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29 Abstract

30

31 Numerical weather prediction (NWP) centers around the world operate a variety of 

32 NWP models. In addition, recent advances in AI-driven NWP models have further 

33 increased the availability of NWP outputs. While this expansion holds the potential to 

34 improve forecast accuracy, it raises a critical question: which prediction is the most 

35 plausible? If the NWP models have comparable accuracy, it is impossible to determine in 

36 advance which one is the best. Traditional approaches, such as ensemble or weighted 

37 averaging, combine multiple NWP outputs to produce a single forecast with improved 

38 accuracy. However, they often result in meteorologically unrealistic and uninterpretable 

39 outputs, such as the splitting of tropical cyclone centers or frontal boundaries into multiple 

40 distinct systems.

41 To address this issue, we propose DeepMedcast, a deep learning method that 

42 generates intermediate forecasts between two or more NWP outputs. Unlike averaging, 

43 DeepMedcast provides predictions in which meteorologically significant features—such 

44 as the locations of tropical cyclones, extratropical cyclones, fronts, and shear lines—

45 approximately align with the arithmetic mean of the corresponding features predicted by 

46 the input NWP models, without distorting meteorological structures. We demonstrate the 

47 capability of DeepMedcast through case studies and verification results, showing that it 

48 produces realistic and interpretable forecasts with higher accuracy than the input NWP 
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49 models. By providing plausible intermediate forecasts, DeepMedcast can significantly 

50 contribute to the efficiency and standardization of operational forecasting tasks, including 

51 general, marine, and aviation forecasts.

52

53 Keywords  deep neural network; intermediate forecast; numerical weather prediction
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55 1. Introduction

56 In recent decades, numerical weather predictions (NWPs) and their post-processing 

57 have played a central role in issuing weather forecasts, warnings, and advisories (WMO 

58 2013; Vannitsem 2021). NWP centers around the world have developed and are operating 

59 a variety of NWP models for accurate weather predictions. For example, the European 

60 Centre for Medium-Range Weather Forecasts (ECMWF) operates the Integrated 

61 Forecasting System (IFS) and its ensemble prediction system (ECMWF 2024); the UK Met 

62 Office operates the Unified Model and the Met Office Global and Regional Ensemble 

63 Prediction System (Brown et al. 2012; Hagelin et al. 2017; Inverarity et al. 2023). The 

64 National Centers for Environmental Prediction (NCEP) at the National Oceanic and 

65 Atmospheric Administration (NOAA) operates the Global Forecast System (NCEP 2016), 

66 the High-Resolution Rapid Refresh (Dowell et al. 2022), and the Hurricane Weather 

67 Research and Forecasting model (Gopalakrishnan et al. 2011). The Japan Meteorological 

68 Agency (JMA) operates three deterministic NWP models and two ensemble prediction 

69 systems for short-range to weekly forecasts: the Global Spectrum Model (GSM), the Meso-

70 Scale Model (MSM), the Local Forecast Model, the Global Ensemble Prediction System, 

71 and the Mesoscale Ensemble Prediction System (JMA 2024). These models cover different 

72 areas with varying resolutions and processes.

73 In addition to traditional physics-based NWP models, recent advancements in artificial 

74 intelligence (AI) have introduced new methods for producing weather predictions. AI-driven 
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75 NWP models, such as FourCastNet (Pathak et al. 2022; Bonev et al. 2023), GraphCast 

76 (Lam et al. 2022), Pangu-Weather (Bi et al. 2022; Bi et al. 2023), FengWu (Chen et al. 2023; 

77 Han et al. 2024), Aurora (Bodnar et al. 2024), GenCast (Price et al. 2023), and AIFS (Lang 

78 et al. 2024), have demonstrated the ability to enhance both the speed and accuracy of 

79 weather predictions by leveraging deep learning techniques to model complex atmospheric 

80 systems.

81 At present, forecasters are able to use multiple NWP models including AI-driven NWP 

82 models, which provide a range of possible atmospheric states, allowing them to select the 

83 most plausible prediction from available NWPs. However, this raises a critical question: 

84 Which prediction is the most plausible? If the models have comparable accuracy, it is 

85 impossible to determine in advance which one is the best. One practical and widely used 

86 solution is to average the results from multiple NWP models or their post-processed outputs, 

87 as this can reduce random errors inherent in NWP models and can lead to higher accuracy 

88 than individual models (Vislocky and Fritsch 1997; JMA 2018). The National Hurricane 

89 Center and the Joint Typhoon Warning Center in the United States use consensus forecasts 

90 (e.g., Simon et al. 2018; Cangialosi et al. 2023), which are weighted averages, extensively 

91 for both tropical cyclone (TC) track and intensity predictions. JMA employs consensus 

92 forecasting for TC track predictions by averaging positions of TC centers from multiple NWP 

93 outputs to improve forecast accuracy (Nishimura and Fukuda 2019; JMA 2022). The UK Met 

94 Office operates the IMPROVER system (Roberts et al. 2023), which applies a weighted 
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95 average of post-processing and nowcasts based on multiple NWP outputs. The National 

96 Weather Service (NWS) at NOAA operates the National Blend of Models (NBM), which 

97 provides statistically post-processed multi-model ensemble guidance (Hamill et al. 2017). 

98 The German Meteorological Service uses MOSMIX and ModelMIX (Primo et al. 2024), 

99 which are weighted averages of post-processing based on IFS, their global model, and their 

100 regional ensemble model. Additionally, the World Area Forecast Centre, comprising centers 

101 in London and Washington, operates harmonized forecasts, including mean, maximum, and 

102 minimum forecasts, from both NWP outputs for aviation hazards such as cumulonimbus 

103 clouds, turbulence, and in-flight icing (ICAO 2016).

