

EARLY ONLINE RELEASE

This is a PDF of a manuscript that has been peer-reviewed and accepted for publication. As the article has not yet been formatted, copy edited or proofread, the final published version may be different from the early online release.

This pre-publication manuscript may be downloaded, distributed and used under the provisions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license. It may be cited using the DOI below.

The DOI for this manuscript is DOI:10.2151/jmsj.2025-029 J-STAGE Advance published date: June 3, 2025 The final manuscript after publication will replace the preliminary version at the above DOI once it is available.

1	
2	Data quality control and calibration for mini-radiosonde
3	system "Storm Tracker" in Taiwan
4	Hung-Chi KUO
5	Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
6	Ting-Shuo YO
7	Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
8	Hungjui YU
9 10	Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
11	Shih-Hao SU
12	Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan
13	Ching-Hwang LIU
14	Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan
15	and
16	Po-Hsiung LIN
17 18	Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
19	
20 21	March 5, 2025
$\frac{21}{22}$	
23	
 24 25 26 27 28 29 	 Tel: +886-975-157-101 Corresponding author: Ting-Shuo Yo, Department of Atmospheric Sciences, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City, 10617, TAIWAN
30	

31	Abstract
32	
33	This study reports the correction methods of a newly introduced upper-air radiosonde
34	instrument, "Storm Tracker" (ST), with more than one thousand co-launches of ST and
35	Vaisala RS41-SGP (VS) data in field observations in the Taiwan area during 2016–2022.
36	The co-launches provided more than a million comparable independent observations of
37	wind, pressure, temperature, and humidity (PTU) data. Using the VS measurements as
38	the reference, we use the statistical models, including the cumulative distribution function
39	(CDF) matching method and generalized linear model (GLM), to correct the temperature
40	and moisture fields of the ST sounding. Both approaches yield similar results. With a
41	sounding-by-sounding comparison, the CDF-corrected ST soundings have a 1-K
42	temperature and 7% relative humidity root mean square difference from the VS soundings.
43	These error differences can be reduced to 0.66-K and 4.61% below the 700-hPa height.
44	The GPS estimated a 0.05 ms ⁻¹ ST wind difference from the VS sounding. The biases of
45	the corrected ST observations are slightly larger than the random errors, which were 0.24
46	K and 2.21% in the laboratory and 0.52 K and 2.23% in the field. The lower atmosphere
47	in a region of complex terrain may have large wind, temperature, and moisture variations.
48	With the relatively low cost, a high proportion of successful launches, and accuracy of
49	wind, temperature, and moisture, ST can complement regular upper-air radiosonde
50	observations for high-resolution observations in the lower troposphere. The high-

- ⁵¹ resolution lower troposphere observation is important for severe weather research in East
- 52 Asia.
- 53 **Keywords** boundary layer; upper-air radiosonde observation; field campaign; data quality
- 54 control and correction

56 **1. Introduction**

Upper-air radiosondes are one of the most important meteorological instruments 57for observing vertical profiles of atmospheric data at various altitudes. The measured 58pressure, temperature, and relative humidity (so-called "PTU") data aids in weather 59forecasting, climate research, and the study of atmospheric dynamics. However, upper-air 60 radiosondes are subject to certain biases due to instrument calibration, ascent rates, and 61environmental conditions. Collins (2001) distinguished the radiosonde observational errors 62into three types: random, rough, and systematic. According to Collins (2001), random error 63 is caused by small-scale turbulence or unsystematic observational errors, and it is 64 impossible to correct. The rough error can be introduced from observational protocol, 65 computational error for data processing, or communication-related error. A properly defined 66 operational procedure and automatic quality control process can minimize such errors. The 67third type of error, systematic error, is caused by insufficiencies in measurement devices or 68 data processing procedures and persists in all observational data. This type of error can be 69 detected and calibrated with statistical methods. 70

Nowadays, commercial radiosondes are often tested and corrected regarding these biases. However, they are typically characterized by their higher weight and cost, which limit the deployment of scientific field campaigns. The independently developed miniradiosonde system – the "Storm Tracker (referred to as the ST, Figure 1b)" was created and first tested in 2016 (Hwang et al., 2020). The ST consists of a microcontroller

TMECA220r - CDC corport (1) blow MAYZ (2) - processing corport (Deceb DMD200)

76	(ATMEGA328p), a GPS sensor (U-blox MAX7-Q), a pressure sensor (Bosch BMP280), a
77	temperature–humidity sensor (TE-Connectivity HTU21D), and a transmitter (LoRa™). The
78	sensors have an overall operation range from 1100 to 300 hPa in pressure and from -40 $^\circ$ C
79	to 85°C in temperature. The ST used a regular AAA battery for 2-4 hours of power; the total
80	weight was 20g. More detailed hardware specifications can be found in Hwang et al., 2020.
81	The design of ST aimed to leverage the low cost of sensors used in commercial electronics
82	to enable high-frequency observations in the boundary layer. In addition, the receiver was
83	designed to receive up to ten STs simultaneously. With such agility, using ST to gather
84	supplemental data between regular sounding was ideal.

The ST was then put into intensive field observation operations for the first time 85 86 during the Taipei Summer Storm Experiment (TASSE) in 2018–2020. The main goal of the field campaign is to investigate the thermal characteristics of the boundary layer in the Taipei 87Basin and local wind field variations to improve the forecasting ability of afternoon 88 convection in the metropolitan area. Three advantages of using the ST for atmospheric field 89 research were learned. First, the weight of ST with a battery is 20g, which helps to reduce 90 the helium/hydrogen usage. Second, the commercial sensors, chips, and signal 91transmission components in the ST significantly reduce the cost and provide flexibility for 92multiple deployments and high spatial and temporal resolution observations. Lastly, the ST 93 is easy to set up and can be quickly deployed or even mobile, which provides adaptability 94for different research needs and broadens the possibility for field campaign design. 95

96	The early work of ST by Hwang and colleagues (2020) showed an overall warm
97	and dry bias in the troposphere compared to the VS, as shown in their figure 13. During
98	TASSE, we discovered similar bias patterns and a typical example is shown in Figure 2.
99	These common bias patterns motivated us to design a systematic approach to improve the
100	data quality of ST. Our correction methods seek to align ST measurements as closely as
101	possible with VS, enabling researchers to perform high-frequency, high-spatial resolution
102	observations using ST with greater confidence and accuracy.
103	
104	Many prior studies have recognized these biases and suggested that solar
105	radiation can induce warm and dry bias for radiosonde measurements (Vömel et al. 2007).
106	Similar daytime warm and dry biases have been reported in previous field experiments
107	around the world that used relatively mature radiosonde systems (e.g., Wang et al., 2002;
108	Ciesielski et al., 2009; Yu et al., 2015). Earlier studies indicated that radiosonde temperature
109	biases are primarily contributed by radiative effects, with a minor proportion caused by the
110	sensor response lag of the changing of temperatures as the radiosonde rises (e.g., McMillin
111	et al., 1992; Sun et al., 2013).
112	The daytime temperature bias induced by solar heating was identified with various
113	radiosonde systems (e.g., Luers, 1989, 1997; Luers and Eskridge, 1998; Sun et al., 2013;
114	Lee et al., 2022; von Rohden et al., 2022). Their findings resulted in special surface coating
115	over temperature sensors in most commercial radiosondes. Even though environmental

116parameters can still affect the observed temperature, all factors influencing radiative or sensible heat flux around the sensor, such as the sensor surface temperature, solar angle, 117cloud fraction, and ventilation velocity, can cause the sensor temperature bias (e.g., McMillin 118et al., 1992; Luers and Eskridge, 1995; Mattioli et al., 2007; Lee et al., 2022). Luers and 119Eskridge (1998) evaluated the impact of the environmental parameters on the radiosonde 120in detail. Their results suggested that the temperature bias is most sensitive to solar angle, 121while the cloud cover has a slight impact. Also, the ventilation effect may cause bias when 122the sensor is in the balloon wake zone. To study the source of bias under a controlled 123environment, von Rohden et al. (2022) presented the Simulator for the Investigation of Solar 124Temperature Error of Radiosondes (SISTER), and Lee et al. (2022) proposed the Upper Air 125Simulator (UAS), which allows precise control over temperature, pressure, ventilation, and 126irradiation. Such advanced setups can help researchers measure the measurement errors 127more accurately and verify the cause of the errors. 128

In addition to temperature bias, the humidity bias has been discussed in many studies (e.g., Vömel et al., 2007; Yoneyama et al., 2008; Nuret et al., 2008; Kizu et al., 2018; Lee et al., 2022; Sommer et al., 2023). Vömel et al. (2007) found that the solar-heatinginduced dry bias increased with altitude in the troposphere, which means the humidity bias also depended on the temperature. This resulted in the relative humidity (RH) measured in the low-temperature environment being less accurate (Miloshevich et al., 2001). Miloshevich et al. (2004) also pointed out that the response delay in humidity sensors could cause

136	measurement errors at low temperatures. The influence of these biases could be huge. For
137	example, in the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response
138	Experiment (TOGA COARE, 1992-1993), scientists have reported the observational error
139	induced an unrealistically dry boundary layer and caused an underestimate of convective
140	available potential energy (CAPE) (Miller et al., 1999; Lucas and Zipser, 2000). Although the
141	primary observation targets of ST are the lower troposphere environmental conditions, we
142	still noticed significant warm and dry deviations in the near-surface boundary layer in TASSE
143	(Figure 2).
144	Many studies have attempted to remedy the systematic error in radiosonde data
145	with statistical methods. Lesht and Richardson (2002) mentioned that Vaisala accounts for
146	the sensitivity of the RH sensor to temperature by using a high-order polynomial function
147	with empirical coefficients. Yoneyama et al. (2008) applied a polynomial fitting function of
148	pressure for the relative difference of RH and used the solar zenith angle as a factor for bias
149	corrections. Other studies leveraged the thermodynamic equation and provided the
150	temperature correction table with empirical correction factors (Wang et al., 2013; Dzambo
151	et al., 2016).
152	In past field campaigns, scientists have also developed statistical models of
153	humidity correction based on probability matching. For example, Ciesielski et al. (2009) used
154	the cumulative distribution function (CDF) matching method to correct the humidity bias for

