGP (VS) data in field observations in the Taiwan area during 2016–2022. 

36 The co-launches provided more than a million comparable independent observations of 

37 wind, pressure, temperature, and humidity (PTU) data. Using the VS measurements as 

38 the reference, we use the statistical models, including the cumulative distribution function 

39 (CDF) matching method and generalized linear model (GLM), to correct the temperature 

40 and moisture fields of the ST sounding. Both approaches yield similar results. With a 

41 sounding-by-sounding comparison, the CDF-corrected ST soundings have a 1-K 

42 temperature and 7% relative humidity root mean square difference from the VS soundings. 

43 These error differences can be reduced to 0.66-K and 4.61% below the 700-hPa height. 

44 The GPS estimated a 0.05 ms-1 ST wind difference from the VS sounding. The biases of 

45 the corrected ST observations are slightly larger than the random errors, which were 0.24 

46 K and 2.21% in the laboratory and 0.52 K and 2.23% in the field. The lower atmosphere 

47 in a region of complex terrain may have large wind, temperature, and moisture variations. 

48 With the relatively low cost, a high proportion of successful launches, and accuracy of 

49 wind, temperature, and moisture, ST can complement regular upper-air radiosonde 

50 observations for high-resolution observations in the lower troposphere. The high-
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51 resolution lower troposphere observation is important for severe weather research in East 

52 Asia.

53 Keywords boundary layer; upper-air radiosonde observation; field campaign; data quality 

54 control and correction
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56 1. Introduction

57 Upper-air radiosondes are one of the most important meteorological instruments 

58 for observing vertical profiles of atmospheric data at various altitudes. The measured 

59 pressure, temperature, and relative humidity (so-called “PTU”) data aids in weather 

60 forecasting, climate research, and the study of atmospheric dynamics. However, upper-air 

61 radiosondes are subject to certain biases due to instrument calibration, ascent rates, and 

62 environmental conditions. Collins (2001) distinguished the radiosonde observational errors 

63 into three types: random, rough, and systematic. According to Collins (2001), random error 

64 is caused by small-scale turbulence or unsystematic observational errors, and it is 

65 impossible to correct. The rough error can be introduced from observational protocol, 

66 computational error for data processing, or communication-related error. A properly defined 

67 operational procedure and automatic quality control process can minimize such errors. The 

68 third type of error, systematic error, is caused by insufficiencies in measurement devices or 

69 data processing procedures and persists in all observational data. This type of error can be 

70 detected and calibrated with statistical methods.

71 Nowadays, commercial radiosondes are often tested and corrected regarding 

72 these biases. However, they are typically characterized by their higher weight and cost, 

73 which limit the deployment of scientific field campaigns. The independently developed mini-

74 radiosonde system – the “Storm Tracker (referred to as the ST, Figure 1b)” was created and 

75 first tested in 2016 (Hwang et al., 2020). The ST consists of a microcontroller 
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76 (ATMEGA328p), a GPS sensor (U-blox MAX7-Q), a pressure sensor (Bosch BMP280), a 

77 temperature–humidity sensor (TE-Connectivity HTU21D), and a transmitter (LoRa™). The 

78 sensors have an overall operation range from 1100 to 300 hPa in pressure and from -40℃ 

79 to 85℃ in temperature. The ST used a regular AAA battery for 2-4 hours of power; the total 

80 weight was 20g. More detailed hardware specifications can be found in Hwang et al., 2020. 

81 The design of ST aimed to leverage the low cost of sensors used in commercial electronics 

82 to enable high-frequency observations in the boundary layer. In addition, the receiver was 

83 designed to receive up to ten STs simultaneously. With such agility, using ST to gather 

84 supplemental data between regular sounding was ideal.

85 The ST was then put into intensive field observation operations for the first time 

86 during the Taipei Summer Storm Experiment (TASSE) in 2018–2020. The main goal of the 

87 field campaign is to investigate the thermal characteristics of the boundary layer in the Taipei 

88 Basin and local wind field variations to improve the forecasting ability of afternoon 

89 convection in the metropolitan area. Three advantages of using the ST for atmospheric field 

90 research were learned. First, the weight of ST with a battery is 20g, which helps to reduce 

91 the helium/hydrogen usage. Second, the commercial sensors, chips, and signal 

92 transmission components in the ST significantly reduce the cost and provide flexibility for 

93 multiple deployments and high spatial and temporal resolution observations. Lastly, the ST 

94 is easy to set up and can be quickly deployed or even mobile, which provides adaptability 

95 for different research needs and broadens the possibility for field campaign design.
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96 The early work of ST by Hwang and colleagues (2020) showed an overall warm 

97 and dry bias in the troposphere compared to the VS, as shown in their figure 13. During 

98 TASSE, we discovered similar bias patterns and a typical example is shown in Figure 2. 

99 These common bias patterns motivated us to design a systematic approach to improve the 

100 data quality of ST. Our correction methods seek to align ST measurements as closely as 

101 possible with VS, enabling researchers to perform high-frequency, high-spatial resolution 

102 observations using ST with greater confidence and accuracy. 

103

104 Many prior studies have recognized these biases and suggested that solar 

105 radiation can induce warm and dry bias for radiosonde measurements (Vömel et al. 2007). 

106 Similar daytime warm and dry biases have been reported in previous field experiments 

107 around the world that used relatively mature radiosonde systems (e.g., Wang et al., 2002; 

108 Ciesielski et al., 2009; Yu et al., 2015). Earlier studies indicated that radiosonde temperature 

109 biases are primarily contributed by radiative effects, with a minor proportion caused by the 

110 sensor response lag of the changing of temperatures as the radiosonde rises (e.g., McMillin 

111 et al., 1992; Sun et al., 2013).

112 The daytime temperature bias induced by solar heating was identified with various 

113 radiosonde systems (e.g., Luers, 1989, 1997; Luers and Eskridge, 1998; Sun et al., 2013; 

114 Lee et al., 2022; von Rohden et al., 2022). Their findings resulted in special surface coating 

115 over temperature sensors in most commercial radiosondes. Even though environmental 
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116 parameters can still affect the observed temperature, all factors influencing radiative or 

117 sensible heat flux around the sensor, such as the sensor surface temperature, solar angle, 

118 cloud fraction, and ventilation velocity, can cause the sensor temperature bias (e.g., McMillin 

119 et al., 1992; Luers and Eskridge, 1995; Mattioli et al., 2007; Lee et al., 2022). Luers and 

120 Eskridge (1998) evaluated the impact of the environmental parameters on the radiosonde 

121 in detail. Their results suggested that the temperature bias is most sensitive to solar angle, 

122 while the cloud cover has a slight impact. Also, the ventilation effect may cause bias when 

123 the sensor is in the balloon wake zone. To study the source of bias under a controlled 

124 environment, von Rohden et al. (2022) presented the Simulator for the Investigation of Solar 

125 Temperature Error of Radiosondes (SISTER), and Lee et al. (2022) proposed the Upper Air 

126 Simulator (UAS), which allows precise control over temperature, pressure, ventilation, and 

127 irradiation. Such advanced setups can help researchers measure the measurement errors 

128 more accurately and verify the cause of the errors.