104 It is straightforward to average the central position of TCs, extra tropical cyclones, or the 

105 location of fronts because averaging does not degrade their clarity. However, averaging 

106 atmospheric fields such as pressure or wind speed around these systems is not appropriate. 

107 This is because averaging can smooth out or distort these fields, weakening the central 

108 pressure or wind speeds around cyclones and fronts, and even causing TCs or fronts to split 

109 into two, resulting in predictions that are meteorologically unrealistic and difficult to interpret. 

110 Forecasters must then choose between two options: using a single model that is realistic 

111 and interpretable but potentially less accurate or using an averaged prediction that is 

112 unrealistic and uninterpretable but may be more accurate.

113 Beyond these challenges, weather forecasting faces additional difficulties in operational 

114 practice. In JMA’s forecasting and warning issuance process, TC track forecasts, which are 
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115 based on consensus forecasts derived by averaging the positions of TC centers from 

116 multiple NWP models, take precedence. As a result, forecasters responsible for general, 

117 marine, and aviation forecasts must ensure that their forecasts align with TC track forecasts. 

118 However, since no NWP model inherently conforms to the TC track forecasts, forecasters 

119 need to adjust the existing NWP outputs in their minds to construct forecast scenarios that 

120 align with them. This process requires significant time and effort and can pose a major 

121 obstacle to the standardization of forecasting workflows, leading to inefficiencies in 

122 operational forecasting.

123 In addition to these operational challenges, machine learning-based post-processing 

124 presents its own set of difficulties, particularly regarding data requirements. In conventional 

125 model output statistics (MOS), obtaining long-term, homogeneous datasets is particularly 

126 difficult because the input NWP model is periodically updated, causing changes in its 

127 systematic errors. Consequently, the statistical relationships learned from past data may no 

128 longer hold after a model update.

129 The objective of this study is to propose DeepMedcast, a method that uses deep 

130 learning to generate a realistic and interpretable "intermediate forecast" between two or 

131 more NWP models. In this study, we do not attempt to define intermediate forecasts in a 

132 physical or mathematical sense. Instead, we adopt a pragmatic definition: an intermediate 

133 forecast is a predicted meteorological field in which meteorologically significant features—

134 such as the center positions of TCs or extratropical cyclones, frontal boundaries, and shear 
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135 lines—are located at the arithmetic mean of the corresponding features predicted by input 

136 NWP models, and it simultaneously exhibits higher forecast accuracy against observations 

137 than the input models.

138 Unlike averaging, DeepMedcast can produce atmospheric fields around cyclones and 

139 fronts without smoothing out or disturbing their distributions. This capability is crucial in 

140 operational forecasts, where accurate and interpretable predictions are needed for issuing 

141 reliable warnings and advisories—particularly when a TC is approaching—and also 

142 contributes to the standardization of forecasting workflows by reducing reliance on manual 

143 adjustments by individual forecasters. While mathematical frameworks such as 

144 displacement interpolation and barycenters in optimal transport theory (McCann 1997; 

145 Agueh and Carlier 2011; Peyré and Cuturi, 2020) provide rigorously defined intermediate 

146 states and have been widely used in machine learning fields such as image processing, 

147 applying them directly to forecasts from multiple NWP models remains challenging. Le Coz 

148 et al. (2023) proposed a barycenter-based method using optimal transport to combine 

149 forecasts from multiple NWP models in the context of subseasonal prediction, offering a 

150 mathematically principled approach to multi-model ensemble forecasts. Duc and Sawada 

151 (2024) pointed out that traditional arithmetic ensemble means tend to excessively smooth 

152 rainfall structures, and proposed a Gaussian–Hellinger barycenter based on unbalanced 

153 optimal transport theory to derive more realistic and structurally coherent ensemble means. 

154 Their method is particularly effective in representing heavy precipitation and may contribute 
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155 to future advances in ensemble post-processing and spatial verification techniques. To the 

156 best of the authors’ knowledge, however, no prior study has successfully generated two-

157 dimensional intermediate forecasts for mean sea-level pressure or surface wind vectors at 

158 high temporal resolution and in areas strongly influenced by topography. In contrast, 

159 DeepMedcast is not intended to generate physically or mathematically consistent 

160 intermediate forecasts but to provide forecasters with operationally practical solutions, 

161 addressing a critical challenge in operational forecasting. In many national meteorological 

162 centers, including JMA, machine learning-based post-processing methods, referred to as 

163 forecast guidance, are operationally employed. Although forecast guidance does not 

164 preserve physical consistency, it enhances forecast accuracy by reducing biases inherent 

165 in NWP models and significantly improves the efficiency of operational forecasting. 

166 DeepMedcast is a kind of post-processing method that is not designed to ensure physical 

167 consistency but to provide practical support for forecasters.

168 This paper is structured as follows: Section 2 presents the methodology and data used 

169 for DeepMedcast, detailing the deep learning architecture and training process. Section 3 

170 discusses the results of applying DeepMedcast to multiple NWP models with case studies 

171 and verification results, and Section 4 offers a discussion of contributions to operational 

172 forecasting and the key features of DeepMedcast's architecture. Finally, Section 5 

173 concludes with a summary of the findings and future research directions.

174
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175 2. Method and data

176 2.1 The framework of DeepMedcast

177 The main idea behind DeepMedcast lies in its original approach to generating 

178 intermediate forecasts between two NWP outputs. Figure 1 illustrates the framework of 

179 DeepMedcast. During the training phase, instead of using two different NWP outputs 

180 intended for creating an intermediate forecast, DeepMedcast utilizes data at two forecast 

181 lead times (FT), FT = t - Δt and FT = t + Δt, from a single NWP model as input variables for 

182 the deep neural network (DNN) (Fig. 1a). The output from the DNN is then compared to the 

183 forecast from the same NWP at the intermediate lead time (FT = t) to calculate the loss for 

184 the backpropagation process. This approach enables the network to generate intermediate 

185 forecasts while reducing the blurring effect often seen in machine learning (ML)-based post-

186 processing, as the input variables are not inherently affected by errors relative to observed 

187 values, and the predictions at FT = t are expected to lie between those at FT = t ± Δt. During 

188 the inference phase, two different NWP outputs at the same forecast lead time are used to 

189 generate an intermediate forecast for the projection time (Fig. 1b). 