155 nearby soundings. The advantage of the CDF-based calibration method is that the

156	calibration procedure is fast and straightforward. Building the correction table requires
157	sufficient data to represent the statistical characteristics and questionable data can be
158	adjusted to match the same distribution. The basic concept of the CDF matching calibration
159	method is assuming the ambient atmospheric conditions are similar for all observation sites.
160	In most field campaigns, the spatial distribution of upper-air radiosonde sites mostly satisfied
161	such requirements, and hence, this method can efficiently adjust the data bias for most
162	atmospheric conditions. However, such assumptions limit the generalizability of the CDF
163	calibration models. Thus, the CDF models may not be directly applied to the data collected
164	from different weather conditions, seasons, or climate regions with smaller sample sizes.
165	In this study, we focused on the calibration process of systematic error for ST
166	temperature and moisture observations using the co-launch VS data. We use the co-launch
167	data collected across several field campaigns in Taiwan to develop calibration methods for
168	ST. Here, we proposed and evaluated two different calibration approaches. First, we
169	followed the widely used CDF-matching approach and proposed a two-step CDF-based
170	calibration scheme. Secondly, we incorporated the CDF-matching approach with modeling
171	multivariate distributions, the central concept of machine learning, to introduce a novel
172	correction method based on the generalized linear model (GLM). While the CDF approach
173	discretized continuous variables, e.g., pressure and temperature, into bins to establish look-
174	up tables, the machine-learning approach modeled a high-dimensional joint probability
175	distribution with the same variables in their original forms. The latter approach allowed us to

176	compress complicated look-up tables into a unified mathematical representation. Hence, we
177	can adjust the models more easily for better performance, robustness, and generalizability.
178	Section 2 describes the co-launched radiosonde data and the pre-processing.
179	Section 3 focuses on the data correction algorithms, and data calibration processing flow.
180	Section 4 summarizes the ST calibration results and compares them to the benchmark.
181	Finally, Section 5 discusses the feature importance analysis and other calibration issues,
182	and Section 6 presents the conclusions.
183	
184	2. Data and Preprocessing
185	2.1 Data Collection
186	In the previous years since 2018, we have co-launched the ST with the Central
187	Weather Administration (CWA) operational Vaisala RS41-SGP radiosonde (Figure 1c). The
188	co-launch was conducted during field campaigns in the Taiwan area, including the Taipei
189	Summer Storm Experiment (TASSE), the Yilan Experiment of Severe Rainfall (YESR2020),
190	the Taiwan-Area Heavy Rain Observation and Prediction Experiment (TAHOPE), the
191	Northern Coast Observation, Verification, and Investigation of Dynamics (NoCOVID21), and
192	the Mountain Cloud Climatology (MCC) project, We collected 1,029 co-launches of ST and
193	VS from these field campaigns during 2018–2022. These co-launches provided more than
194	1,000,000 comparable independent observations of wind, pressure, temperature, and
195	humidity (PTU) data. The co-launches of each campaign are summarized in Table 1, and
	9

the geographic locations of the co-launch sites are shown in Figure 3.

In 2018 and 2019, based on the scientific goals of TASSE, we established a 197standardized procedure for the co-launches, and the observations were primarily conducted 198in the daytime. Once the observational procedure matured, we performed the day and night 199co-launches evenly in 2020, 2021, and 2022. (Table 2). Eventually, we collected 625 200daytime cases and 404 nighttime cases. Also, the pilot experiments were conducted in the 201summer, and in the latter field experiments, we performed the co-launches in other months. 202Though there were more cases in July and August, we still conducted at least 21 co-203launches in May. As for the location, most co-launches were conducted at the Taipei weather 204station, while about 150 cases were in other cities in Taiwan. In these 1,029 co-launches, 205all STs successfully launched, and only 7 stopped sending signals after 300 seconds. The 206 ST, designed with commercial hardware components, is reliable in field observations. 207Note that the binding of ST and VS shown in Figure 1c differs from the instruments 208used in the Report of WMO's 2022 Upper-Air Instrument Intercomparison Campaign (IOM-209 143). The IOM-143 can be categorized into in-laboratory and in-field campaigns. The 210laboratory calibration techniques focus on understanding each instrument's characteristics 211

regarding random errors, low-temperature performance, and solar radiation sensitivity. The

field campaign calibration techniques emphasize ground checks. A major goal is to evaluate

the observation difference between the radiosonde systems, including the VS.

215

The IOM-143 used a rig to hold multiple instruments together while avoiding

interferences from ventilation and signals. Accordingly, the simple binding in our study may increase the random difference between ST and VS. However, this study aims to develop correction methods for ST to behave as close to VS as possible. Our simple binding colaunches in a consistent manner for several years are the only data we have. As presented in the following session, the biases of the corrected ST observations are slightly larger than the random errors. Hence, we used a relatively simple binding design in the co-launches before 2023. Future binding co-launches will be conducted according to the WMO standard.

224 2.2 Pre-processing of the co-launch data

The ST is with the wind estimated from GPS. We analyzed the difference in wind variables with the paired data of VS and ST. The mean deviation in zonal and meridional wind components, u and v, are 0.04 and 0.03 ms-1, respectively. The difference may come from the time lag of GPS signals between two sensors, which is small enough to ignore. In this paper, we emphasize the correction of temperature and humidity calibration.

The co-launch's primary purpose is to understand ST's performance further and develop a data correction scheme to approximate the VS's observations. The raw data collected often contains inconsistencies, inaccuracies, and outliers that can significantly distort analytical results and impede the accuracy of predictive modeling. Therefore, we need a proper procedure to process the raw data.

235

In the work of Ciesielski et al. (2012), the authors suggested four stages for

236	developing research-quality radiosonde data (their figure 1). The first level requires a single
237	unified data format. The second stage uses automated tools to remove unreliable data
238	based on prior knowledge of quality control (QC) checks. Then, data biases are detected
239	and corrected in the third level based on analysis or statistical methods. Finally, the fourth
240	level dataset aims to be user-friendly, usually in uniform vertical resolution with QC flags.
241	Following the framework proposed by Ciesielski et al. (2012), our data correction
242	method is applied in the third stage. Hence, we need a pre-processing scheme to derive a
243	level 2 dataset from the raw co-launch data.
244	Figure 4 illustrates the preprocessing used in this study. In the first stage, we
245	paired each ST and VS observation by nominal observation time and stored them in the
246	same plain-text format, L1_ST and L1_VS. Then, in the second stage, we corrected known
247	errors for both sensors, including missing values and outliers. After this stage, we derived
248	the level 2 dataset, L2_ST and L2_VS. Finally, given the fact that both ST and VS
249	radiosondes are attached during co-launch (as Figure 1c), we used "time after launch"
250	(every second) in both profiles to pair the values of two sensors, and resulted in L2_ST-VS.
251	Based on the prior studies of ST (Hwang et al., 2020), we performed a "ground
252	check" procedure to correct the pressure values of ST. This procedure adjusts the P_ST by
253	a constant bias dP_0, which is the difference between the surface pressure of the standard
254	instrument and the sensor of ST. Furthermore, we filtered out profiles with inconsistent
255	timestamps and paired records less than 250 (366 out of 1,029). Finally, we derived a

dataset of 663 merged profiles and 1,219,710 paired entries (up to every second) for further
 analysis.

258

259 **3. Data Correction Methods**

To develop a data correction scheme for ST, we first investigated the conventional CDF-based probability matching method (Ciesielski et al., 2009). Then, we extended this approach with direct modeling of multivariate distributions, which is the central concept of modern machine learning. We implemented the scheme with the basic generalized linear model (GLM) and compared the differences between the two approaches. Both CDF and GLM are simple statistical models. The CDF is based on a non-parametric approach, and the GLM is a parametric distribution (i.e., Gaussian distribution).

Before diving into the specific correction methods, we define the notations and symbols used in this study. While ST and VS represent the storm tracker and the Vaisala RS41-SGP radiosonde device, respectively, they are used as subscripts to denote the sensor of measurements. For example, P_{ST} means the pressure measured by ST, and T_{VS} is the temperature recorded by VS. The Δ (delta) symbol is used to denote the difference of the same variable between two sensors. Finally, the ' (prime) represents the corrected measure.

274 3.1 CDF-based Probability Matching

275

CDF-based Probability matching, also known as histogram matching or quantile

mapping, is a statistical technique used to adjust the distribution of a dataset (e.g., a forecast distribution) to match that of another dataset (e.g., an observed distribution). The primary objective of this method is not to directly correct individual data points but to ensure that the overall statistical properties, such as the frequency of occurrence of specific values, match between the two datasets. In radiosonde observation, CDF-based probability matching is commonly used as a quality control tool to ensure data quality consistency for field campaigns (Nuret et al., 2008; Ciesielski et al., 2009).

²⁸³Based on the paired entries collected in co-launches, the two-step correction ²⁸⁴scheme starts with correcting temperature (Δ T) based on the ground-checked pressure ²⁸⁵(P'_{ST}) and the measured temperature (T_{ST}). Then, the adjusted temperature (T'_{ST}) is used ²⁸⁶together with the measured relative humidity (RH_{ST}) to estimate the correction (Δ RH).