129 In addition to temperature bias, the humidity bias has been discussed in many 

130 studies (e.g., Vömel et al., 2007; Yoneyama et al., 2008; Nuret et al., 2008; Kizu et al., 2018; 

131 Lee et al., 2022; Sommer et al., 2023). Vömel et al. (2007) found that the solar-heating-

132 induced dry bias increased with altitude in the troposphere, which means the humidity bias 

133 also depended on the temperature. This resulted in the relative humidity (RH) measured in 

134 the low-temperature environment being less accurate (Miloshevich et al., 2001). Miloshevich 

135 et al. (2004) also pointed out that the response delay in humidity sensors could cause 

Page 7 of 61 For Peer Review



7

136 measurement errors at low temperatures. The influence of these biases could be huge. For 

137 example, in the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response 

138 Experiment (TOGA COARE,1992-1993), scientists have reported the observational error 

139 induced an unrealistically dry boundary layer and caused an underestimate of convective 

140 available potential energy (CAPE) (Miller et al., 1999; Lucas and Zipser, 2000). Although the 

141 primary observation targets of ST are the lower troposphere environmental conditions, we 

142 still noticed significant warm and dry deviations in the near-surface boundary layer in TASSE 

143 (Figure 2).

144 Many studies have attempted to remedy the systematic error in radiosonde data 

145 with statistical methods. Lesht and Richardson (2002) mentioned that Vaisala accounts for 

146 the sensitivity of the RH sensor to temperature by using a high-order polynomial function 

147 with empirical coefficients. Yoneyama et al. (2008) applied a polynomial fitting function of 

148 pressure for the relative difference of RH and used the solar zenith angle as a factor for bias 

149 corrections. Other studies leveraged the thermodynamic equation and provided the 

150 temperature correction table with empirical correction factors (Wang et al., 2013; Dzambo 

151 et al., 2016).

152 In past field campaigns, scientists have also developed statistical models of 

153 humidity correction based on probability matching. For example, Ciesielski et al. (2009) used 

154 the cumulative distribution function (CDF) matching method to correct the humidity bias for 

155 nearby soundings. The advantage of the CDF-based calibration method is that the 
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156 calibration procedure is fast and straightforward. Building the correction table requires 

157 sufficient data to represent the statistical characteristics and questionable data can be 

158 adjusted to match the same distribution. The basic concept of the CDF matching calibration 

159 method is assuming the ambient atmospheric conditions are similar for all observation sites. 

160 In most field campaigns, the spatial distribution of upper-air radiosonde sites mostly satisfied 

161 such requirements, and hence, this method can efficiently adjust the data bias for most 

162 atmospheric conditions. However, such assumptions limit the generalizability of the CDF 

163 calibration models. Thus, the CDF models may not be directly applied to the data collected 

164 from different weather conditions, seasons, or climate regions with smaller sample sizes.

165  In this study, we focused on the calibration process of systematic error for ST 

166 temperature and moisture observations using the co-launch VS data. We use the co-launch 

167 data collected across several field campaigns in Taiwan to develop calibration methods for 

168 ST.  Here, we proposed and evaluated two different calibration approaches. First, we 

169 followed the widely used CDF-matching approach and proposed a two-step CDF-based 

170 calibration scheme. Secondly, we incorporated the CDF-matching approach with modeling 

171 multivariate distributions, the central concept of machine learning, to introduce a novel 

172 correction method based on the generalized linear model (GLM). While the CDF approach 

173 discretized continuous variables, e.g., pressure and temperature, into bins to establish look-

174 up tables, the machine-learning approach modeled a high-dimensional joint probability 

175 distribution with the same variables in their original forms. The latter approach allowed us to 

Page 9 of 61 For Peer Review



9

176 compress complicated look-up tables into a unified mathematical representation. Hence, we 

177 can adjust the models more easily for better performance, robustness, and generalizability.

178 Section 2 describes the co-launched radiosonde data and the pre-processing. 

179 Section 3 focuses on the data correction algorithms, and data calibration processing flow. 

180 Section 4 summarizes the ST calibration results and compares them to the benchmark. 

181 Finally, Section 5 discusses the feature importance analysis and other calibration issues, 

182 and Section 6 presents the conclusions.

183

184 2. Data and Preprocessing

185 2.1 Data Collection

186 In the previous years since 2018, we have co-launched the ST with the Central 

187 Weather Administration (CWA) operational Vaisala RS41-SGP radiosonde (Figure 1c). The 

188 co-launch was conducted during field campaigns in the Taiwan area, including the Taipei 

189 Summer Storm Experiment (TASSE), the Yilan Experiment of Severe Rainfall (YESR2020), 

190 the Taiwan-Area Heavy Rain Observation and Prediction Experiment (TAHOPE), the 

191 Northern Coast Observation, Verification, and Investigation of Dynamics (NoCOVID21), and 

192 the Mountain Cloud Climatology (MCC) project, We collected 1,029 co-launches of ST and 

193 VS from these field campaigns during 2018–2022. These co-launches provided more than 

194 1,000,000 comparable independent observations of wind, pressure, temperature, and 

195 humidity (PTU) data. The co-launches of each campaign are summarized in Table 1, and 
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196 the geographic locations of the co-launch sites are shown in Figure 3.

197 In 2018 and 2019, based on the scientific goals of TASSE, we established a 

198 standardized procedure for the co-launches, and the observations were primarily conducted 

199 in the daytime. Once the observational procedure matured, we performed the day and night 

200 co-launches evenly in 2020, 2021, and 2022. (Table 2). Eventually, we collected 625 

201 daytime cases and 404 nighttime cases. Also, the pilot experiments were conducted in the 

202 summer, and in the latter field experiments, we performed the co-launches in other months. 