190 DeepMedcast is primarily designed to generate intermediate forecasts between two 

191 NWP models. However, the same DNN model can be applied recursively to generate 

192 intermediate forecasts between more than two NWP models. For instance, by taking 

193 intermediate forecasts between two pairs of NWP models, DeepMedcast can generate an 

194 intermediate result between four NWP models (Fig.2). This recursive approach could be 

Fig. 1

Fig. 2
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195 extended further to create intermediate forecasts between 8, 16, or even more NWP models.

196

197 2.2 Data used for the study

198 The NWP model used for training is GSM, which is operated by JMA four times a day 

199 (at 00, 06, 12, and 18 UTC as initial times). The training period spans nine years, from 

200 January 2013 to December 2021, while the validation period covers one year, from January 

201 to December 2022. GSM had a horizontal resolution of approximately 20 km until March 

202 2023, after which it was upgraded to about 13 km (JMA 2024). The GSM data used in this 

203 study is stored at JMA, where it is trimmed and linearly interpolated onto a 121 × 151 grid 

204 with a resolution of 0.25 degrees by 0.2 degrees around Japan (Fig. 3). Hereafter, we refer 

205 to this as the target grid domain.

206 The forecast variables include wind components (U, V), temperature (T), and relative 

207 humidity (RH) at both the surface and the 700 hPa level, as well as mean sea-level pressure 

208 at the surface (Psea). To reduce computational cost and execution time, each variable is 

209 used individually to train separate networks, with each network dedicated to a single variable. 

210 That means, each DNN model always takes two input channels (at FT = t - Δt and FT = t + 

211 Δt) and outputs one channel (at FT = t) for DeepMedcast. Both input channels are utilized 

212 by swapping their order, i.e., both FT = t - Δt and FT = t + Δt, as well as FT = t + Δt and FT 

213 = t - Δt, are employed to preserve symmetry. This strategy encourages the network to learn 

214 symmetric representations, so that meteorologically significant features—such as the center 

Fig. 3
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215 positions of TCs or extratropical cyclones, frontal boundaries, and shear lines—

216 approximately align with the arithmetic mean of the corresponding features from the two 

217 input channels. The networks trained with 700 hPa data are employed to generate 

218 intermediate forecasts for the upper atmosphere (e.g., 850 hPa, 700 hPa, and 500 hPa) to 

219 reduce computational costs. The forecast lead times used in this study are t = 9, 10, 11, 12, 

220 13, and 14 hours, with Δt = ±3 and ±6 hours, corresponding to t and Δt in Fig. 1, determined 

221 by taking both computational costs and accuracy into account.

222 For the case studies in Section 3, MSM, IFS, GraphCast, and Pangu-Weather are used 

223 along with GSM for inference. MSM is operated by JMA eight times a day (at 00, 03, ..., and 

224 21 UTC as initial times) with a 5 km horizontal resolution, providing forecasts up to FT = 78 

225 hours for 00 and 12 UTC initial times and up to FT = 39 hours for other initial times. IFS 

226 data, provided by ECMWF for the World Meteorological Organization (WMO) members, has 

227 a horizontal resolution of 0.5 degrees and is initialized four times daily at 00, 06, 12, and 18 

228 UTC. Both GraphCast and Pangu-Weather have a horizontal resolution of 0.25 degrees, 

229 with data initialized at 00, 06, 12, and 18 UTC. These NWP outputs are linearly interpolated 

230 to the target grid domain for inference.

231

232 2.3 DNN model architecture

233 In this study, a U-Net architecture (Ronneberger et al. 2015) is applied as the DNN 

234 model. The structure of the network is illustrated in Fig. 4. The encoder part of the U-Net Fig. 4
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235 utilizes a convolutional network with kernel size = 3, stride = 1, and padding = 1 for 

236 convolution operations. To progressively reduce the image size, MaxPooling layers with 

237 kernel size = 2 and stride = 2 are employed. This downsampling process continues until the 

238 image size is reduced to 1/8 of the original dimensions, at which point the channel count 

239 reaches 2048, starting from an initial 2 channels that are expanded to 256 channels. In each 

240 downsampling stage, the image size is halved while the number of channels doubles. In the 

241 decoder part, transposed convolutional layers with kernel size = 2 and stride = 2 are applied 

242 to upsample the feature maps, restoring the image to its original size while reducing the 

243 channel count by half at each stage. By the final stage, the image is returned to its original 

244 dimensions with 256 channels, which are then reduced to 1 channel in the output layer. The 

245 activation functions used in this network include rectified linear units (ReLU, Nair and Hinton 

246 2010) for all layers except the output layer, which uses a sigmoid function to ensure output 

247 values are scaled between 0 and 1.

248 During the training phase, the two input channels and one ground truth channel, each 

249 consisting of 121 × 151 grids, are normalized to a value range of 0 to 1 using the maximum 

250 and minimum values across all three channels. Specifically, for T, RH, and Psea, the 

251 normalization is applied as:

252 𝑥′ =
𝑥 ― 𝑥min

𝑥max ― 𝑥min

253 where x' is the normalized value, x is the input value, and 𝑥max and 𝑥min represent the 

254 maximum and minimum values, respectively. For wind components U and V, 𝑥max and 
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255 𝑥min are defined as:

256 𝑥max = max(|𝑥max|,|𝑥min|)

257 𝑥min = ― 𝑥max

258 and the same normalization is applied.