We first discretize the pressure and temperature variables in temperature 287correction into bins. Pressure is divided into 50 hPa intervals from 975-1025 hPa to 175-288225 hPa, denoted by their centers, 1000 hPa to 200 hPa. The cumulative distribution 289function of temperature measured by ST and VS for each pressure bin is calculated as 290291follows. The observed temperature records are sorted in ascending order, and then the proportion of observations is derived for every 1-degree interval from -80 to 40 degrees 292Celsius as the probability density. Based on the assumption that two sensors have the 293same CDF within this specific range, we derived the correction values, ΔT , as a function of 294measured temperature, T_{ST}. Figure 5 demonstrates the CDF-based temperature correction 295

of the pressure bin 475–525 hPa as an example. The upper panel shows the CDF of T_{VS} and T_{ST} , and the lower panel illustrates the correction (ΔT) as a function of the observed temperature (T_{ST}). We grouped the co-launches into daytime and night-time and performed the above procedure for each pressure bin. The results are shown in Figure 6, the complete temperature correction table used in this study.

As shown in Figure 6, the temperature sensor of ST consistently shows warm bias in all pressure bins, and the bias is stronger at high altitudes. The night-time warm bias exhibits similar patterns to the daytime but with a lower quantity.

The correction of relative humidity (RH) is derived in the same way as the 304temperature, except for the independent variables, which are the corrected temperature 305(T'_{ST}) and the measured relative humidity (RH_{ST}). The corrected temperature is discretized 306 into 10-degree intervals from -65 to 35 degrees Celsius. The relative humidity values are 307then rounded to integers and form 1% intervals from 0 to 100. Like the temperature 308 correction procedure, the correction value is derived based on the CDF probability matching 309 as a function of RH within each temperature bin. Figure 7 illustrates the complete RH 310 correction table used in this study. Figure 7 indicates that the ST shows dry-bias (wet-bias) 311in lower (higher) altitudes. ST is generally dryer during the daytime. 312

Using the correction tables shown in Figures 5 and 6, the temperature and relative humidity measured by ST are corrected and evaluated. Mathematically, this procedure can be expressed as:

316
$$\Delta T = T_{VS} - T_{ST} = f(P'_{ST}, T_{ST}, Day)$$
(1)

317
$$\Delta RH = RH_{VS} - RH_{ST} = f(T'_{ST}, RH_{ST}, Day)$$
(2)

318 , where Day is a binary variable representing the daytime or night-time, and f is 319 the CDF-based probability matching. Because we first correct the temperature and then use 320 the corrected temperature to correct the humidity, we call this approach a two-step CDF-321 base calibration.

322 **3.2 Generalized Linear Model**

Despite the robustness and ease of implementation of CDF-based probability 323 matching, the discretization steps and the form of the look-up table limit its application. For 324example, the discretization of pressure and temperature is empirical. Though the resulting 325326 CDFs and correction tables look reasonable, it is hard to justify that this is the only way to split a continuous variable into bins. In other words, by focusing on matching the overall 327distribution, probability matching may overlook or alter some of the finer-scale details in the 328 dataset. Furthermore, the look-up table makes adding extra independent variables more 329 complicated. For example, we used daytime and night-time tables to simplify the influence 330 of solar radiation so that we could use two tables for each correction. Another example is 331when we consider adding the effect of pressure in the correction of RH. In that case, we 332need to establish three-dimensional bins and justify whether the cut-off points are 333 adequately selected. Therefore, we want to introduce the modeling of the multivariate 334probability distribution to our correction scheme. 335

336	In essence, modeling the joint probability distributions of multiple variables is
337	fundamental in machine learning for capturing relationships and dependencies among
338	numerous predictors. It forms the backbone for various algorithms and techniques to predict,
339	generate, and understand multi-dimensional data. In equations (1) and (2), the mapping
340	function, f, can be seen as a model of the joint probability distribution of the independent
341	variables. While the CDF-based probability matching algorithm models this distribution by
342	discretizing the independent variables, it can be replaced by different algorithms that keep
343	the predictors in their continuous form.
344	The Generalized Linear Model (GLM, Nelder and Wedderburn, 1972) is a versatile
345	statistical framework used for modeling the relationship between a dependent variable
346	(response) and one or more independent variables (predictors) in a wide range of
347	applications. GLMs extend the concept of linear regression to handle a broader array of data
348	types and distributions. They are valuable for offering interpretable coefficients to
349	understand the impact of predictors on the response. GLMs have become a fundamental
350	tool in statistics and data analysis due to their flexibility and applicability across various fields.
351	In this study, we used GLMs in three different settings: first, the same scheme as CDF-
352	based probability matching (GLM1, as specified in equations (1) and (2)); second, using the
353	same set of predictors for T and RH corrections (GLM2); and finally, replacing daytime with
354	Julian-day and hour-of-day (GLM3).
355	To develop the GLM-based corrections, we used the paired entry dataset and the

356

least squared algorithm to fit linear regression models for the response variables (ΔT and

357	ΔRH) and the predictors (P' _{ST} , T _{ST} , RH _{ST} , and Day). This study used the Python algorithm
358	implementation from scikit-learn (Pedregosa et al., 2011). The resulting regression
359	equations are used to correct the storm tracker data.
360	In the second GLM configuration, we use the variables of $P'_{ST}, T_{ST}, RH_{ST},$ and Day
361	to predict the corrections of temperature (ΔT) and relative humidity (ΔRH). The resulting
362	models can be mathematically denoted as:
363	$\Delta T = f(P'_{ST}, T_{ST}, RH_{ST}, Day) $ (3)
364	$\Delta RH = f(P'_{ST}, T_{ST}, RH_{ST}, Day) $ (4)
365	Previous studies have suggested that solar radiation could be the leading cause
366	of the warm bias in the radiosonde data. This is why we established correction tables for
367	daytime and night-time separately. To simplify the correction process and limit the number
368	of tables created, the solar radiation is represented by the binary variable of Day. However,
369	with GLMs, we can easily use continuous variables in their original form. Hence, we used
370	the "Julian day from the summer solstice" (Jday) and the "hour-of-day from noon" (Hour) to
371	replace the Day variable. The resulting models are:
372	$\Delta T = f(P'_{ST}, T_{ST}, RH_{ST}, Jday, Hour) $ (5)
373	$\Delta RH = f(P'_{ST}, T_{ST}, RH_{ST}, Jday, Hour) $ (6)

These three settings are noted as GLM1, GLM2, and GLM3 in the later text.

Because all of our co-launches were conducted over the Taiwan area, the Julian

376 day and the hour of the day can properly approximate the value of the clear day radiation. Though the resulting correction formula can be applied to other regions, the differences in 377 the pressure-altitude relationship might slightly interfere with other predictors. Therefore, we 378recommend adding the location information (i.e., longitude and latitude) or directly using the 379 derived values of clear-sky radiation to develop the correction formula in other regions. 380 3814. Results 382 Figure 8 illustrates the patterns and deviations between ST and VS at various 383pressure levels. The panels (a), (b), and (c) demonstrate the temperature of VS and ST, and 384the differences between the two sensors. The relative humidity is shown in panels (d), (e), 385and (f). As shown in Figure 8, the ST exhibits warm and dry biases in general, and the biases 386 increase as the altitude rises. 387We applied the four correction methods described in the previous section, i.e., 388

389 CDF, GLM1, GLM2, and GLM3, to the 663 sounding profiles. Using the VS as the reference 390 observations, we calculated the root-mean-squared errors (RMSEs) as the evaluation 391 metrics. We did not use the correlation coefficients for evaluation because two sensors have 392 correlation coefficients higher than 0.99, even without corrections. The reason for this lies in 393 the co-launching strategy, which ensures that both instruments endure the same 394 environmental conditions. The means and standard deviations of RMSEs for all correction 395 methods are shown in Table 3 and Figure 9. As shown in Figure 9, we can see a significant

³⁹⁶bias reduction for all correction methods. We performed t-tests on the raw and corrected ³⁹⁷values, and the improvement of all four methods is statistically significant (for p-values little ³⁹⁸than 10e-29). We also compared the CDF and GLM, and the results show that CDF ³⁹⁹correction is slightly better than GLMs for both temperature and relative humidity. The ⁴⁰⁰difference between CDF and GLMs is significant in the t-test, though the significant level is ⁴⁰¹much lower than their bias reduction.

We also conducted t-tests on different GLM settings. The GLM1 and GLM2 did not show significant differences in temperature and relative humidity correction results. However, the GLM3 showed great improvement compared to GLM1 and GLM2. This suggested that solar radiation parameters can influence the correction more than a simple day/night indicator.

Table 3 and Figure 9 also show the evaluations for all records below 500- and 407700-hPa heights. As shown in the results, ST can proximate the VS measurements with a 408 temperature error of less than 1 degree Kelvin and a relative humidity error of less than 10%. 409 Suppose we focus on the observations below 700 hPa. In that case, the averaged RMSE 410 can be as low as 0.66-degree Kelvin for temperature and 4.61% for relative humidity, 411comparable to the uncertainties of VS temperature and relative humidity measurements 412(Vaisala, 2017). Such results suggested that the ST is sufficiently accurate, especially when 413focusing on the boundary layer and lower atmosphere. 414

415

In addition to the overall performance of ST, we illustrated the RMSEs distribution

of the 663 soundings in Figure 10. The upper panel, (a), illustrates the distribution of RMSEs before correction, and the lower panel, (b), shows the results after the CDF-based correction. As shown in Figure 10, the proposed correction methods reduced both the biases and spreads. The reduction in the standard deviation of RMSE in Table 3 also represents this fact. Based on Figure 10, we selected three cases with low, middle, and high biases in RH before correction to discuss in the following section. The one-by-one comparison of the 633 profiles can be found in the supporting materials.