203 Though there were more cases in July and August, we still conducted at least 21 co-

204 launches in May. As for the location, most co-launches were conducted at the Taipei weather 

205 station, while about 150 cases were in other cities in Taiwan. In these 1,029 co-launches, 

206 all STs successfully launched, and only 7 stopped sending signals after 300 seconds. The 

207 ST, designed with commercial hardware components, is reliable in field observations.

208 Note that the binding of ST and VS shown in Figure 1c differs from the instruments 

209 used in the Report of WMO’s 2022 Upper-Air Instrument Intercomparison Campaign (IOM-

210 143). The IOM-143 can be categorized into in-laboratory and in-field campaigns. The 

211 laboratory calibration techniques focus on understanding each instrument's characteristics 

212 regarding random errors, low-temperature performance, and solar radiation sensitivity. The 

213 field campaign calibration techniques emphasize ground checks. A major goal is to evaluate 

214 the observation difference between the radiosonde systems, including the VS. 

215 The IOM-143 used a rig to hold multiple instruments together while avoiding 
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216 interferences from ventilation and signals. Accordingly, the simple binding in our study may 

217 increase the random difference between ST and VS. However, this study aims to develop 

218 correction methods for ST to behave as close to VS as possible. Our simple binding co-

219 launches in a consistent manner for several years are the only data we have. As presented 

220 in the following session, the biases of the corrected ST observations are slightly larger than 

221 the random errors. Hence, we used a relatively simple binding design in the co-launches 

222 before 2023. Future binding co-launches will be conducted according to the WMO standard.

223

224 2.2 Pre-processing of the co-launch data

225 The ST is with the wind estimated from GPS. We analyzed the difference in wind 

226 variables with the paired data of VS and ST. The mean deviation in zonal and meridional 

227 wind components, u and v, are 0.04 and 0.03 ms-1, respectively. The difference may come 

228 from the time lag of GPS signals between two sensors, which is small enough to ignore. In 

229 this paper, we emphasize the correction of temperature and humidity calibration.

230 The co-launch's primary purpose is to understand ST's performance further and 

231 develop a data correction scheme to approximate the VS’s observations. The raw data 

232 collected often contains inconsistencies, inaccuracies, and outliers that can significantly 

233 distort analytical results and impede the accuracy of predictive modeling. Therefore, we 

234 need a proper procedure to process the raw data. 

235 In the work of Ciesielski et al. (2012), the authors suggested four stages for 
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236 developing research-quality radiosonde data (their figure 1). The first level requires a single 

237 unified data format. The second stage uses automated tools to remove unreliable data 

238 based on prior knowledge of quality control (QC) checks. Then, data biases are detected 

239 and corrected in the third level based on analysis or statistical methods. Finally, the fourth 

240 level dataset aims to be user-friendly, usually in uniform vertical resolution with QC flags.

241 Following the framework proposed by Ciesielski et al. (2012), our data correction 

242 method is applied in the third stage. Hence, we need a pre-processing scheme to derive a 

243 level 2 dataset from the raw co-launch data.

244 Figure 4 illustrates the preprocessing used in this study. In the first stage, we 

245 paired each ST and VS observation by nominal observation time and stored them in the 

246 same plain-text format, L1_ST and L1_VS. Then, in the second stage, we corrected known 

247 errors for both sensors, including missing values and outliers. After this stage, we derived 

248 the level 2 dataset, L2_ST and L2_VS. Finally, given the fact that both ST and VS 

249 radiosondes are attached during co-launch (as Figure 1c), we used “time after launch” 

250 (every second) in both profiles to pair the values of two sensors, and resulted in L2_ST-VS.

251 Based on the prior studies of ST (Hwang et al., 2020), we performed a “ground 

252 check” procedure to correct the pressure values of ST. This procedure adjusts the P_ST by 

253 a constant bias dP_0, which is the difference between the surface pressure of the standard 

254 instrument and the sensor of ST. Furthermore, we filtered out profiles with inconsistent 

255 timestamps and paired records less than 250 (366 out of 1,029). Finally, we derived a 
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256 dataset of 663 merged profiles and 1,219,710 paired entries (up to every second) for further 

257 analysis.

258

259 3. Data Correction Methods

260 To develop a data correction scheme for ST, we first investigated the conventional 

261 CDF-based probability matching method (Ciesielski et al., 2009). Then, we extended this 

262 approach with direct modeling of multivariate distributions, which is the central concept of 

263 modern machine learning. We implemented the scheme with the basic generalized linear 

264 model (GLM) and compared the differences between the two approaches. Both CDF and 

265 GLM are simple statistical models. The CDF is based on a non-parametric approach, and 

266 the GLM is a parametric distribution (i.e., Gaussian distribution).

267 Before diving into the specific correction methods, we define the notations and 

268 symbols used in this study. While ST and VS represent the storm tracker and the Vaisala 

269 RS41-SGP radiosonde device, respectively, they are used as subscripts to denote the 

270 sensor of measurements. For example, PST means the pressure measured by ST, and TVS 

271 is the temperature recorded by VS. The ∆(delta) symbol is used to denote the difference of 

272 the same variable between two sensors. Finally, the ’ (prime) represents the corrected 

273 measure.

274 3.1 CDF-based Probability Matching

275 CDF-based Probability matching, also known as histogram matching or quantile 
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276 mapping, is a statistical technique used to adjust the distribution of a dataset (e.g., a forecast 

277 distribution) to match that of another dataset (e.g., an observed distribution). The primary 

278 objective of this method is not to directly correct individual data points but to ensure that the 

279 overall statistical properties, such as the frequency of occurrence of specific values, match 

280 between the two datasets. In radiosonde observation, CDF-based probability matching is 

281 commonly used as a quality control tool to ensure data quality consistency for field 

282 campaigns (Nuret et al., 2008; Ciesielski et al., 2009). 

283 Based on the paired entries collected in co-launches, the two-step correction 

284 scheme starts with correcting temperature (∆T) based on the ground-checked pressure 

285 (P’ST) and the measured temperature (TST). Then, the adjusted temperature (T’ST) is used 

286 together with the measured relative humidity (RHST) to estimate the correction (∆RH).