259 After normalization, the values are extended to 128 × 158 grids by copying the last 

260 column and row to adjust to the network structure. The output values are compared with the 

261 normalized and extended ground truth values using the mean square error (MSE) as the 

262 loss function. We employ Adam (Kingma and Ba 2014) as optimization.

263 During the inference phase, the input values are normalized to the 0 to 1 range using 

264 the maximum and minimum values of the two input channels. The output values are then 

265 denormalized using the same maximum and minimum values, and resized back to 121 × 

266 151 grids by trimming the extended columns and rows, providing predictions at the target 

267 grid domain.

268

269 3. Results

270 In this section, we demonstrate the capability of DeepMedcast through four case studies 

271 and verification results. The forecast data used here is from a period beginning in January 

272 2023, which is independent of the DNN’s training and validation periods. The case studies 

273 compare the atmospheric fields generated by DeepMedcast with those obtained via 

274 arithmetic mean of the NWP outputs.
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275

276 3.1 Case 1: Position discrepancy in a typhoon forecast between GSM and MSM

277 The first case study examines a typhoon forecast where there is a positional discrepancy 

278 between GSM and MSM. Figure 5 shows the predictions at FT = 51 hours based on the 

279 initial time of 12 UTC on 12 August 2023. This case focuses on Typhoon LAN which was 

280 moving northwest over the ocean south of Japan. At FT = 51 hours, GSM predicted the 

281 typhoon’s position at 33.3°N, 137.1°E, while MSM placed it southwest at 32.7°N, 135.7°E. 

282 Both models predicted a central pressure of 960 hPa, with the maximum wind speed of 79 

283 kt (1 kt ≃ 0.514 m s-1) (GSM) and 68 kt (MSM) (Figs. 5a and 5b).

284 When the mean sea-level pressure and surface wind components from GSM and MSM 

285 were averaged arithmetically, the typhoon’s center split into two, aligning with the predicted 

286 positions from each model (Fig. 5c). Such a result is evidently unrealistic and lacks 

287 interpretability. The central pressure weakened to 974 hPa, and the maximum wind speed 

288 reduced to 58 kt, which made the forecast meteorologically unnatural, with the typhoon 

289 taking on an elongated structure and weakening wind speeds near the center. This resulted 

290 in a forecast that was difficult to explain and potentially misleading.

291 In contrast, DeepMedcast generated a plausible forecast, placing the typhoon at 33.0°N, 

292 136.4°E, halfway between GSM and MSM predictions (Fig. 5d). The typhoon maintained a 

293 single, natural, and interpretable shape with a central pressure of 960 hPa and the maximum 

294 wind speed of 69 kt, representing an intermediate forecast between the two NWP models.

Fig. 5
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295 Figure 6 compares the DeepMedcast outputs with different input orders. Figure 6a 

296 shows the result when GSM and MSM are used as inputs in that order (identical to Fig. 5d), 

297 while Fig. 6b shows the result when the input order is reversed (MSM-GSM). As expected, 

298 the predicted structure—including the typhoon center position, central pressure, and 

299 surrounding wind field—remains qualitatively consistent, despite minor differences due to 

300 the asymmetry of the trained neural network. This indicates that while DeepMedcast is not 

301 strictly order-invariant, the resulting intermediate forecasts are robust to changes in input 

302 order.

303

304 3.2 Case 2: Discrepancy in a front position forecast between GSM and MSM

305 The second case study examines a forecast where there was a positional discrepancy 

306 in the predicted location of a front between GSM and MSM. Figure 7 shows the predictions 

307 at FT = 30 hours based on the initial time of 00 UTC on 17 June 2024. At the initial time, a 

308 stationary front was located south of Japan (not shown), and by FT = 30 hours, the front 

309 was predicted to move northward toward Tokyo (indicated by the blue circles in the figure).

310 GSM predicted the front to the south of Tokyo, indicated by the blue dashed line, with a 

311 clear wind direction and speed shear, which corresponds well with the 21°C isotherm around 

312 Tokyo (Fig. 7a). In contrast, MSM placed the front north of Tokyo (green dashed line), also 

313 with a clear wind direction and speed shear aligned with the 21°C isotherm (Fig. 7b), 

314 resulting in a positional discrepancy between the two NWP models. Consequently, GSM 

Fig. 7

Fig. 6
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315 predicted a northerly to northeasterly wind and cooler temperatures around Tokyo, while 

316 MSM predicted southerly to southwesterly winds and warmer temperatures, leading to 

317 significant differences in the forecast for Tokyo.

318 The arithmetic mean of the GSM and MSM predictions (Fig. 7c) results in a split structure 

319 for the front, with wind shear corresponding to the locations predicted by GSM and MSM 

320 (shown by the purple lines), while the 21°C isotherm is predicted between the two fronts. 

321 This demonstrates that when there is a discrepancy in the predicted front position, simple 

322 averaging of the atmospheric fields leads to an unnatural and uninterpretable forecast that 

323 cannot maintain the original front structure.

324 In contrast, DeepMedcast (Fig. 7d) generates a clear wind direction and speed shear at 

325 the intermediate position between the GSM and MSM predictions (indicated by the brown 

326 dashed line), which corresponds well with the 21°C isotherm. DeepMedcast successfully 

327 produces a realistic and interpretable intermediate forecast while preserving the structure of 

328 the original front.