- 423
- 424 **5.** Discussion
- 425 5.1 The Random Errors of ST

The specifications of the temperature and humidity sensor used in the ST reported the accuracy range as $\pm 0.3^{\circ}$ C and $\pm 2\%$ (Huang et al., 2020). We examined the random errors with cloud chamber laboratory examination and field observation datasets with dual ST launching.

Six STs of the same batch used in the co-launches were measured in controlled chambers. Each sensor was repeatedly measured at 10°C, 20°C, 30°C, and 40°C, and at relative humidity of 30%, 50%, 70%, and 90%. The results are shown in Figure 11. The standard deviations of the measured differences are 0.24°C (temperature) and 2.21% (relative humidity), respectively. The results reasonably agreed with the random errors reported by the manufacturer.

To assess the random error in the field, we conducted 42 observations with dual-436 ST. We aligned the records of two instruments with timestamps and evaluated the 437differences in temperature and humidity. In the 42 launches, there were a total of 96,284 438 aligned entries. We used statistical fences to exclude extreme situations such as frozen or 439malfunctioning sensors (Everitt and Skrondal, 2010; Tukey, 1977). After applying this simple 440 outlier removal technique, we have 85,641 temperature measurements and 81,616 pairs of 441relative humidity. The paired measurements are shown in Figure 12. The derived standard 442deviation for temperature is 0.52°C, and for relative humidity is 2.25%. The random errors 443measured in the field are slightly higher than those measured in the laboratory and reported 444by the manufacturer. There were 42 dual-ST attached to VS co-launches in the field, all of 445them were conducted during the day. We realized that the sensor performance could have 446 diurnal variations and we had performed the correction according to the day-night difference. 447By following the types of errors defined in Collins (2001), we attributed the day-night 448 variability as systematic error, which our correction methods can remedy. Hence, we didn't 449 further distinguish the random errors for day and night. 450

The results of the sounding-by-sounding evaluation presented in the earlier section, 0.66-degree for temperature and 4.61% for humidity, are slightly larger than the random errors measured in the field. This suggests that there is room to develop more sophisticated correction methods.

455

According to previous studies, the ST sensor has a about 5-second response time

(Huang et al., 2020). Several time-lag analyses were conducted to verify this and the impact to the measurement correction, the results suggest insignificant changes to the bias correction. However, given that Miloshevich et al. (2001, 2004) discussed the errors introduced by the sensor's time lag and proposed a correction algorithm, we plan to incorporat further sophisticated time-lag correction approaches in the future.

461 5.2 General performance of ST

Figure 13 illustrates the paired entries of VS and ST before and after corrections. As described in the previous section, the ST exhibits correlation coefficients higher than 0.99 for temperature and RH even before any correction. Hence, the effect of corrections is represented by the narrower diagonals in the right panels in Figure 13.

466 Even though the statistical tests showed the significance of the correction results, they are not easily perceived. Hence, we selected a few sounding profiles to demonstrate 467the effectiveness of our correction methods. Figure 14 shows the T and RH profile of the 468 sounding launched at 2021-08-03 12Z. This sounding was selected because of the overall 469 low RH bias before and after correction. In Figure 14, the corrected temperature is 470adequately aligned to the reference (T_{VS}) , and the corrected relative humidity (RH) is entirely 471satisfactory, particularly below 350hPa, covering most tropospheric levels with water vapor 472and clouds. Consistent findings are prevalent within our dataset, indicating that the adjusted 473ST measurements are reliable across various observational scenarios. 474

475

However, the corrected results may perform less when encountering extreme wet

cases. Figure 15 is the sounding profile on 2018-08-27 06Z when the reference RH of VS is 476 about 90% from ~850 to ~350-hPa heights. As shown in Figure 15, the temperature 477correction still works properly, except that the VS's temperature sensor showed much larger 478amplitude compared to VS. However, the RH measured by ST shows a dry bias of 479magnitude of 20% from ~850 to ~350-hPa heights while the patterns stay similar. The RH 480 correction mechanisms adjust the RH toward the reference, but the deviations are still 481significant. Note that this observation occurred during a severe rainfall event caused by the 482convergence of the tropical depression and the southwest monsoon from August 23 to 483August 30, 2018. All fifteen co-launches conducted in this event exhibited high bias in RH, 484ranging from 10% to 24%, and five showed bias greater than 10% even after correction. 485This particularly biased case has RMSE ranked 99.93% in our dataset. Since such a large 486 deviation rarely showed in the colaunches, we believe it could be caused by malfunction of 487this specific sensor. 488

In the left panel of Figure 15, we can also see a sudden change in GLM-corrected temperature around 310hPa. This should be caused by the missing values of ST in RH (see the missing yellow line section in the right panel). Because the GLM correction includes RH as an independent variable, when RH values are missing (treated as 0), the amount of correction can change accordingly.

Figure 16 illustrates the sounding profile on 2020-03-13 12Z. This is an average case with middle bias in RH before correction. Most of the 633 co-launches behave similarly

496 to this case.

From the cases shown above, we also notice the characteristics of different correction methods. The GLM adjustments look like horizontal shifts of the original values due to the linearity of the model.

500 Despite the simplicity of our correction methods, the temperature bias between 501 ST and VS can be reduced from 3.0 K to 0.9 K, and the RH bias from 8.5% to 6.9%. Note 502 that our correction methods also reduce the standard deviations from 1.8 K to 0.6 K and 503 3.8% to 2.8%, respectively. Hence, we can expect 80% of ST observations to exhibit less 504 than 1K bias in temperature and 8.8% bias in RH.

The corrected ST measurements aligned well with the VS data, especially when the sounding successfully reached an altitude higher than 300hPa. For those co-launches that ended early, though their bias is still low in statistics, their profiles usually looked problematic when visualized. We recommend further looking into the reasons that cause the sounding to end early.

510 5.3 A ST observation in afternoon thunderstorm study

The low cost of the ST can facilitate high spatial-temporal frequency of upper-air observations. While the ST provides reasonable measures after correction, its reliability in higher altitudes is still incompatible with the VS used in standard operation. Therefore, here, we demonstrate a use case to illustrate the strength of the ST. Figure 17 shows a set of continuous ST profiles on 2018-08-17 with one-hour intervals. This experiment used only

ST and was not included in the colaunch dataset. Figure 17 shows the evolution of a local 516convective system, which is not feasible in regular 12-hour interval radiosonde operation -517the increase of atmospheric moisture at 1300 local time before the heavy rain occurrence is 518observed. Using the flexibility in deploying the ST during field campaigns allows us to 519capture vertical profiles in the lower troposphere at an hourly, or even a shorter time interval. 520This is notably advantageous for understanding the development of deep convection, which 521typically has a lifetime of 1 to 3 hours, and the surrounding environment, especially the lower 522boundary layer. A similar ST profile has been used in the study of the afternoon 523thunderstorm in Taipei compared to the results from CRESS cloud-resolving modeling 524(Tsujino et al. 2022). Note that the ST data here was corrected with the CDF-based method; 525better performance can be achieved with GLM-based methods. 526

527

528 6. Concluding Remarks

In this study, we assess the data quality control and calibration of the Storm Tracker (ST) with the co-launched Vaisala RS41-SGP (VS) in temperature, relative humidity, and winds for lower atmospheric observations. Although wind speed and direction are crucial information in radiosonde observation, we found from the co-launched data that the GPS-estimated ST wind differs from that of VS in insignificant magnitude. The GPS estimated ST wind error difference is about 0.05 ms⁻¹. To ensure the reliability of ST measurements in temperature and moisture, we conducted over a thousand co-launches of

the ST and the VS, evaluating and refining the performance of the ST through developed correction methods for temperature and humidity measurements. Based on the soundingby-sounding comparison, the corrected ST soundings have a 1-K temperature and 7% relative humidity root mean square difference from the VS soundings. These error differences can be reduced to 0.66-K and 4.61% below the 700-hPa height. The biases of the corrected ST observations are slightly larger than the random errors, which were 0.24 K and 2.21% in the laboratory and 0.52 K and 2.23% in the field.

Derived from the co-launch dataset, two correction methods based on CDF and 543GLM algorithms were implemented to enhance the quality of temperature and humidity 544observations in the ST. Both methods work comparably well to reduce the biases of the ST. 545While the CDF-based correction is robust and reliable, the GLMs easily model and change 546the predictors. The ST observations closely aligned with the VS after corrections, particularly 547in the lower atmospheric layers below 700hPa. For synoptic weather, geostrophic 548adjustment dynamics suggest that spatial temperature variations in the free atmosphere 549may not be significant, reducing the need for high-frequency upper-air radiosonde 550observations. Consequently, most operational radiosonde observations worldwide are 551conducted daily at 00Z and 12Z, with 12-24 hours intervals. However, atmospheric 552phenomena originating from the boundary layer are often smaller in scale and closely related 553to local terrain. For example, a single convective cell typically lasts minutes, while 554thunderstorms persist for a few hours. To better understand these types of weather, a low-555

cost and lightweight device capable of deploying multiple sensors simultaneously or at 556intervals of less than an hour can enhance field experiments. This approach provides 557valuable insights into the lower atmosphere's significant variations in temperature and 558moisture, especially for convective systems that may lead to disastrous rainfall or flash 559flooding. This positions the ST as a promising candidate for supplementing regular upper-560air observations for high spatial and temporal resolution in the lower atmosphere. Our work 561also demonstrated that low-cost commercial sensor components can help high-frequency 562observations in specific targets with carefully developed correction methods. 563Although we used the linear regression version of GLMs in this study, the concept 564of modeling the joint probability distribution can be extended to various statistical models 565

such as decision trees, support vector machines (SVM), and artificial neural networks (ANN).
 The simple GLMs in this study assume the response is a Gaussian distribution of the linear
 combination of predictors. Other machine learning models can establish nonlinear mappings
 between the predictors and response without assuming any distributions. However,
 investigating more machine learning models is beyond the scope of this study.