287 We first discretize the pressure and temperature variables in temperature 

288 correction into bins. Pressure is divided into 50 hPa intervals from 975–1025 hPa to 175–

289 225 hPa, denoted by their centers, 1000 hPa to 200 hPa. The cumulative distribution 

290 function of temperature measured by ST and VS for each pressure bin is calculated as 

291 follows. The observed temperature records are sorted in ascending order, and then the 

292 proportion of observations is derived for every 1-degree interval from -80 to 40 degrees 

293 Celsius as the probability density.  Based on the assumption that two sensors have the 

294 same CDF within this specific range, we derived the correction values, ∆T, as a function of 

295 measured temperature, TST. Figure 5 demonstrates the CDF-based temperature correction 
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296 of the pressure bin 475–525 hPa as an example. The upper panel shows the CDF of TVS 

297 and TST, and the lower panel illustrates the correction (∆T) as a function of the observed 

298 temperature (TST). We grouped the co-launches into daytime and night-time and performed 

299 the above procedure for each pressure bin. The results are shown in Figure 6, the complete 

300 temperature correction table used in this study.

301 As shown in Figure 6, the temperature sensor of ST consistently shows warm bias 

302 in all pressure bins, and the bias is stronger at high altitudes. The night-time warm bias 

303 exhibits similar patterns to the daytime but with a lower quantity. 

304 The correction of relative humidity (RH) is derived in the same way as the 

305 temperature, except for the independent variables, which are the corrected temperature 

306 (T’ST) and the measured relative humidity (RHST). The corrected temperature is discretized 

307 into 10-degree intervals from -65 to 35 degrees Celsius. The relative humidity values are 

308 then rounded to integers and form 1% intervals from 0 to 100. Like the temperature 

309 correction procedure, the correction value is derived based on the CDF probability matching 

310 as a function of RH within each temperature bin. Figure 7 illustrates the complete RH 

311 correction table used in this study. Figure 7 indicates that the ST shows dry-bias (wet-bias) 

312 in lower (higher) altitudes. ST is generally dryer during the daytime.

313 Using the correction tables shown in Figures 5 and 6, the temperature and relative 

314 humidity measured by ST are corrected and evaluated. Mathematically, this procedure can 

315 be expressed as:
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316 𝛥𝑇 =  𝑇𝑉𝑆 ― 𝑇𝑆𝑇 = 𝑓(𝑃′𝑆𝑇 , 𝑇𝑆𝑇 , 𝐷𝑎𝑦)                                     (1)

317 𝛥𝑅𝐻 =  𝑅𝐻𝑉𝑆 ―𝑅𝐻𝑆𝑇 = 𝑓(𝑇′𝑆𝑇 ,𝑅𝐻𝑆𝑇 ,𝐷𝑎𝑦)                               (2)

318 , where Day is a binary variable representing the daytime or night-time, and f is 

319 the CDF-based probability matching. Because we first correct the temperature and then use 

320 the corrected temperature to correct the humidity, we call this approach a two-step CDF-

321 base calibration.

322 3.2 Generalized Linear Model

323 Despite the robustness and ease of implementation of CDF-based probability 

324 matching, the discretization steps and the form of the look-up table limit its application. For 

325 example, the discretization of pressure and temperature is empirical. Though the resulting 

326 CDFs and correction tables look reasonable, it is hard to justify that this is the only way to 

327 split a continuous variable into bins. In other words, by focusing on matching the overall 

328 distribution, probability matching may overlook or alter some of the finer-scale details in the 

329 dataset. Furthermore, the look-up table makes adding extra independent variables more 

330 complicated. For example, we used daytime and night-time tables to simplify the influence 

331 of solar radiation so that we could use two tables for each correction. Another example is 

332 when we consider adding the effect of pressure in the correction of RH. In that case, we 

333 need to establish three-dimensional bins and justify whether the cut-off points are 

334 adequately selected. Therefore, we want to introduce the modeling of the multivariate 

335 probability distribution to our correction scheme.

Page 17 of 61 For Peer Review



17

336 In essence, modeling the joint probability distributions of multiple variables is 

337 fundamental in machine learning for capturing relationships and dependencies among 

338 numerous predictors. It forms the backbone for various algorithms and techniques to predict, 

339 generate, and understand multi-dimensional data. In equations (1) and (2), the mapping 

340 function, f, can be seen as a model of the joint probability distribution of the independent 

341 variables. While the CDF-based probability matching algorithm models this distribution by 

342 discretizing the independent variables, it can be replaced by different algorithms that keep 

343 the predictors in their continuous form.

344 The Generalized Linear Model (GLM, Nelder and Wedderburn, 1972) is a versatile 

345 statistical framework used for modeling the relationship between a dependent variable 

346 (response) and one or more independent variables (predictors) in a wide range of 

347 applications. GLMs extend the concept of linear regression to handle a broader array of data 

348 types and distributions. They are valuable for offering interpretable coefficients to 

349 understand the impact of predictors on the response. GLMs have become a fundamental 

350 tool in statistics and data analysis due to their flexibility and applicability across various fields. 

351 In this study, we used GLMs in three different settings: first, the same scheme as CDF-

352 based probability matching (GLM1, as specified in equations (1) and (2)); second, using the 

353 same set of predictors for T and RH corrections (GLM2); and finally, replacing daytime with 

354 Julian-day and hour-of-day (GLM3).

355 To develop the GLM-based corrections, we used the paired entry dataset and the 
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356 least squared algorithm to fit linear regression models for the response variables (ΔT and 

357 ΔRH) and the predictors (P'ST, TST, RHST, and Day). This study used the Python algorithm 

358 implementation from scikit-learn (Pedregosa et al., 2011). The resulting regression 

359 equations are used to correct the storm tracker data.

360 In the second GLM configuration, we use the variables of P'ST, TST, RHST, and Day 

361 to predict the corrections of temperature (ΔT) and relative humidity (ΔRH). The resulting 

362 models can be mathematically denoted as:

363 𝛥𝑇 = 𝑓(𝑃′𝑆𝑇 , 𝑇𝑆𝑇 , 𝑅𝐻𝑆𝑇 ,𝐷𝑎𝑦)                                                     (3)

364 𝛥𝑅𝐻 = 𝑓(𝑃′𝑆𝑇 , 𝑇𝑆𝑇 , 𝑅𝐻𝑆𝑇 ,𝐷𝑎𝑦)                                                    (4)

365 Previous studies have suggested that solar radiation could be the leading cause 

366 of the warm bias in the radiosonde data. This is why we established correction tables for 

367 daytime and night-time separately. To simplify the correction process and limit the number 

368 of tables created, the solar radiation is represented by the binary variable of Day. However, 

369 with GLMs, we can easily use continuous variables in their original form. Hence, we used 

370 the “Julian day from the summer solstice” (Jday) and the “hour-of-day from noon” (Hour) to 

371 replace the Day variable. The resulting models are:

372 𝛥𝑇 = 𝑓(𝑃′𝑆𝑇 , 𝑇𝑆𝑇 , 𝑅𝐻𝑆𝑇 ,𝐽𝑑𝑎𝑦, 𝐻𝑜𝑢𝑟)                                             (5)

373 𝛥𝑅𝐻 = 𝑓(𝑃′𝑆𝑇 , 𝑇𝑆𝑇 , 𝑅𝐻𝑆𝑇 ,𝐽𝑑𝑎𝑦, 𝐻𝑜𝑢𝑟)                                            (6)

374 These three settings are noted as GLM1, GLM2, and GLM3 in the later text.

375 Because all of our co-launches were conducted over the Taiwan area, the Julian 
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376 day and the hour of the day can properly approximate the value of the clear day radiation. 