329

330 3.3 Case 3: Significant difference in low-pressure system position between GSM and MSM

331 The third case study highlights a situation where there was a large difference in the 

332 predicted position of a low-pressure system between GSM and MSM. Figure 8 shows 

333 surface wind and mean sea-level pressure, along with temperature and dew-point 

334 depression at 850 hPa, at FT = 75 hours based on the initial time of 12 UTC on 28 August 

Fig. 8
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335 2024. At the initial time, Typhoon SHANSHAN was located south of Kyushu (see Fig. 3, 

336 location 4) at 30.6°N, 130.2°E, slowly moving northward (not shown). By 15 UTC on 31 

337 August (FT = 75 hours), the system, which had either remained a tropical storm or 

338 transitioned into a low-pressure system, was predicted by GSM to be south of the Kanto 

339 region (see Fig. 3, location 3) at 35.4°N, 139.8°E (Fig. 8a), while MSM placed it east of 

340 Hokkaido (see Fig. 3, location 1) at 42.4°N, 147.3°E (Fig. 8b).

341 This case highlights a large positional difference of about 1000 km between the GSM 

342 and MSM predictions. When the arithmetic mean of these is taken (Fig. 8c), it results in two 

343 distinct low-pressure systems at the positions predicted by each model, creating an 

344 uninterpretable forecast. In contrast, DeepMedcast predicted a single low-pressure system 

345 located between the two forecasts, at 39.5°N, 143.0°E, off the Pacific coast of Tohoku (see 

346 Fig. 3, location 2; Fig. 8d). Additionally, when examining the moisture area at 850 hPa (dew-

347 point depression < 3°C), the arithmetic mean shows moist areas surrounding both the GSM 

348 and MSM low-pressure systems, with a relatively dry region in between. On the other hand, 

349 DeepMedcast represents a moist area around its low-pressure system, corresponding well 

350 with the surface pressure field, providing a realistic and interpretable forecast.

351

352 3.4 Case 4: Intermediate forecast between four NWP models for typhoon KHANUN

353 The fourth case study presents an intermediate forecast between four NWP models: 

354 GSM, IFS, GraphCast, and Pangu-Weather. Figure 9 shows surface wind and mean sea-

Fig. 9

Table.1
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355 level pressure at FT = 108 hours, based on the initial time of 12 UTC on 2 August 2023. At 

356 the initial time, Typhoon KHANUN was located west of Okinawa (see Fig. 3, location 5) at 

357 26.2°N, 125.6°E, slowly moving westward (not shown). By 00 UTC on 7 August (FT = 108 

358 hours), the central position was predicted by the four models to be at 31.4°N, 131.1°E (GSM), 

359 28.9°N, 133.0°E (IFS), 28.0°N, 131.2°E (GraphCast), and 28.8°N, 130.7°E (Pangu-

360 Weather). The typhoon central position, central pressure, and maximum wind speed at FT 

361 = 108 hours for each model are summarized in Table 1.

362 When the arithmetic mean of the four models is taken, the center splits into two, with a 

363 weakened central pressure of 979 hPa and the maximum wind speed of 36 kt (Fig. 9e), both 

364 the same or weaker than the predictions of any individual model. In contrast, DeepMedcast 

365 predicted a single center at 29.3°N, 131.4°E, with the central pressure of 964 hPa and the 

366 maximum wind speed of 42 kt (Fig. 9f), representing an intermediate intensity forecast 

367 between the four NWP models. The average central latitude, longitude, and pressure of the 

368 four NWP models were 29.3°N, 131.5°E, and 964 hPa, respectively, matching 

369 DeepMedcast's prediction. The average maximum wind speed of the four models was 49 

370 kt, meaning DeepMedcast’s forecast was slightly weaker than the average.

371 Figure 10 illustrates the effect of changing the order in which intermediate forecasts are 

372 taken when combining the four NWP models. Figure 10a is identical to Fig. 9f and shows 

373 the result when intermediate forecasts are first generated between GSM and IFS, and 

374 between GraphCast and Pangu-Weather, followed by taking an intermediate forecast 

Fig. 10
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375 between those two results. Figure 10b shows the case where the intermediate forecasts are 

376 first taken between GSM and GraphCast, and between IFS and Pangu-Weather, then 

377 combined. Figure 10c presents the result when intermediate forecasts are first taken 

378 between GSM and Pangu-Weather, and between IFS and GraphCast. As in the two-model 

379 case discussed in Section 3.1, the outputs differ slightly due to the inherent asymmetry of 

380 the trained network and the recursive nature of the procedure. However, the predicted 

381 typhoon structure, including its central position, pressure, and wind field, remains 

382 qualitatively consistent across all three cases. This suggests that although DeepMedcast is 

383 not strictly order-invariant, it produces robust intermediate forecasts in practice.

384

385 3.5 Statistical evaluation of DeepMedcast using surface wind observations

386 This section presents the verification results of DeepMedcast generated from GSM and 

387 MSM. Surface wind predictions from DeepMedcast, along with the input GSM and MSM 

388 forecasts, were verified against observations from the Automated Meteorological Data 

389 Acquisition System (AMeDAS), an automated observation network operated by JMA. The 

390 verification metric is the root mean square error (RMSE), defined as follows:

391 𝑅𝑀𝑆𝐸 =
1
𝑇

𝑇

𝑡=1

1
𝑁

𝑁

𝑛=1
(𝐹𝑛𝑡 ― 𝑂𝑛𝑡)2

392 where 𝑇 and 𝑁 are the numbers of forecast times and stations used for verification, and 

393 𝐹𝑛𝑡 and 𝑂𝑛𝑡 represent the forecast and observed winds at station 𝑛 and time 𝑡, 
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394 respectively. Predictions from DeepMedcast, GSM, and MSM were linearly interpolated to 

395 each AMeDAS station from the four surrounding grid points.

396 Figure 11 shows the RMSE of wind speed (Fig. 11a) and wind direction (Fig. 11b) by 

397 forecast lead time, ranging from 3 to 39 hours. The verification was conducted over one 

398 year, from January to December 2023, using forecasts initialized four times daily (00, 06, 

399 12, and 18 UTC), independent of the training and validation periods. In both panels, the red, 

400 blue, and green lines represent DeepMedcast, GSM, and MSM, respectively. As shown in 

401 Fig. 11, DeepMedcast achieves lower RMSEs for both wind speed and direction across all 

402 forecast lead times compared to its input models. The RMSE for wind direction in Fig. 11b 

403 shows a 6-hourly fluctuation pattern, reflecting the four-times-daily initialization and diurnal 

404 variation.