In summary, while the VS remains the standard for upper-air observation, ST is suitable for Planetary Boundary Layer (PBL) or lower atmosphere studies in areas with complex terrain. The ST can complement the VS observation with high spatial and temporal resolution observation of the lower atmosphere. This may be useful for mesoscale storm observations in East Asia, where PBL conditions can vary significantly within short distances.

576However, it is important to note that the correction results presented here are specific to Taiwan's observation. This is especially true for the CDF method, as the variability of the 577CDF method data is height-dependent, so the direct use of our CDF calibration should be 578cautious. On the other hand, the GLM method may provide a reasonable calibration to the 579ST sounding when longitude and latitude are used as predictors or local clear-sky radiation 580is directly used. To ensure broader applicability, we suggest conducting co-launches during 581field campaigns. This approach would allow users to derive in-situ correction formulas using 582the proposed methods. Our experiments indicate that ST between VS launches may 583enhance meteorological data collection and analysis in the lower atmosphere. 584

585

586 Data Availability Statement

The data for this project is confidential but may be obtained with Data Use Agreements with the National Taiwan University. Researchers interested in access to the data may contact authors. It can take some months to negotiate data use agreements and gain access to the data. The author will assist with reasonable replication attempts for two years following publication.

592 Code for data cleaning and analysis is provided in a replication package. It is available at 593 https://www.dropbox.com/scl/fo/ah7i6z4f7u2yzijfh7ua3/h?rlkey=ar4g2hq7hwkop2eyzw83el 594 8ih&dl=0 for review. It will be uploaded to GitHub once the paper has been conditionally 595 accepted.

596	
597	
598	Acknowledgments
599	This study was supported by the National Science and Technology Council (NSTC) of
600	Taiwan for many years of support under Grants MOST 107-2628-M-002-016, MOST 108-
601	2119-M-002-022, MOST 109-2111-M-002-008, MOST 110-2123-M-002-007, NSTC 111-
602	2123-M-002-014, NSTC 112-2123-M-002-006, NSTC 113-2123-M-002-018, and NSTC
603	113-2124-M-002-015
604	We want to express our sincere gratitude to Wei-Chun Huang, who contributed to
605	developing the storm tracker in the first place. Our heartful appreciation to the Central
606	Weather Administration (CWA) for most of the co-launch in Vaisala RS41-SGP (VS) and
607	Storm Tracker (ST). We thank the research team members of the Taipei Summer Storm
608	Experiment (TASSE), the Yilan Experiment of Severe Rainfall (YESR2020), the Taiwan-
609	Area Heavy Rain Observation and Prediction Experiment (TAHOPE), the Northern Coast
610	Observation, Verification, and Investigation of Dynamics (NoCOVID21), and the Mountain
611	Cloud Climatology (MCC) project. Their dedication and commitment were instrumental in
612	the realization of our research objectives.
613	We sincerely thank the reviewers for their thorough and insightful feedback, which

- 614 immensely helped to improve the manuscript.
- 615

References

- 616 Ciesielski, P. E., Haertel, P. T., Johnson, R. H., Wang, J., and Loehrer, S. M.: Developing
- 617 High-Quality Field Program Sounding Datasets. Bulletin of the American Meteorological
- 618 Society, **93**(3), 325–336. https://doi.org/10.1175/BAMS-D-11-00091.1, 2012.
- 619 Ciesielski, P. E., Johnson, R. H., and Wang, J.: Correction of Humidity Biases in Vaisala
- RS80-H Sondes during NAME. Journal of Atmospheric and Oceanic Technology, 26(9),
- 621 1763–1780. https://doi.org/10.1175/2009JTECHA1222.1, 2009.
- 622 Collins, W. G. (2001). The Operational Complex Quality Control of Radiosonde Heights
- and Temperatures at the National Centers for Environmental Prediction. Part II:
- 624 Examples of Error Diagnosis and Correction from Operational Use. *Journal of Applied*
- 625 *Meteorology and Climatology*, 40(2), 152–168.
- 626 Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., & Vömel, H. (2014).
- Reference quality upper-air measurements: GRUAN data processing for the Vaisala
- RS92 radiosonde. *Atmospheric Measurement Techniques*, **7**(12), 4463–4490.
- 629 https://doi.org/10.5194/amt-7-4463-2014
- Dzambo, A. M., Turner, D. D., and Mlawer, E. J.: Evaluation of two Vaisala RS92
- radiosonde solar radiative dry bias correction algorithms. *Atmospheric Measurement*
- 632 *Techniques*, **9**(4), 1613–1626. https://doi.org/10.5194/amt-9-1613-2016, 2016.
- Everitt, B. S.; Skrondal, A. (2010), The Cambridge Dictionary of Statistics, Cambridge
- 634 University Press.
- Hoshino, S., Sugidachi, T., Shimizu, K., Kobayashi, E., Fujiwara, M., & Iwabuchi, M.

636	(2022). Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92
637	radiosondes at Tateno, Japan. Atmospheric Measurement Techniques, 15 (20), 5917–
638	5948. https://doi.org/10.5194/amt-15-5917-2022
639	Hwang, WC., Lin, PH., and Yu, H.: The development of the "Storm Tracker" and its
640	applications for atmospheric high-resolution upper-air observations. Atmospheric
641	Measurement Techniques, 13 (10), 5395–5406. https://doi.org/10.5194/amt-13-5395-
642	2020, 2020.
643	Kizu, N., Sugidachi, T., Kobayashi, E., Hoshino, S., Shimizu, K., Maeda, R., & Fujiwara, M.
644	(2018). Technical characteristics and GRUAN data processing for the Meisei RS-11G
645	and iMS-100 radiosondes. GRUANLead Centre.
646	https://www.gruan.org/documentation/gruan/td/gruan-td-5
647	Lee, SW., Kim, S., Lee, YS., Choi, B. I., Kang, W., Oh, Y. K., Park, S., Yoo, JK., Lee,
648	J., Lee, S., Kwon, S., & Kim, YG. (2022). Radiation correction and uncertainty
649	evaluation of RS41 temperature sensors by using an upper-air simulator. Atmospheric
650	Measurement Techniques, 15 (5), 1107–1121. https://doi.org/10.5194/amt-15-1107-2022
651	Lesht, B., and Richardson, S.: The Vaisala RS80H Radiosonde Dry-Bias Correction
652	Redux. Proceedings of the ninth atmospheric radiation measurement (ARM) science
653	team meeting 2002. ARM-CONF-2002, St. Petersburg, Florida, 2002.
654	Lucas, C., and Zipser, E. J.: Environmental Variability during TOGA COARE. Journal of
655	the Atmospheric Sciences, 57(15), 2333–2350. https://doi.org/10.1175/1520-

- 656 0469(2000)057<2333:EVDTC>2.0.CO;2, 2000.
- 657 Luers, J. K.: The Influence of Environmental Factors on the Temperature of the
- 658 Radiosonde Thermistor. Doctoral Dissertations.
- https://trace.tennessee.edu/utk_graddiss/1913, 1989.
- 660 Luers, J. K.: Temperature Error of the Vaisala RS90 Radiosonde. Journal of Atmospheric
- and Oceanic Technology, **14**(6), 1520–1532. https://doi.org/10.1175/1520-
- 662 0426(1997)014<1520:TEOTVR>2.0.CO;2, 1997.
- 663 Luers, J. K., and Eskridge, R. E.: Use of Radiosonde Temperature Data in Climate
- 664 Studies. Journal of Climate, **11**(5), 1002–1019. https://doi.org/10.1175/1520-
- 665 0442(1998)011<1002:UORTDI>2.0.CO;2, 1998.
- Mattioli, V., Westwater, E. R., Cimini, D., Liljegren, J. C., Lesht, B. M., Gutman, S. I., and
- 667 Schmidlin, F. J.: Analysis of Radiosonde and Ground-Based Remotely Sensed PWV
- ⁶⁶⁸ Data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment.
- Journal of Atmospheric and Oceanic Technology, **24**(3), 415–431.
- 670 https://doi.org/10.1175/JTECH1982.1, 2007.
- 671 McMillin, L., Uddstrom, M., and Coletti, A.: A Procedure for Correcting Radiosonde
- Reports for Radiation Errors. Journal of Atmospheric and Oceanic Technology, 9(6),
- 673 801–811. https://doi.org/10.1175/1520-0426(1992)009<0801:APFCRR>2.0.CO;2, 1992.
- Miller, E. R., Wang, J., and Cole, H. L.: Correction for dry bias in Vaisala radiosonde RH
- data. Proceedings of the ninth atmospheric radiation measurement (ARM) science team

- 676 *meeting 1999.* ARM-CONF-1999, San Antonio, Texas, 1999.
- Miloshevich, L. M., Paukkunen, A., Vömel, H., and Oltmans, S. J.: Development and
- ⁶⁷⁸ Validation of a Time-Lag Correction for Vaisala Radiosonde Humidity Measurements.
- Journal of Atmospheric and Oceanic Technology, **21**(9), 1305–1327.
- 680 https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2, 2004.
- Miloshevich, L. M., Vömel, H., Paukkunen, A., Heymsfield, A. J., and Oltmans, S. J.:
- 682 Characterization and Correction of Relative Humidity Measurements from Vaisala RS80-
- 683 A Radiosondes at Cold Temperatures. Journal of Atmospheric and Oceanic Technology,
- 684 **18**(2), 135–156. https://doi.org/10.1175/1520-
- 685 0426(2001)018<0135:CACORH>2.0.CO;2, 2001.
- Nelder, J. A., & Wedderburn, R. W. M.: Generalized Linear Models. *Journal of the Royal*
- 687 Statistical Society. Series A (General), **135**(3), 370–384.
- 688 https://doi.org/10.2307/2344614, 1972.
- Nuret, M., Lafore, J.-P., Guichard, F., Redelsperger, J.-L., Bock, O., Agusti-Panareda, A.,
- and N'Gamini, J.-B.: Correction of Humidity Bias for Vaisala RS80-A Sondes during the
- 691 AMMA 2006 Observing Period. Journal of Atmospheric and Oceanic Technology,
- 692 **25**(11), 2152–2158. https://doi.org/10.1175/2008JTECHA1103.1, 2008.
- Sommer, M., von Rohden, C., Simeonov, T., Oelsner, P., Naebert, T., Romanens, G.,
- Jauhiainen, H., Survo, P., & Dirksen, R. (2023). GRUAN characterisation and data
- 695 processing of the Vaisala RS41 radiosonde. GRUAN Lead Centre.