377 Though the resulting correction formula can be applied to other regions, the differences in 

378 the pressure-altitude relationship might slightly interfere with other predictors. Therefore, we 

379 recommend adding the location information (i.e., longitude and latitude) or directly using the 

380 derived values of clear-sky radiation to develop the correction formula in other regions.

381

382 4. Results

383 Figure 8 illustrates the patterns and deviations between ST and VS at various 

384 pressure levels. The panels (a), (b), and (c) demonstrate the temperature of VS and ST, and 

385 the differences between the two sensors. The relative humidity is shown in panels (d), (e), 

386 and (f). As shown in Figure 8, the ST exhibits warm and dry biases in general, and the biases 

387 increase as the altitude rises.

388 We applied the four correction methods described in the previous section, i.e., 

389 CDF, GLM1, GLM2, and GLM3, to the 663 sounding profiles. Using the VS as the reference 

390 observations, we calculated the root-mean-squared errors (RMSEs) as the evaluation 

391 metrics. We did not use the correlation coefficients for evaluation because two sensors have 

392 correlation coefficients higher than 0.99, even without corrections. The reason for this lies in 

393 the co-launching strategy, which ensures that both instruments endure the same 

394 environmental conditions. The means and standard deviations of RMSEs for all correction 

395 methods are shown in Table 3 and Figure 9. As shown in Figure 9, we can see a significant 
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396 bias reduction for all correction methods. We performed t-tests on the raw and corrected 

397 values, and the improvement of all four methods is statistically significant (for p-values little 

398 than 10e-29). We also compared the CDF and GLM, and the results show that CDF 

399 correction is slightly better than GLMs for both temperature and relative humidity. The 

400 difference between CDF and GLMs is significant in the t-test, though the significant level is 

401 much lower than their bias reduction.

402 We also conducted t-tests on different GLM settings. The GLM1 and GLM2 did 

403 not show significant differences in temperature and relative humidity correction results. 

404 However, the GLM3 showed great improvement compared to GLM1 and GLM2. This 

405 suggested that solar radiation parameters can influence the correction more than a simple 

406 day/night indicator.

407 Table 3 and Figure 9 also show the evaluations for all records below 500- and 

408 700-hPa heights. As shown in the results, ST can proximate the VS measurements with a 

409 temperature error of less than 1 degree Kelvin and a relative humidity error of less than 10%. 

410 Suppose we focus on the observations below 700 hPa. In that case, the averaged RMSE 

411 can be as low as 0.66-degree Kelvin for temperature and 4.61% for relative humidity, 

412 comparable to the uncertainties of VS temperature and relative humidity measurements 

413 (Vaisala, 2017). Such results suggested that the ST is sufficiently accurate, especially when 

414 focusing on the boundary layer and lower atmosphere.

415 In addition to the overall performance of ST, we illustrated the RMSEs distribution 
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416 of the 663 soundings in Figure 10. The upper panel, (a), illustrates the distribution of RMSEs 

417 before correction, and the lower panel, (b), shows the results after the CDF-based correction. 

418 As shown in Figure 10, the proposed correction methods reduced both the biases and 

419 spreads. The reduction in the standard deviation of RMSE in Table 3 also represents this 

420 fact. Based on Figure 10, we selected three cases with low, middle, and high biases in RH 

421 before correction to discuss in the following section. The one-by-one comparison of the 633 

422 profiles can be found in the supporting materials.

423

424 5. Discussion

425 5.1 The Random Errors of ST

426 The specifications of the temperature and humidity sensor used in the ST reported 

427 the accuracy range as ±0.3°C and ±2% (Huang et al., 2020). We examined the random 

428 errors with cloud chamber laboratory examination and field observation datasets with dual 

429 ST launching.

430 Six STs of the same batch used in the co-launches were measured in controlled 

431 chambers. Each sensor was repeatedly measured at 10°C, 20°C, 30°C, and 40°C, and at 

432 relative humidity of 30%, 50%, 70%, and 90%. The results are shown in Figure 11. The 

433 standard deviations of the measured differences are 0.24°C (temperature) and 2.21% 

434 (relative humidity), respectively. The results reasonably agreed with the random errors 

435 reported by the manufacturer.
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436        To assess the random error in the field, we conducted 42 observations with dual-

437 ST. We aligned the records of two instruments with timestamps and evaluated the 

438 differences in temperature and humidity. In the 42 launches, there were a total of 96,284 

439 aligned entries. We used statistical fences to exclude extreme situations such as frozen or 

440 malfunctioning sensors (Everitt and Skrondal, 2010; Tukey, 1977). After applying this simple 

441 outlier removal technique, we have 85,641 temperature measurements and 81,616 pairs of 

442 relative humidity. The paired measurements are shown in Figure 12. The derived standard 

443 deviation for temperature is 0.52°C, and for relative humidity is 2.25%. The random errors 

444 measured in the field are slightly higher than those measured in the laboratory and reported 

445 by the manufacturer. There were 42 dual-ST attached to VS co-launches in the field, all of 

446 them were conducted during the day. We realized that the sensor performance could have 

447 diurnal variations and we had performed the correction according to the day-night difference. 

448 By following the types of errors defined in Collins (2001), we attributed the day-night 

449 variability as systematic error, which our correction methods can remedy. Hence, we didn’t 

450 further distinguish the random errors for day and night.

451 The results of the sounding-by-sounding evaluation presented in the earlier 

452 section, 0.66-degree for temperature and 4.61% for humidity, are slightly larger than the 

453 random errors measured in the field. This suggests that there is room to develop more 

454 sophisticated correction methods. 