405

406 4. Discussion

407 4.1 Contributions to operational forecasting

408 As demonstrated by the case studies and verification in Section 3, DeepMedcast is 

409 capable of generating plausible and interpretable intermediate forecasts. The ability to 

410 generate intermediate forecasts between multiple models is expected to significantly 

411 contribute to operational forecasting. As mentioned in the Introduction, TC track forecasts, 

412 which are based on consensus from multiple NWP models, specifically the average position 

413 of the TC center predicted by these models, serve as primary reference in JMA's operational 

Fig. 11
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414 forecasting. Consequently, forecasters responsible for general, marine, and aviation 

415 forecasts must ensure that their forecasts align with the TC track forecasts. However, since 

416 no NWP model inherently conforms to the TC track forecasts, forecasters must adjust the 

417 existing NWP outputs in their minds to construct forecast scenarios that follow the TC track 

418 forecasts. DeepMedcast has a capability to provide two-dimensional wind and pressure 

419 fields that align with TC track forecasts, which could greatly improve the efficiency and 

420 standardization of tasks for operational forecasting.

421 Additionally, DeepMedcast can be effectively utilized in operational forecasting when 

422 there are discrepancies in the predicted positions of low-pressure systems or fronts among 

423 multiple models. When significant differences exist among NWP models, forecasters need 

424 to choose between two options: either using one model as the main scenario while treating 

425 others as alternative scenarios, or applying averaging methods. By generating an 

426 intermediate state between two or more NWP models, DeepMedcast provides a forecast 

427 scenario that is more plausible than individual NWP models. However, it should be noted 

428 that it does not explicitly represent the variability among the original NWP models. This issue 

429 is not unique to DeepMedcast but is also present when using arithmetic or weighted 

430 averaging of multiple NWP models or post-processing techniques. Since variability is an 

431 indicator of forecast uncertainty, especially for longer lead times, it is important to take this 

432 information into account in daily operational forecasting. One practical approach is to 

433 incorporate the values of the original NWP models and their spread alongside the 
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434 intermediate forecast. This framework can further enhance operational forecasting by 

435 offering a practical way to take model variability into account.

436

437 4.2 Key Features of DeepMedcast’s Architecture

438 There are two important features associated with DeepMedcast's architecture. The first 

439 is its flexibility in increasing the amount of training data. As mentioned in Section 2, this study 

440 used t = 9–14 and Δt = ±3, ±6, and in our experience, increasing t and Δt leads to better 

441 forecast representation. One common issue in training DNN models is a lack of sufficient 

442 training data (e.g., Deng 2009; LeCun 2015). However, in the case of DeepMedcast, more 

443 training data can easily be generated by increasing t and Δt or by adding additional NWP 

444 models. It is important to note, though, that increasing t and Δt requires more memory and 

445 computational time, which should be considered when expanding the dataset.

446 The second is DeepMedcast’s maintainability. Despite being trained solely on 20-km 

447 resolution GSM data, DeepMedcast works effectively not only with 13-km resolution GSM 

448 data but also with other NWP models such as MSM, IFS, GraphCast, and Pangu-Weather. 

449 This is significant because most AI or ML methods in meteorology learn the relationship 

450 between input and target data, and when the characteristics of the input data change due to 

451 NWP model updates, retraining, fine-tuning, and/or online learning are usually required. 

452 While this is an unavoidable task for most AI or ML methods in meteorology, it is a time-

453 consuming yet essential task that operational centers have traditionally managed. However, 
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454 DeepMedcast can be applied to various NWP models without updating the DNN model since 

455 it is not designed to correct NWP model biases, which significantly reduces the maintenance 

456 costs for operational centers.

457

458 5. Summary

459 In this paper, we introduced DeepMedcast, a novel deep learning-based approach for 

460 producing intermediate forecasts between two or more NWP models. DeepMedcast was 

461 developed to generate plausible and interpretable intermediate forecast, bridging the gap 

462 between NWP model outputs.

463 A key advantage of DeepMedcast is its applicability to various NWP outputs without the 

464 need for retraining or fine-tuning the DNN. By providing plausible intermediate forecasts, 

465 DeepMedcast can significantly enhance the efficiency and standardization of operational 

466 forecasting tasks, including general, marine, and aviation forecasts.

467 Although DeepMedcast introduces some advancements, further research and 

468 development are needed to address several challenges. In this study, U-Net was employed 

469 as the DNN architecture; however, advanced methods such as Transformers (Vaswani et 

470 al. 2017; Dosovitskiy et al. 2020) and Diffusion models (Song and Ermon 2019; Ho et al. 

471 2020) may further enhance DeepMedcast's representational capabilities. As shown in the 

472 case study in Section 3.4, the current method tends to slightly underestimate the maximum 

473 wind speed near TCs. Enhancing the DNN could help resolve this issue. Additionally, while 
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474 this study trained separate networks for each physical variable to reduce computational cost, 

475 incorporating multiple physical variables as input could potentially enhance forecast 

476 accuracy. By developing post-processing methods that use DeepMedcast as input, it would 

477 be possible to provide even more accurate predictions. This study focused on generating 

478 intermediate forecasts using a 1:1 weighting ratio, meaning that the two input models were 

479 given equal weight. Future work should explore methods for generating intermediate 

480 forecasts with other weighting ratios, such as 1:2. This would enable the application of 

481 DeepMedcast to cases involving several models that is not a power of two, such as finding 

482 an intermediate forecast among three models. Furthermore, while this study demonstrated 

483 intermediate forecasts using two or four NWP models, DeepMedcast could be extended to 

484 8, 16, or more inputs, enabling the use of multiple NWP and ensemble models. Lastly, this 

485 study did not address intermediate precipitation forecasts. Since precipitation is one of the 

486 most critical variables in weather forecasting, future work will focus on developing 

487 intermediate precipitation forecasts.