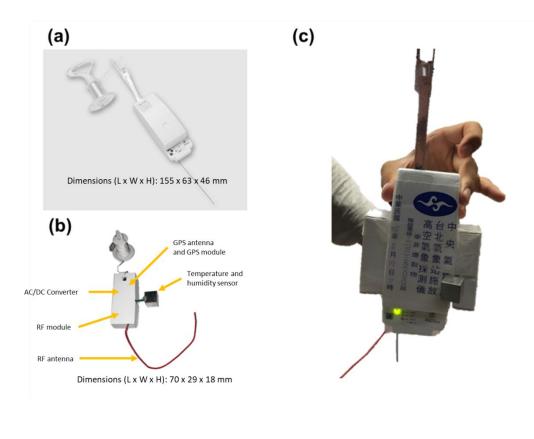
- 696 https://www.gruan.org/documentation/gruan/td/gruan-td-8
- 697 Sun, B., Reale, A., Schroeder, S., Seidel, D. J., and Ballish, B.: Toward improved
- 698 corrections for radiation-induced biases in radiosonde temperature observations.
- Journal of Geophysical Research: Atmospheres, **118**(10), 4231–4243.
- 700 https://doi.org/10.1002/jgrd.50369, 2013.
- Tsujino, S., Kuo, H.-C., Yu, H., Chen, B.-F., and Tsuboki, K.: Effects of mid-level moisture
- and environmental flow on the development of afternoon thunderstorms in Taipei. *Terr.*
- 703 Atmos. Ocean. Sci., **32**, 497-518, https://doi: 10.3319/TAO.2021.11.17.01, 2021.
- Tukey, J. (1977). Exploratory Data Analysis, Addison-Wesley
- Vaisala.: Vaisala Radiosonde RS41 Measurement Performance. Vaisala.
- ⁷⁰⁶ https://www.vaisala.com/en/whitepaper/vaisala-radiosonde-rs41-measurement-
- performance, 2017.
- Vömel, H., Selkirk, H., Miloshevich, L., Valverde-Canossa, J., Valdés, J., Kyrö, E., Kivi, R.,
- Stolz, W., Peng, G., and Diaz, J. A.: Radiation Dry Bias of the Vaisala RS92 Humidity
- Sensor. Journal of Atmospheric and Oceanic Technology, **24**(6), 953–963.
- 711 https://doi.org/10.1175/JTECH2019.1, 2007.
- von Rohden, C. von, Sommer, M., Naebert, T., Motuz, V., & Dirksen, R. J. (2022).
- Laboratory characterization of the radiation temperature error of radiosondes and its
- application to the GRUAN data processing for the Vaisala RS41. Atmospheric
- 715 *Measurement Techniques*, **15**(2), 383–405. https://doi.org/10.5194/amt-15-383-2022

716	Wang, J., Zhang, L., Dai, A., Immler, F., Sommer, M., and Vömel, H.: Radiation Dry Bias
717	Correction of Vaisala RS92 Humidity Data and Its Impacts on Historical Radiosonde
718	Data. Journal of Atmospheric and Oceanic Technology, 30 (2), 197–214.
719	https://doi.org/10.1175/JTECH-D-12-00113.1, 2013.
720	Yoneyama, K., Fujita, M., Sato, N., Fujiwara, M., Inai, Y., and Hasebe, F.: Correction for
721	Radiation Dry Bias Found in RS92 Radiosonde Data during the MISMO Field
722	Experiment. Sola, 4 , 13–16. https://doi.org/10.2151/sola.2008-004, 2008.
723	Yu, H., Ciesielski, P.E., Wang, J., Kuo, HC., Vömel, H., and Dirksen, R.: Evaluation of
724	Humidity Correction Methods for Vaisala RS92 Tropical Sounding Data. Journal of
725	Atmospheric and Oceanic Technology, 32 , 397–411, https://doi.org/10.1175/JTECH-D-
726	14-00166.1, 2015.
727	Yu, H., Kuo, HC., Lin, PH., Huang, WC., Liu, CH., Su, S. H., and Yang, JH.:
728	Quality-Controlled High-Resolution Upper-Air Sounding Dataset for TASSE:
729	Development and Corrections of the "Storm Tracker" Observations. 2020 Conference on
730	Weather Analysis and Forecasting. 2020 Conference on Weather Analysis and
731	<i>Forecasting</i> , Taipei, 2020.
732	
733 734	

735	List of Figures
736	Fig. 1 (a) The Vaisala RS41-SGP radiosonde (weighted 84g, body dimension: 155 x 63 x $$
737	46 mm), (b) the storm tracker mini-radiosonde (weighted 20 g with battery, body
738	dimension: 70 x 29 x 18 mm), and (c) an example of the co-launched soundings via the
739	TASSE experiment. More ST hardware details are described in Hwang et al. (2020).
740	Fig. 2 The sounding of 2018-06-26 03:00 UTC (11:00 LST) by VS (solid lines) and ST
741	(dashed lines). The ST profile showed warm and dry bias near the surface.
742	Fig. 3 The sites of the co-launch experiments. Most co-launches (909 out of 1,029) were
743	conducted in the Taipei (Banqiao) station. The number of co-launches collected in each
744	site can be found in Table 1.
745	Fig. 4 The preprocessing for ST and VS data from raw to level 2.
746	Fig. 5 The CDF-based temperature correction of the pressure bin 475 \sim 525 hPa. The
747	upper panel shows the CDF of the temperature of two sensors, and the lower panel
748	shows their difference as a function of temperature. The probability density is defined by
749	the proportion of observations within every 1-degree interval from -80 to 40 degrees
750	Celsius.
751	Fig. 6 The CDF-based temperature correction tables for daytime (00z-12z, left panel)
752	and night-time (12z-00z, right panel).
753	Fig. 7 The CDF-based RH correction tables for daytime (00z-12z, left panel) and night-
754	time (12z-00z, right panel).

755	Fig. 8 The boxplot of temperatures (upper) and RH (lower) of ST (left), VS (center), and
756	their difference (right) without corrections.
757	Fig. 9 The mean RMSE of ST and VS with different correction methods for temperature
758	(left) and RH (right). For each correction method, the mean RMSE is derived with all
759	available records (blue), records below 500 hPa (orange), and records below 700hPa
760	(green). The upper panel (a) showed the overall RMSE, and the middle (b) and lower
761	panel (c) demonstrated the RMSE of daytime and nighttime, respectively
762	Fig. 10 The scatter plots of temperature (upper) and RH (lower) before and after
763	correction.
764	Fig. 11 The temperature (left) and RH (right) measurements of STs in the controlled
765	laboratory environment. Six STs were measured separately. The temperature (left
766	panel) was measured repeatedly at 10°C, 20°C, 30°C, and 40°C. The relative humidity
767	(right panel) was measured at 30%, 50%, 70%, and 90%. The derived random error for
768	temperature is 0.24°C, and for relative humidity is 2.21%.
769	Fig. 12 The biases of 42 dual-ST launches. The figure shows 85,641 temperature
770	measurements (left panel) and 81,616 pairs of relative humidity (right panel). The
771	derived random error for temperature is 0.52°C, and for relative humidity is 2.25%.
772	Fig. 13 The histograms of the RMSEs of temperature (upper) and RH (lower) between
773	ST and VS. The upper panel, (a), illustrates the distribution of RMSEs before correction,
774	and the lower panel, (b), shows the results after the CDF-based correction.

775	Fig. 14 The temperature (left) and RH (right) of the co-launch sounding on 2021-0803
776	12Z. The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green,
777	and GLM-corrected in red.
778	Fig. 15 The temperature (left) and RH (right) of the co-launch sounding on 2018-08-27
779	06Z. The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green,
780	and GLM-corrected in red.
781	Fig. 16 The temperature (left) and RH (right) of the co-launch sounding on 2018-03-13
782	12Z. The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green,
783	and GLM-corrected in red.
784	Fig. 17 The continuous ST observations of one-hour intervals on 2018-08-17 at Shezi.
785	The soundings were corrected with CDF, and the derived specific humidity, q, is shown
786	in panel (a) with the wind field. The derived equivalent potential temperature, Θe , is
787	shown in panel (b).