455 According to previous studies, the ST sensor has a about 5-second response time 
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456 (Huang et al., 2020). Several time-lag analyses were conducted to verify this and the impact 

457 to the measurement correction, the results suggest insignificant changes to the bias 

458 correction. However, given that Miloshevich et al. (2001, 2004) discussed the errors 

459 introduced by the sensor's time lag and proposed a correction algorithm, we plan to 

460 incorporat further sophisticated time-lag correction approaches in the future.

461 5.2 General performance of ST

462 Figure 13 illustrates the paired entries of VS and ST before and after corrections. 

463 As described in the previous section, the ST exhibits correlation coefficients higher than 0.99 

464 for temperature and RH even before any correction. Hence, the effect of corrections is 

465 represented by the narrower diagonals in the right panels in Figure 13.

466 Even though the statistical tests showed the significance of the correction results, 

467 they are not easily perceived. Hence, we selected a few sounding profiles to demonstrate 

468 the effectiveness of our correction methods. Figure 14 shows the T and RH profile of the 

469 sounding launched at 2021-08-03 12Z. This sounding was selected because of the overall 

470 low RH bias before and after correction. In Figure 14, the corrected temperature is 

471 adequately aligned to the reference (TVS), and the corrected relative humidity (RH) is entirely 

472 satisfactory, particularly below 350hPa, covering most tropospheric levels with water vapor 

473 and clouds. Consistent findings are prevalent within our dataset, indicating that the adjusted 

474 ST measurements are reliable across various observational scenarios.

475 However, the corrected results may perform less when encountering extreme wet 
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476 cases. Figure 15 is the sounding profile on 2018-08-27 06Z when the reference RH of VS is 

477 about 90% from ~850 to ~350-hPa heights. As shown in Figure 15, the temperature 

478 correction still works properly, except that the VS’s temperature sensor showed much larger 

479 amplitude compared to VS. However, the RH measured by ST shows a dry bias of 

480 magnitude of 20% from ~850 to ~350-hPa heights while the patterns stay similar. The RH 

481 correction mechanisms adjust the RH toward the reference, but the deviations are still 

482 significant. Note that this observation occurred during a severe rainfall event caused by the 

483 convergence of the tropical depression and the southwest monsoon from August 23 to 

484 August 30, 2018. All fifteen co-launches conducted in this event exhibited high bias in RH, 

485 ranging from 10% to 24%, and five showed bias greater than 10% even after correction. 

486 This particularly biased case has RMSE ranked 99.93% in our dataset. Since such a large 

487 deviation rarely showed in the colaunches, we believe it could be caused by malfunction of 

488 this specific sensor.

489 In the left panel of Figure 15, we can also see a sudden change in GLM-corrected 

490 temperature around 310hPa. This should be caused by the missing values of ST in RH (see 

491 the missing yellow line section in the right panel). Because the GLM correction includes RH 

492 as an independent variable, when RH values are missing (treated as 0), the amount of 

493 correction can change accordingly.

494 Figure 16 illustrates the sounding profile on 2020-03-13 12Z. This is an average 

495 case with middle bias in RH before correction. Most of the 633 co-launches behave similarly 
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496 to this case.

497 From the cases shown above, we also notice the characteristics of different 

498 correction methods. The GLM adjustments look like horizontal shifts of the original values 

499 due to the linearity of the model.

500 Despite the simplicity of our correction methods, the temperature bias between 

501 ST and VS can be reduced from 3.0 K to 0.9 K, and the RH bias from 8.5% to 6.9%. Note 

502 that our correction methods also reduce the standard deviations from 1.8 K to 0.6 K and 

503 3.8% to 2.8%, respectively. Hence, we can expect 80% of ST observations to exhibit less 

504 than 1K bias in temperature and 8.8% bias in RH.

505 The corrected ST measurements aligned well with the VS data, especially when 

506 the sounding successfully reached an altitude higher than 300hPa.  For those co-launches 

507 that ended early, though their bias is still low in statistics, their profiles usually looked 

508 problematic when visualized. We recommend further looking into the reasons that cause the 

509 sounding to end early.

510 5.3 A ST observation in afternoon thunderstorm study

511 The low cost of the ST can facilitate high spatial-temporal frequency of upper-air 

512 observations. While the ST provides reasonable measures after correction, its reliability in 

513 higher altitudes is still incompatible with the VS used in standard operation. Therefore, here, 

514 we demonstrate a use case to illustrate the strength of the ST. Figure 17 shows a set of 

515 continuous ST profiles on 2018-08-17 with one-hour intervals. This experiment used only 
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516 ST and was not included in the colaunch dataset. Figure 17 shows the evolution of a local 

517 convective system, which is not feasible in regular 12-hour interval radiosonde operation -

518 the increase of atmospheric moisture at 1300 local time before the heavy rain occurrence is 

519 observed. Using the flexibility in deploying the ST during field campaigns allows us to 

520 capture vertical profiles in the lower troposphere at an hourly, or even a shorter time interval. 

521 This is notably advantageous for understanding the development of deep convection, which 

522 typically has a lifetime of 1 to 3 hours, and the surrounding environment, especially the lower 

523 boundary layer. A similar ST profile has been used in the study of the afternoon 

524 thunderstorm in Taipei compared to the results from CRESS cloud-resolving modeling 

525 (Tsujino et al. 2022). Note that the ST data here was corrected with the CDF-based method; 

526 better performance can be achieved with GLM-based methods.

527

528 6. Concluding Remarks

529 In this study, we assess the data quality control and calibration of the Storm 

530 Tracker (ST) with the co-launched Vaisala RS41-SGP (VS) in temperature, relative humidity, 

531 and winds for lower atmospheric observations. Although wind speed and direction are 

532 crucial information in radiosonde observation, we found from the co-launched data that the 

533 GPS-estimated ST wind differs from that of VS in insignificant magnitude. The GPS 

534 estimated ST wind error difference is about 0.05 ms-1. To ensure the reliability of ST 

535 measurements in temperature and moisture, we conducted over a thousand co-launches of 
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536 the ST and the VS, evaluating and refining the performance of the ST through developed 

537 correction methods for temperature and humidity measurements. Based on the sounding-

538 by-sounding comparison, the corrected ST soundings have a 1-K temperature and 7% 

539 relative humidity root mean square difference from the VS soundings. These error 

540 differences can be reduced to 0.66-K and 4.61% below the 700-hPa height. The biases of 

541 the corrected ST observations are slightly larger than the random errors, which were 0.24 K 

542 and 2.21% in the laboratory and 0.52 K and 2.23% in the field.