488

489 Data Availability Statement

490 The datasets used in this study are available from the following sources: The GSM and MSM 

491 data are operationally produced by JMA and can be accessed through the Japan 

492 Meteorological Business Support Center (http://www.jmbsc.or.jp/en/index-e.html). The IFS 

493 data are accessible to WMO members via the ECMWF website 
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494 (https://www.ecmwf.int/en/forecasts/datasets/wmo-additional). The GraphCast and Pangu-

495 Weather source code and plugins are available under open-source licenses in the ECMWF 

496 GitHub repository (https://github.com/ecmwf-lab/ai-models). Pre-trained models of Pangu-

497 Weather and GraphCast, used without modification to generate forecast data, are 

498 specifically accessible at https://github.com/ecmwf-lab/ai-models-panguweather and 

499 https://github.com/ecmwf-lab/ai-models-graphcast.
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654 List of Figures

655 Fig. 1  DeepMedcast framework for training and inference. (a) During the training phase, 

656 two forecast lead times from the same NWP model (NWP1 at FT = t - Δt and FT = t + Δt) 

657 are used as input, and the output from the DNN is compared with the same NWP 

658 model’s forecast at FT = t as the ground truth to train the network. (b) During the 

659 inference phase, predictions from two different NWP models (NWP1 and NWP2) at the 

660 same lead time (FT = t) are used as input to generate an intermediate forecast between 

661 the two models at FT = t.

662

663 Fig. 2  The recursive application of DeepMedcast, where intermediate forecasts are first 

664 generated between two NWP models (NWP1 and NWP2, NWP3 and NWP4), followed 

665 by the creation of an additional intermediate forecast between the outputs of the first two 

666 pairs.

667

668 Fig. 3  The target grid domain for this study. 121 × 151 grids with 0.25-degree × 0.2-

669 degree resolution around Japan. The dots on the map represent these grid points. The 

670 numbers and region names indicated in the figure are used in the case studies in 

671 Section 3.

672

673 Fig. 4  The DNN architecture used in DeepMedcast. The model takes two input channels 
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674 and outputs a single channel. Input data is normalized using the maximum and minimum 

675 values, and during inference, the same values are applied for the denormalization 

676 process.

677

678 Fig. 5  Comparison of Typhoon LAN predictions by (a) GSM, (b) MSM, (c) the arithmetic 

679 mean, and (d) DeepMedcast. The forecasts are based on the initial time of 12 UTC on 

680 12 August 2023 with a forecast lead time of 51 hours. The black contours indicate mean 

681 sea-level pressure and wind barbs (units in kt) show surface winds.

682

683 Fig. 6  Comparison of DeepMedcast outputs with different input orders for the case in Fig. 

684 5. (a) Result when GSM and MSM are provided in that order (same as Fig. 5d). (b) 

685 Result when the input order is reversed (MSM-GSM). While slight differences are 

686 present due to network asymmetry, the outputs remain qualitatively identical.

687

688 Fig. 7  Comparison of predicted front positions by (a) GSM, (b) MSM, (c) the arithmetic 

689 mean, and (d) DeepMedcast. The forecasts are based on the initial time of 00 UTC on 

690 17 June 2024 with a forecast lead time of 30 hours. The black contours indicate mean 

691 sea-level pressure, the red contours represent surface temperature, and wind barbs 

692 (units in kt) show surface winds. The blue, green, purple, and brown dashed lines 

693 represent the predicted front positions by GSM, MSM, the arithmetic mean, and 
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694 DeepMedcast, respectively. Blue circles indicate the location of Tokyo.

695

696 Fig. 8  Comparison of predicted low-pressure systems by (a) GSM, (b) MSM, (c) the 

697 arithmetic mean, and (d) DeepMedcast. The forecasts are based on the initial time of 12 

698 UTC on 28 August 2024 with a forecast lead time of 75 hours. The black contours 

699 indicate mean sea-level pressure, the wind barbs (units in kt) represent surface winds, 

700 the red contours show 850 hPa temperature, and the shaded regions in green and 

701 yellow highlight areas where the dew-point depression at 850 hPa is below 3°C and 

702 above 15°C, respectively.

703

704 Fig. 9  Comparison of Typhoon KHANUM predictions by (a) GSM, (b) IFS, (c) GraphCast, 

705 (d) Pangu-Weather, (e) the arithmetic mean, and (f) DeepMedcast. The predictions are 

706 based on the initial time of 12 UTC on 2 August 2023 with a forecast lead time of 108 

707 hours. The black contours indicate mean sea-level pressure and wind barbs (units in kt) 

708 show surface winds.

709

710 Fig. 10  DeepMedcast forecasts based on the initial time of 12 UTC on 2 August 2023 

711 with a forecast lead time of 108 hours for Typhoon KHANUN using different orders of 

712 intermediate forecast generation from the four NWP models: GSM, IFS, GraphCast, and 

713 Pangu-Weather. (a) Intermediate forecasts are first taken between GSM and IFS, and 
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714 between GraphCast and Pangu-Weather, then combined. (b) GSM–GraphCast and 

715 IFS–Pangu-Weather. (c) GSM–Pangu-Weather and IFS–GraphCast.

716

717 Fig. 11　 Root mean square error (RMSE) of (a) surface wind speed and (b) surface wind 

718 direction for DeepMedcast (red), input GSM (blue), and input MSM (green) forecasts, 

719 verified against AMeDAS observations. The verification period spans one year, from 

720 January to December 2023, with forecasts initialized at 00, 06, 12, and 18 UTC.

721

722
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723

724

725 Fig. 1  DeepMedcast framework for training and inference. (a) During the training phase, 

726 two forecast lead times from the same NWP model (NWP1 at FT = t - Δt and FT = t + Δt) 

727 are used as input, and the output from the DNN is compared with the same NWP 

728 model’s forecast at FT = t as the ground truth to train the network. (b) During the 

729 inference phase, predictions from two different NWP models (NWP1 and NWP2) at the 

730 same lead time (FT = t) are used as input to generate an intermediate forecast between 

731 the two models at FT = t.