790	Fig. 1 (a) The Vaisala RS41-SGP radiosonde (weighted 84g, body dimension: 155 x 63 x $$
791	46 mm), (b) the storm tracker mini-radiosonde (weighted 20 g with battery, body
792	dimension: 70 x 29 x 18 mm), and (c) an example of the co-launched soundings via the
793	TASSE experiment. More ST hardware details are described in Hwang et al. (2020).
794	

2018-06-26 03Z(UTC)

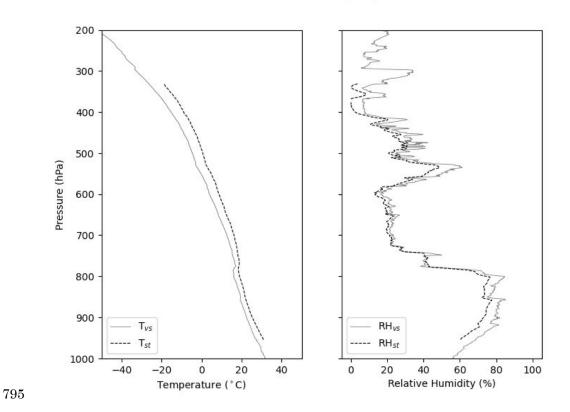


Fig. 2 The sounding of 2018-06-26 03:00 UTC (11:00 LST) by VS (solid lines) and ST
(dashed lines). The ST profile showed warm and dry bias near the surface.

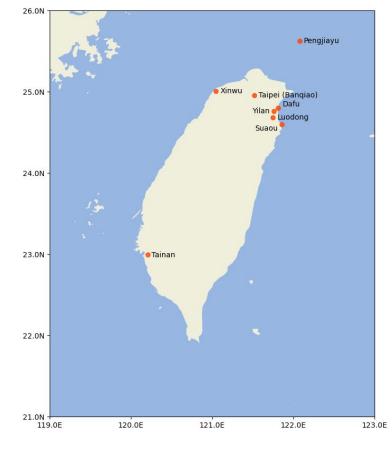


Fig. 3 The sites of the co-launch experiments. Most co-launches (909 out of 1,029) were
conducted in the Taipei (Banqiao) station. The number of co-launches collected in each
site can be found in Table 1.

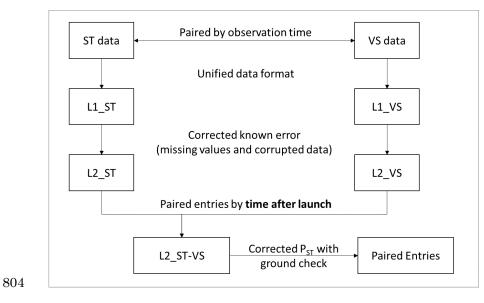


Fig. 4 The preprocessing for ST and VS data from raw to level 2.

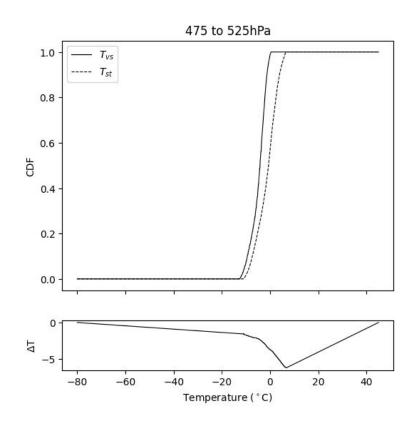


Fig. 5 The CDF-based temperature correction of the pressure bin 475 ~ 525 hPa. The
upper panel shows the CDF of the temperature of two sensors, and the lower panel
shows their difference as a function of temperature. The probability density is defined by
the proportion of observations within every 1-degree interval from -80 to 40 degrees
Celsius.

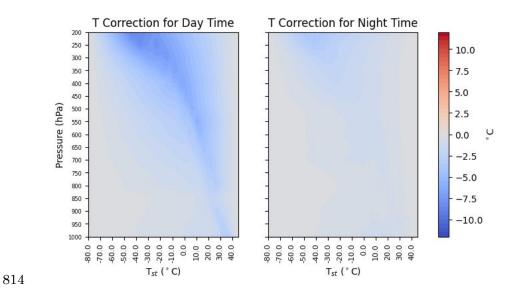


Fig. 6 The CDF-based temperature correction tables for daytime (00z-12z, left panel)

and night-time (12z-00z, right panel).

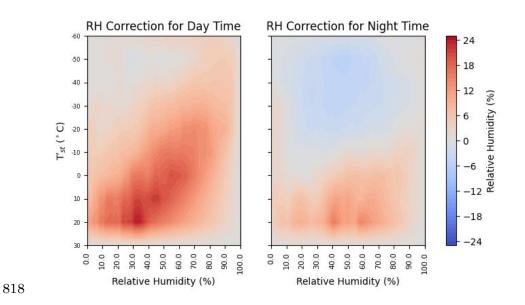


Fig. 7 The CDF-based RH correction tables for daytime (00z-12z, left panel) and night-

time (12z-00z, right panel).

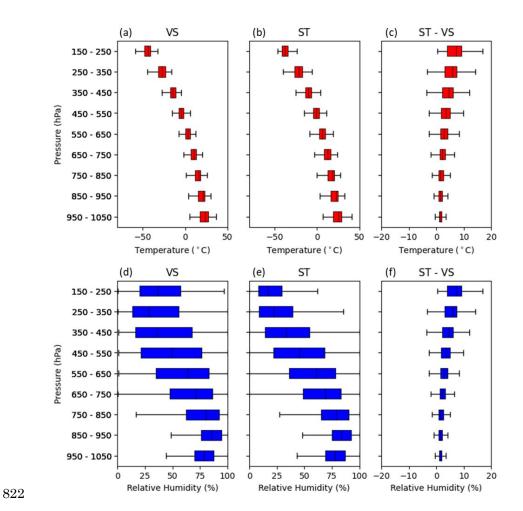
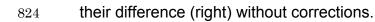


Fig. 8 The boxplot of temperatures (upper) and RH (lower) of ST (left), VS (center), and



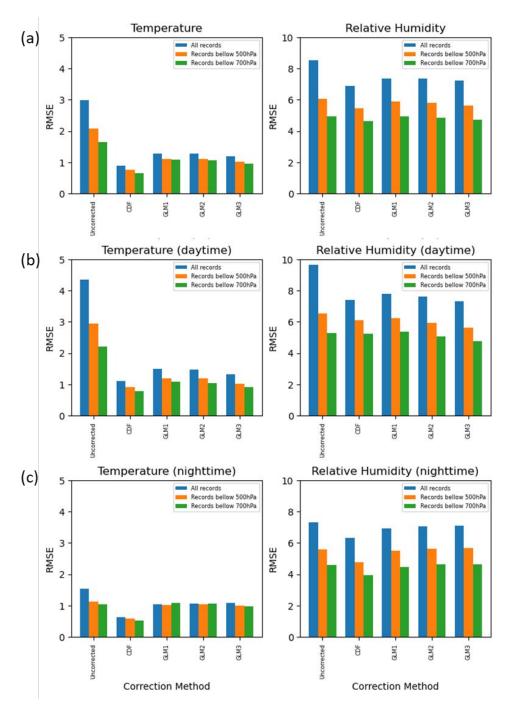
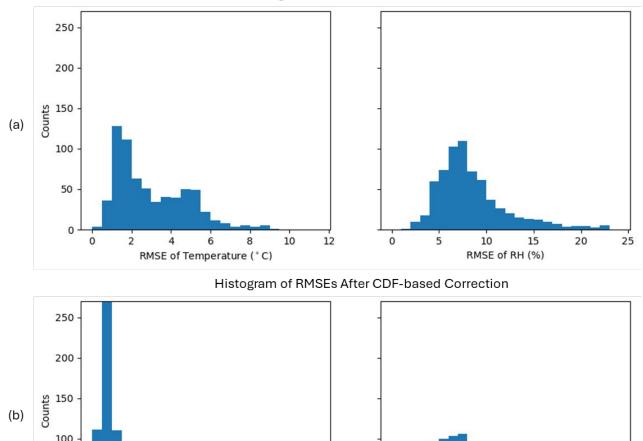


Fig. 9 The mean RMSE of ST and VS with different correction methods for temperature (left) and RH (right). For each correction method, the mean RMSE is derived with all available records (blue), records below 500 hPa (orange), and records below 700hPa (green). The upper panel (a) showed the overall RMSE, and the middle (b) and lower panel (c) demonstrated the RMSE of daytime and nighttime, respectively



Histogram of RMSEs Before Correction

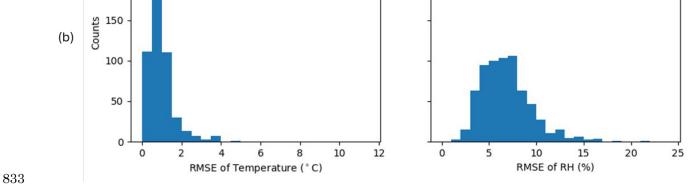


Fig. 10 The histograms of the RMSEs of temperature (upper) and RH (lower) between

835 ST and VS. The upper panel, (a), illustrates the distribution of RMSEs before correction,

and the lower panel, (b), shows the results after the CDF-based correction.