543 Derived from the co-launch dataset, two correction methods based on CDF and 

544 GLM algorithms were implemented to enhance the quality of temperature and humidity 

545 observations in the ST. Both methods work comparably well to reduce the biases of the ST. 

546 While the CDF-based correction is robust and reliable, the GLMs easily model and change 

547 the predictors. The ST observations closely aligned with the VS after corrections, particularly 

548 in the lower atmospheric layers below 700hPa. For synoptic weather, geostrophic 

549 adjustment dynamics suggest that spatial temperature variations in the free atmosphere 

550 may not be significant, reducing the need for high-frequency upper-air radiosonde 

551 observations. Consequently, most operational radiosonde observations worldwide are 

552 conducted daily at 00Z and 12Z, with 12–24 hours intervals. However, atmospheric 

553 phenomena originating from the boundary layer are often smaller in scale and closely related 

554 to local terrain. For example, a single convective cell typically lasts minutes, while 

555 thunderstorms persist for a few hours. To better understand these types of weather, a low-
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556 cost and lightweight device capable of deploying multiple sensors simultaneously or at 

557 intervals of less than an hour can enhance field experiments. This approach provides 

558 valuable insights into the lower atmosphere's significant variations in temperature and 

559 moisture, especially for convective systems that may lead to disastrous rainfall or flash 

560 flooding. This positions the ST as a promising candidate for supplementing regular upper-

561 air observations for high spatial and temporal resolution in the lower atmosphere. Our work 

562 also demonstrated that low-cost commercial sensor components can help high-frequency 

563 observations in specific targets with carefully developed correction methods.

564 Although we used the linear regression version of GLMs in this study, the concept 

565 of modeling the joint probability distribution can be extended to various statistical models 

566 such as decision trees, support vector machines (SVM), and artificial neural networks (ANN). 

567 The simple GLMs in this study assume the response is a Gaussian distribution of the linear 

568 combination of predictors. Other machine learning models can establish nonlinear mappings 

569 between the predictors and response without assuming any distributions. However, 

570 investigating more machine learning models is beyond the scope of this study.

571 In summary, while the VS remains the standard for upper-air observation, ST is 

572 suitable for Planetary Boundary Layer (PBL) or lower atmosphere studies in areas with 

573 complex terrain. The ST can complement the VS observation with high spatial and temporal 

574 resolution observation of the lower atmosphere. This may be useful for mesoscale storm 

575 observations in East Asia, where PBL conditions can vary significantly within short distances. 
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576 However, it is important to note that the correction results presented here are specific to 

577 Taiwan’s observation. This is especially true for the CDF method, as the variability of the 

578 CDF method data is height-dependent, so the direct use of our CDF calibration should be 

579 cautious. On the other hand, the GLM method may provide a reasonable calibration to the 

580 ST sounding when longitude and latitude are used as predictors or local clear-sky radiation 

581 is directly used. To ensure broader applicability, we suggest conducting co-launches during 

582 field campaigns. This approach would allow users to derive in-situ correction formulas using 

583 the proposed methods. Our experiments indicate that ST between VS launches may 

584 enhance meteorological data collection and analysis in the lower atmosphere.

585
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735 List of Figures

736 Fig. 1  (a) The Vaisala RS41-SGP radiosonde (weighted 84g, body dimension: 155 x 63 x 

737 46 mm), (b) the storm tracker mini-radiosonde (weighted 20 g with battery, body 

738 dimension: 70 x 29 x 18 mm), and (c) an example of the co-launched soundings via the 
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753 Fig. 7  The CDF-based RH correction tables for daytime (00z-12z, left panel) and night-
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755 Fig. 8  The boxplot of temperatures (upper) and RH (lower) of ST (left), VS (center), and 

756 their difference (right) without corrections.

757 Fig. 9  The mean RMSE of ST and VS with different correction methods for temperature 

758 (left) and RH (right). For each correction method, the mean RMSE is derived with all 

759 available records (blue), records below 500 hPa (orange), and records below 700hPa 

760 (green). The upper panel (a) showed the overall RMSE, and the middle (b) and lower 

761 panel (c) demonstrated the RMSE of daytime and nighttime, respectively

762 Fig. 10  The scatter plots of temperature (upper) and RH (lower) before and after 

763 correction.

764 Fig. 11  The temperature (left) and RH (right) measurements of STs in the controlled 

765 laboratory environment. Six STs were measured separately. The temperature (left 

766 panel) was measured repeatedly at 10°C, 20°C, 30°C, and 40°C. The relative humidity 

767 (right panel) was measured at 30%, 50%, 70%, and 90%. The derived random error for 

768 temperature is 0.24°C, and for relative humidity is 2.21%.

769 Fig. 12  The biases of 42 dual-ST launches. The figure shows 85,641 temperature 

770 measurements (left panel) and 81,616 pairs of relative humidity (right panel). The 

771 derived random error for temperature is 0.52°C, and for relative humidity is 2.25%.

772 Fig. 13  The histograms of the RMSEs of temperature (upper) and RH (lower) between 

773 ST and VS. The upper panel, (a), illustrates the distribution of RMSEs before correction, 

774 and the lower panel, (b), shows the results after the CDF-based correction.
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775 Fig. 14  The temperature (left) and RH (right) of the co-launch sounding on 2021-0803 

776 12Z. The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green, 

777 and GLM-corrected in red.

778 Fig. 15  The temperature (left) and RH (right) of the co-launch sounding on 2018-08-27 

779 06Z. The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green, 

780 and GLM-corrected in red.

781 Fig. 16  The temperature (left) and RH (right) of the co-launch sounding on 2018-03-13 

782 12Z. The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green, 

783 and GLM-corrected in red.