732

733

734 Fig. 2  The recursive application of DeepMedcast, where intermediate forecasts are first 

735 generated between two NWP models (NWP1 and NWP2, NWP3 and NWP4), followed 

736 by the creation of an additional intermediate forecast between the outputs of the first two 
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737 pairs.

738

739 Fig. 3  The target grid domain for this study. 121 × 151 grids with 0.25-degree × 0.2-

740 degree resolution around Japan. The dots on the map represent these grid points. The 

741 numbers and region names indicated in the figure are used in the case studies in 

742 Section 3.

743
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744

745 Fig. 4  The DNN architecture used in DeepMedcast. The model takes two input channels 

746 and outputs a single channel. Input data is normalized using the maximum and minimum 

747 values, and during inference, the same values are applied for the denormalization 

748 process.

749
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750

751 Fig. 5  Comparison of Typhoon LAN predictions by (a) GSM, (b) MSM, (c) the arithmetic 

752 mean, and (d) DeepMedcast. The forecasts are based on the initial time of 12 UTC on 

753 12 August 2023 with a forecast lead time of 51 hours. The black contours indicate mean 

754 sea-level pressure and wind barbs (units in kt) show surface winds.

755

756
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757 Fig. 6  Comparison of DeepMedcast outputs with different input orders for the case in Fig. 

758 5. (a) Result when GSM and MSM are provided in that order (same as Fig. 5d). (b) 

759 Result when the input order is reversed (MSM-GSM). While slight differences are 

760 present due to network asymmetry, the outputs remain qualitatively identical.

761

762

763 Fig. 7  Comparison of predicted front positions by (a) GSM, (b) MSM, (c) the arithmetic 

764 mean, and (d) DeepMedcast. The forecasts are based on the initial time of 00 UTC on 

765 17 June 2024 with a forecast lead time of 30 hours. The black contours indicate mean 

766 sea-level pressure, the red contours represent surface temperature, and wind barbs 

767 (units in kt) show surface winds. The blue, green, purple, and brown dashed lines 
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768 represent the predicted front positions by GSM, MSM, the arithmetic mean, and 

769 DeepMedcast, respectively. Blue circles indicate the location of Tokyo.

770

771

772 Fig. 8  Comparison of predicted low-pressure systems by (a) GSM, (b) MSM, (c) the 

773 arithmetic mean, and (d) DeepMedcast. The forecasts are based on the initial time of 12 

774 UTC on 28 August 2024 with a forecast lead time of 75 hours. The black contours 

775 indicate mean sea-level pressure, the wind barbs (units in kt) represent surface winds, 

776 the red contours show 850 hPa temperature, and the shaded regions in green and 

777 yellow highlight areas where the dew-point depression at 850 hPa is below 3°C and 

778 above 15°C, respectively.
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779

780

781 Fig. 9  Comparison of Typhoon KHANUM predictions by (a) GSM, (b) IFS, (c) GraphCast, 

782 (d) Pangu-Weather, (e) the arithmetic mean, and (f) DeepMedcast. The predictions are 

783 based on the initial time of 12 UTC on 2 August 2023 with a forecast lead time of 108 

784 hours. The black contours indicate mean sea-level pressure and wind barbs (units in kt) 

785 show surface winds.

786

787

788
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789 Fig. 10  DeepMedcast forecasts based on the initial time of 12 UTC on 2 August 2023 

790 with a forecast lead time of 108 hours for Typhoon KHANUN using different orders of 

791 intermediate forecast generation from the four NWP models: GSM, IFS, GraphCast, and 

792 Pangu-Weather. (a) Intermediate forecasts are first taken between GSM and IFS, and 

793 between GraphCast and Pangu-Weather, then combined. (b) GSM–GraphCast and 

794 IFS–Pangu-Weather. (c) GSM–Pangu-Weather and IFS–GraphCast.

795

796

797 Fig. 11　 Root mean square error (RMSE) of (a) surface wind speed and (b) surface wind 

798 direction for DeepMedcast (red), input GSM (blue), and input MSM (green) forecasts, 

799 verified against AMeDAS observations. The verification period spans one year, from 

800 January to December 2023, with forecasts initialized at 00, 06, 12, and 18 UTC.

801
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805 central pressure, and maximum wind speed based on the initial time of 12 UTC on 2 

806 August 2023 with a forecast lead time of 108 hours.

807

808 Table 1  Comparison of Typhoon KHANUN predictions from four NWP models, their 

809 arithmetic mean, and DeepMedcast. The table presents the predicted central position, 

810 central pressure, and maximum wind speed based on the initial time of 12 UTC on 2 

811 August 2023 with a forecast lead time of 108 hours.

Model Central position Central pressure Maximum wind speed

(a) GSM 31.4°N, 131.1°E 938 hPa 68 kt

(b) IFS 28.9°N, 133.0°E 966 hPa 51 kt

(c) GraphCast 28.0°N, 131.2°E 977 hPa 36 kt

(d) Pangu-Weather 28.8°N, 130.7°E 975 hPa 39 kt

(e) arithmetic mean --- 979 hPa 36 kt

(f) DeepMedcast 29.3°N, 131.4°E 964 hPa 42 kt

812

813
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