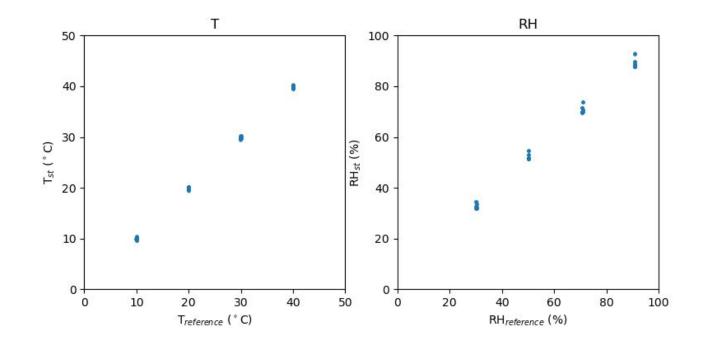
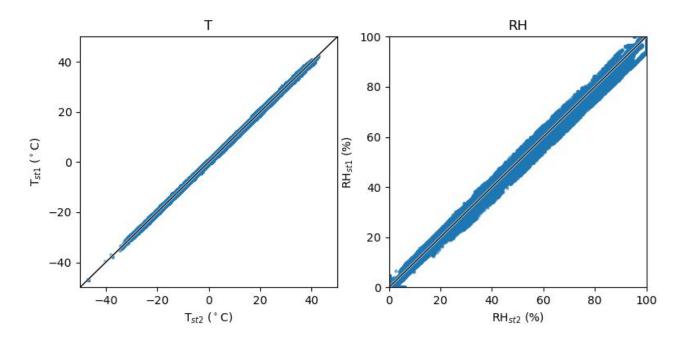
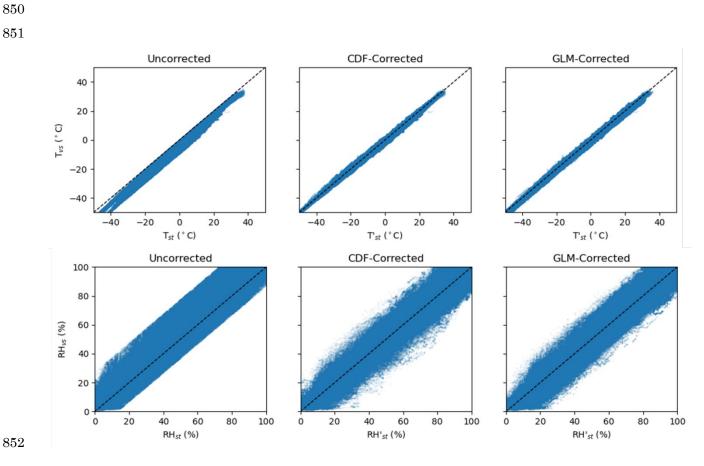


Fig. 11 The temperature (left) and RH (right) measurements of STs in the controlled
laboratory environment. Six STs were measured separately. The temperature (left
panel) was measured repeatedly at 10°C, 20°C, 30°C, and 40°C. The relative humidity
(right panel) was measured at 30%, 50%, 70%, and 90%. The derived random error for
temperature is 0.24°C, and for relative humidity is 2.21%

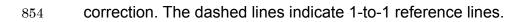


844

Fig. 12 The biases of 42 dual-ST launches. The figure shows 85,641 temperature measurements (left panel) and 81,616 pairs of relative humidity (right panel). The derived random error for temperature is 0.52°C, and for relative humidity is 2.25%.



853 Fig. 13 The scatter plots of temperature (upper) and RH (lower) before and after



2021-08-03 12Z

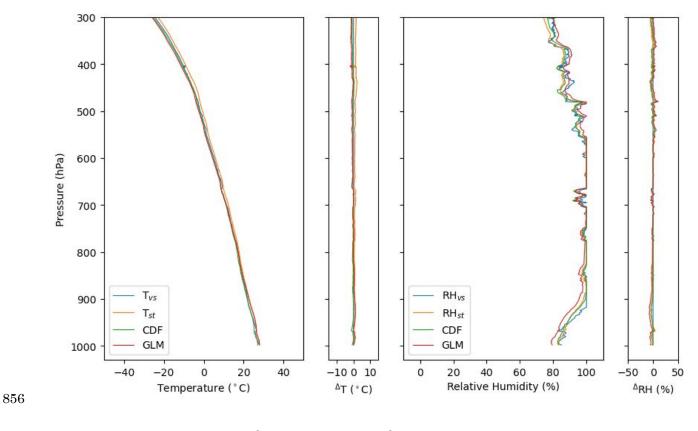


Fig. 14 The temperature (left) and RH (right) of the 2021-0803 12Z co-launch sounding.
The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green, and
GLM-corrected in red.

2018-08-27 06Z

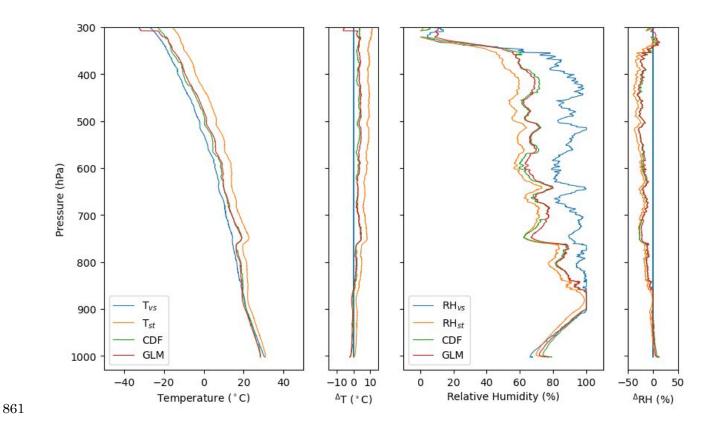


Fig. 15 The temperature (left) and RH (right) of the 2018-08-27 06Z co-launch sounding.
 The reference (VS) is illustrated in blue, the ST in range, CDF-corrected in green, and

64 GLM-corrected in red.

2020-03-13 12Z

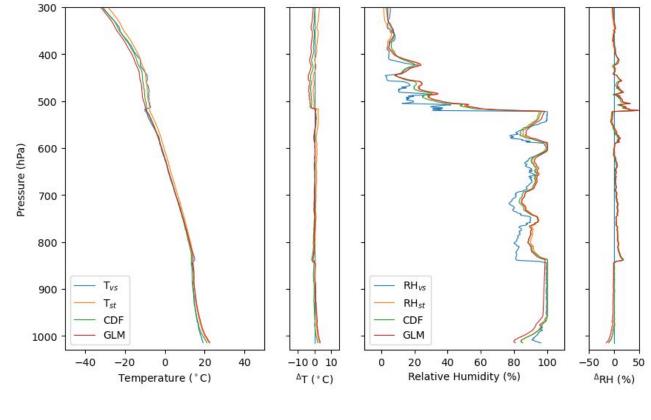
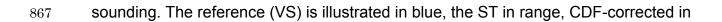


Fig. 16 The temperature (left) and RH (right) of the 2020-03-13 12Z co-launch



green, and GLM-corrected in red.

869

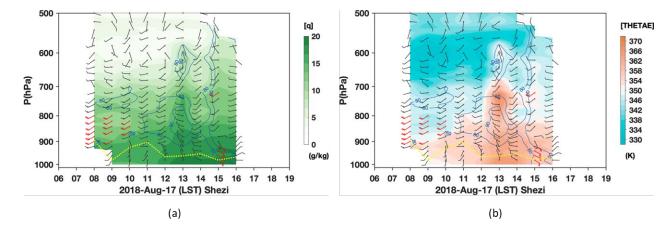


Fig. 17 The continuous ST observations of one-hour intervals on 2018-08-17 at Shezi. The
soundings were corrected with CDF, and the derived specific humidity, q, is shown in panel
(a) with the wind field. The derived equivalent potential temperature, Oe, is shown in panel
(b). Note that this field experiment used only ST for observation and the data was not
included in the colaunch dataset.

877		List of Tables
878		
879	Table 1	The summary of the field experiments conducting ST-VS co-launches.
880	Table 2	The summary of the 1,029 co-launches.
881	Table 3	The RMSE of ST and VS with different correction methods for temperature and
882	RH.	
883		

Table 1 The summary of the field experiments conducting ST-VS co-launches.

Experiment	Time	Location	Total Numbers of ST-
			VS Co-launch
Taipei Summer Storm Experiment (TASSE)	2018-2020	Taipei (Banqiao)	478
Yilan Experiment of Severe Rainfall	2020. Nov	Yilan, Suaou, Luodong,	46
(YESR2020)		Dafu	
Taiwan-Area Heavy rain Observation and	2019-2022	Taipei (Banqiao),	382
Prediction Experiment (TAHOPE)		Pengjiayu	
Northern Coast Observation, Verification, and	2021. May-Jun	Taipei (Banqiao)	49
Investigation of Dynamics (NoCOVID21)			
Mountain Cloud Climatology (MCC)	2022. Oct-Nov	Suaou	23
Other		Tainan, Xinwu	51

885

Month	2018		2019		2020		2021		2022		Total	
	Day	Night	Day	Nigh								
1					21	24			25	26	46	50
2					29	29					29	29
3					27	31					27	31
4					30	30	15	13			45	43
5					6	5	6	4			12	9
6	14		20				30	32			64	32
7	14		60	12			22	23			96	33
8	41		85				23	22			149	22
9							25	26			25	20
10							29	28	7	3	36	3
11					20	17	40	41	6	7	66	6
12							30	31			30	3
Total	69	0	165	12	133	136	220	220	38	36	625	40

Table 2 The summary of the 1,029 co-launches.

888

890 Table 3 The RMSE of ST and VS with different correction methods for temperature and

891 RH.

Variable	Correction Method	1	mean RMSE		stdev of RMSE			
Variable		full	500hPa	700hPa	full	500hPa	700hPa	
Temperature	Uncorrected	2.9969	2.0753	1.6446	1.8399	1.2291	0.8894	
	CDF	0.8778	0.7568	0.6560	0.5579	0.4166	0.3367	
	GLM1	1.2714	1.1126	1.0732	0.6612	0.4549	0.3682	
	GLM2	1.2745	1.1128	1.0533	0.6625	0.4633	0.3693	
	GLM3	1.1991	1.0105	0.9483	0.6284	0.4566	0.3579	
Relative Humidity	Uncorrected	8.5265	6.0721	4.9336	3.8236	2.9284	2.3624	
	CDF	6.8946	5.4707	4.6098	2.8107	2.7488	2.4442	
	GLM1	7.4604	5.8673	4.9267	2.9158	2.6489	2.3084	
	GLM2	7.4152	5.7997	4.8478	2.7785	2.4307	2.0590	
	GLM3	7.2683	5.6355	4.7043	2.6668	2.3372	1.9878	

892