784 Fig. 17  The continuous ST observations of one-hour intervals on 2018-08-17 at Shezi. 

785 The soundings were corrected with CDF, and the derived specific humidity, q, is shown 

786 in panel (a) with the wind field. The derived equivalent potential temperature, ϴe, is 

787 shown in panel (b).
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790 Fig. 1  (a) The Vaisala RS41-SGP radiosonde (weighted 84g, body dimension: 155 x 63 x 

791 46 mm), (b) the storm tracker mini-radiosonde (weighted 20 g with battery, body 

792 dimension: 70 x 29 x 18 mm), and (c) an example of the co-launched soundings via the 

793 TASSE experiment. More ST hardware details are described in Hwang et al. (2020).
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795

796 Fig. 2  The sounding of 2018-06-26 03:00 UTC (11:00 LST) by VS (solid lines) and ST 

797 (dashed lines). The ST profile showed warm and dry bias near the surface.
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799

800 Fig. 3  The sites of the co-launch experiments. Most co-launches (909 out of 1,029) were 

801 conducted in the Taipei (Banqiao) station. The number of co-launches collected in each 

802 site can be found in Table 1.
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804

805 Fig. 4  The preprocessing for ST and VS data from raw to level 2.
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807

808 Fig. 5  The CDF-based temperature correction of the pressure bin 475 ~ 525 hPa. The 

809 upper panel shows the CDF of the temperature of two sensors, and the lower panel 

810 shows their difference as a function of temperature. The probability density is defined by 

811 the proportion of observations within every 1-degree interval from -80 to 40 degrees 

812 Celsius.
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814

815 Fig. 6  The CDF-based temperature correction tables for daytime (00z-12z, left panel) 

816 and night-time (12z-00z, right panel).

817

Page 46 of 61For Peer Review



46

818

819 Fig. 7  The CDF-based RH correction tables for daytime (00z-12z, left panel) and night-

820 time (12z-00z, right panel).
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822

823 Fig. 8  The boxplot of temperatures (upper) and RH (lower) of ST (left), VS (center), and 

824 their difference (right) without corrections.

825
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826

827 Fig. 9  The mean RMSE of ST and VS with different correction methods for temperature 

828 (left) and RH (right). For each correction method, the mean RMSE is derived with all 

829 available records (blue), records below 500 hPa (orange), and records below 700hPa 

830 (green). The upper panel (a) showed the overall RMSE, and the middle (b) and lower 

831 panel (c) demonstrated the RMSE of daytime and nighttime, respectively
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833

834 Fig. 10  The histograms of the RMSEs of temperature (upper) and RH (lower) between 

835 ST and VS. The upper panel, (a), illustrates the distribution of RMSEs before correction, 

836 and the lower panel, (b), shows the results after the CDF-based correction.
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837

838 Fig. 11  The temperature (left) and RH (right) measurements of STs in the controlled 

839 laboratory environment. Six STs were measured separately. The temperature (left 

840 panel) was measured repeatedly at 10°C, 20°C, 30°C, and 40°C. The relative humidity 

841 (right panel) was measured at 30%, 50%, 70%, and 90%. The derived random error for 

842 temperature is 0.24°C, and for relative humidity is 2.21%
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844

845 Fig. 12  The biases of 42 dual-ST launches. The figure shows 85,641 temperature 

846 measurements (left panel) and 81,616 pairs of relative humidity (right panel). The 

847 derived random error for temperature is 0.52°C, and for relative humidity is 2.25%.
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850
851

852

853 Fig. 13  The scatter plots of temperature (upper) and RH (lower) before and after 

854 correction. The dashed lines indicate 1-to-1 reference lines.
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856

857 Fig. 14  The temperature (left) and RH (right) of the 2021-0803 12Z co-launch sounding. 

858 The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green, and 

859 GLM-corrected in red.
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861

862 Fig. 15  The temperature (left) and RH (right) of the 2018-08-27 06Z co-launch sounding. 

863 The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green, and 

864 GLM-corrected in red.
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865

866 Fig. 16  The temperature (left) and RH (right) of the 2020-03-13 12Z co-launch 

867 sounding. The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in 

868 green, and GLM-corrected in red.
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870

871

872 Fig. 17  The continuous ST observations of one-hour intervals on 2018-08-17 at Shezi. The 

873 soundings were corrected with CDF, and the derived specific humidity, q, is shown in panel 

874 (a) with the wind field. The derived equivalent potential temperature, ϴe, is shown in panel 

875 (b). Note that this field experiment used only ST for observation and the data was not 

876 included in the colaunch dataset.
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884 Table 1  The summary of the field experiments conducting ST-VS co-launches.

Experiment Time Location Total Numbers of ST-

VS Co-launch

Taipei Summer Storm Experiment (TASSE) 2018-2020 Taipei (Banqiao) 478

Yilan Experiment of Severe Rainfall 

(YESR2020)

2020. Nov Yilan, Suaou, Luodong, 

Dafu

46

Taiwan-Area Heavy rain Observation and 

Prediction Experiment (TAHOPE)

2019-2022 Taipei (Banqiao), 

Pengjiayu

382

Northern Coast Observation, Verification, and 

Investigation of Dynamics (NoCOVID21)

2021. May-Jun Taipei (Banqiao) 49

Mountain Cloud Climatology (MCC) 2022. Oct-Nov  Suaou 23

Other Tainan, Xinwu 51

885

886
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887 Table 2  The summary of the 1,029 co-launches.

2018 2019 2020 2021 2022 Total
Month

Day Night Day Night Day Night Day Night Day Night Day Night

1 21 24 25 26 46 50

2 29 29 29 29

3 27 31 27 31

4 30 30 15 13 45 43

5 6 5 6 4 12 9

6 14 20 30 32 64 32

7 14 60 12 22 23 96 35

8 41 85 23 22 149 22

9 25 26 25 26

10 29 28 7 3 36 31

11 20 17 40 41 6 7 66 65

12 30 31 30 31

Total 69 0 165 12 133 136 220 220 38 36 625 404

888

889
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890 Table 3  The RMSE of ST and VS with different correction methods for temperature and 

891 RH.

mean RMSE stdev of RMSE
Variable Correction Method

full 500hPa 700hPa full 500hPa 700hPa

Temperature Uncorrected 2.9969 2.0753 1.6446 1.8399 1.2291 0.8894

CDF 0.8778 0.7568 0.6560 0.5579 0.4166 0.3367

GLM1 1.2714 1.1126 1.0732 0.6612 0.4549 0.3682

GLM2 1.2745 1.1128 1.0533 0.6625 0.4633 0.3693

GLM3 1.1991 1.0105 0.9483 0.6284 0.4566 0.3579

Relative Humidity Uncorrected 8.5265 6.0721 4.9336 3.8236 2.9284 2.3624

CDF 6.8946 5.4707 4.6098 2.8107 2.7488 2.4442

GLM1 7.4604 5.8673 4.9267 2.9158 2.6489 2.3084

GLM2 7.4152 5.7997 4.8478 2.7785 2.4307 2.0590

GLM3 7.2683 5.6355 4.7043 2.6668 2.3372 1.9878

892
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